HOME

TheInfoList



OR:

In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a
right-angled triangle A right triangle (American English) or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right an ...
to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics,
celestial mechanics Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis. The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent. Their
reciprocal Reciprocal may refer to: In mathematics * Multiplicative inverse, in mathematics, the number 1/''x'', which multiplied by ''x'' gives the product 1, also known as a ''reciprocal'' * Reciprocal polynomial, a polynomial obtained from another pol ...
s are respectively the cosecant, the secant, and the cotangent, which are less used. Each of these six trigonometric functions has a corresponding
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon ...
, and an analog among the hyperbolic functions. The oldest definitions of trigonometric functions, related to right-angle triangles, define them only for
acute angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ar ...
s. To extend the sine and cosine functions to functions whose domain is the whole
real line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a poin ...
, geometrical definitions using the standard unit circle (i.e., a circle with radius 1 unit) are often used; then the domain of the other functions is the real line with some isolated points removed. Modern definitions express trigonometric functions as
infinite series In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mat ...
or as solutions of
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s. This allows extending the domain of sine and cosine functions to the whole
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by th ...
, and the domain of the other trigonometric functions to the complex plane with some isolated points removed.


Notation

Conventionally, an abbreviation of each trigonometric function's name is used as its symbol in formulas. Today, the most common versions of these abbreviations are "sin" for sine, "cos" for cosine, "tan" or "tg" for tangent, "sec" for secant, "csc" or "cosec" for cosecant, and "cot" or "ctg" for cotangent. Historically, these abbreviations were first used in prose sentences to indicate particular line segments or their lengths related to an arc of an arbitrary circle, and later to indicate ratios of lengths, but as the function concept developed in the 17th–18th century, they began to be considered as functions of real-number-valued angle measures, and written with functional notation, for example . Parentheses are still often omitted to reduce clutter, but are sometimes necessary; for example the expression \sin x+y would typically be interpreted to mean \sin (x)+y, so parentheses are required to express \sin (x+y). A positive integer appearing as a superscript after the symbol of the function denotes exponentiation, not function composition. For example \sin^2 x and \sin^2 (x) denote \sin(x) \cdot \sin(x), not \sin(\sin x). This differs from the (historically later) general functional notation in which f^2(x) = (f \circ f)(x) = f(f(x)). However, the exponent is commonly used to denote the
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon ...
, not the
reciprocal Reciprocal may refer to: In mathematics * Multiplicative inverse, in mathematics, the number 1/''x'', which multiplied by ''x'' gives the product 1, also known as a ''reciprocal'' * Reciprocal polynomial, a polynomial obtained from another pol ...
. For example \sin^x and \sin^(x) denote the inverse trigonometric function alternatively written \arcsin x\colon The equation \theta = \sin^x implies \sin \theta = x, not \theta \cdot \sin x = 1. In this case, the superscript ''could'' be considered as denoting a composed or
iterated function In mathematics, an iterated function is a function (that is, a function from some set to itself) which is obtained by composing another function with itself a certain number of times. The process of repeatedly applying the same function ...
, but negative superscripts other than are not in common use.


Right-angled triangle definitions

If the acute angle is given, then any right triangles that have an angle of are similar to each other. This means that the ratio of any two side lengths depends only on . Thus these six ratios define six functions of , which are the trigonometric functions. In the following definitions, the
hypotenuse In geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse equ ...
is the length of the side opposite the right angle, ''opposite'' represents the side opposite the given angle , and ''adjacent'' represents the side between the angle and the right angle. In a right-angled triangle, the sum of the two acute angles is a right angle, that is, or . Therefore \sin(\theta) and \cos(90^\circ - \theta) represent the same ratio, and thus are equal. This identity and analogous relationships between the other trigonometric functions are summarized in the following table.


Radians versus degrees

In geometric applications, the argument of a trigonometric function is generally the measure of an
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
. For this purpose, any
angular unit In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
is convenient, and angles are most commonly measured in conventional units of degrees in which a right angle is 90° and a complete turn is 360° (particularly in elementary mathematics). However, in
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
and
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions. These theories are usually studied ...
, the trigonometric functions are generally regarded more abstractly as functions of
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
or complex numbers, rather than angles. In fact, the functions sin and cos can be defined for all complex numbers in terms of the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
via power series or as solutions to
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s given particular initial values (''see below''), without reference to any geometric notions. The other four trigonometric functions (tan, cot, sec, csc) can be defined as quotients and reciprocals of sin and cos, except where zero occurs in the denominator. It can be proved, for real arguments, that these definitions coincide with elementary geometric definitions ''if'' ''the argument is regarded as an angle given in radians''. Moreover, these definitions result in simple expressions for the derivatives and
indefinite integrals In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
for the trigonometric functions. Thus, in settings beyond elementary geometry, radians are regarded as the mathematically natural unit for describing angle measures. When radians (rad) are employed, the angle is given as the length of the arc of the unit circle subtended by it: the angle that subtends an arc of length 1 on the unit circle is 1 rad (≈ 57.3°), and a complete turn (360°) is an angle of 2 (≈ 6.28) rad. For real number ''x'', the notations sin ''x'', cos ''x'', etc. refer to the value of the trigonometric functions evaluated at an angle of ''x'' rad. If units of degrees are intended, the degree sign must be explicitly shown (e.g., sin ''x°'', cos ''x°'', etc.). Using this standard notation, the argument ''x'' for the trigonometric functions satisfies the relationship ''x'' = (180''x''/)°, so that, for example, sin = sin 180° when we take ''x'' = . In this way, the degree symbol can be regarded as a mathematical constant such that 1° = /180 ≈ 0.0175.


Unit-circle definitions

The six trigonometric functions can be defined as coordinate values of points on the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
that are related to the unit circle, which is the
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is con ...
of radius one centered at the origin of this coordinate system. While right-angled triangle definitions allow for the definition of the trigonometric functions for angles between and \frac radians the unit circle definitions allow the domain of trigonometric functions to be extended to all positive and negative real numbers. Let \mathcal L be the
ray Ray may refer to: Fish * Ray (fish), any cartilaginous fish of the superorder Batoidea * Ray (fish fin anatomy), a bony or horny spine on a fin Science and mathematics * Ray (geometry), half of a line proceeding from an initial point * Ray (gr ...
obtained by rotating by an angle the positive half of the -axis (
counterclockwise Two-dimensional rotation can occur in two possible directions. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands: from the top to the right, then down and then to the left, and back up to the top. The opposite s ...
rotation for \theta > 0, and clockwise rotation for \theta < 0). This ray intersects the unit circle at the point \mathrm = (x_\mathrm,y_\mathrm). The ray \mathcal L, extended to a
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Art ...
if necessary, intersects the line of equation x=1 at point \mathrm = (1,y_\mathrm), and the line of equation y=1 at point \mathrm = (x_\mathrm,1). The tangent line to the unit circle at the point , is
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
to \mathcal L, and intersects the - and -axes at points \mathrm = (0,y_\mathrm) and \mathrm = (x_\mathrm,0). The
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
of these points give the values of all trigonometric functions for any arbitrary real value of in the following manner. The trigonometric functions and are defined, respectively, as the ''x''- and ''y''-coordinate values of point . That is, :\cos \theta = x_\mathrm \quad and \quad \sin \theta = y_\mathrm. In the range 0 \le \theta \le \pi/2, this definition coincides with the right-angled triangle definition, by taking the right-angled triangle to have the unit radius as
hypotenuse In geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse equ ...
. And since the equation x^2+y^2=1 holds for all points \mathrm = (x,y) on the unit circle, this definition of cosine and sine also satisfies the
Pythagorean identity The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations b ...
. :\cos^2\theta+\sin^2\theta=1. The other trigonometric functions can be found along the unit circle as :\tan \theta = y_\mathrm \quad and \quad\cot \theta = x_\mathrm, :\csc \theta\ = y_\mathrm \quad and \quad\sec \theta = x_\mathrm. By applying the Pythagorean identity and geometric proof methods, these definitions can readily be shown to coincide with the definitions of tangent, cotangent, secant and cosecant in terms of sine and cosine, that is : \tan \theta =\frac,\quad \cot\theta=\frac,\quad \sec\theta=\frac,\quad \csc\theta=\frac. Since a rotation of an angle of \pm2\pi does not change the position or size of a shape, the points , , , , and are the same for two angles whose difference is an integer multiple of 2\pi. Thus trigonometric functions are periodic functions with period 2\pi. That is, the equalities : \sin\theta = \sin\left(\theta + 2 k \pi \right)\quad and \quad \cos\theta = \cos\left(\theta + 2 k \pi \right) hold for any angle and any integer . The same is true for the four other trigonometric functions. By observing the sign and the monotonicity of the functions sine, cosine, cosecant, and secant in the four quadrants, one can show that 2\pi is the smallest value for which they are periodic (i.e., 2\pi is the fundamental period of these functions). However, after a rotation by an angle \pi, the points and already return to their original position, so that the tangent function and the cotangent function have a fundamental period of \pi. That is, the equalities : \tan\theta = \tan(\theta + k\pi) \quad and \quad \cot\theta = \cot(\theta + k\pi) hold for any angle and any integer .


Algebraic values

The
algebraic expression In mathematics, an algebraic expression is an expression built up from integer constants, variables, and the algebraic operations ( addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number). For ...
s for the most important angles are as follows: :\sin 0 = \sin 0^\circ \quad= \frac2 = 0 ( zero angle) :\sin \frac\pi6 = \sin 30^\circ = \frac2 = \frac :\sin \frac\pi4 = \sin 45^\circ = \frac = \frac :\sin \frac\pi3 = \sin 60^\circ = \frac :\sin \frac\pi2 = \sin 90^\circ = \frac2 = 1 ( right angle) Writing the numerators as square roots of consecutive non-negative integers, with a denominator of 2, provides an easy way to remember the values. Such simple expressions generally do not exist for other angles which are rational multiples of a right angle. *For an angle which, measured in degrees, is a multiple of three, the exact trigonometric values of the sine and the cosine may be expressed in terms of square roots. These values of the sine and the cosine may thus be constructed by
ruler and compass In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
. *For an angle of an integer number of degrees, the sine and the cosine may be expressed in terms of square roots and the
cube root In mathematics, a cube root of a number is a number such that . All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. ...
of a non-real complex number. Galois theory allows a proof that, if the angle is not a multiple of 3°, non-real cube roots are unavoidable. *For an angle which, expressed in degrees, is a rational number, the sine and the cosine are
algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the p ...
s, which may be expressed in terms of th roots. This results from the fact that the Galois groups of the
cyclotomic polynomial In mathematics, the ''n''th cyclotomic polynomial, for any positive integer ''n'', is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all ''n''th primiti ...
s are
cyclic Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in so ...
. *For an angle which, expressed in degrees, is not a rational number, then either the angle or both the sine and the cosine are
transcendental number In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are and . Though only a few classe ...
s. This is a corollary of
Baker's theorem In transcendental number theory, a mathematical discipline, Baker's theorem gives a lower bound for the absolute value of linear combinations of logarithms of algebraic numbers. The result, proved by , subsumed many earlier results in transcendenta ...
, proved in 1966.


Simple algebraic values

The following table lists the sines, cosines, and tangents of multiples of 15 degrees from 0 to 90 degrees.


In calculus

Graphs of sine, cosine and tangent The modern trend in mathematics is to build geometry from
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
rather than the converse. Therefore, except at a very elementary level, trigonometric functions are defined using the methods of calculus. Trigonometric functions are differentiable and
analytic Generally speaking, analytic (from el, ἀναλυτικός, ''analytikos'') refers to the "having the ability to analyze" or "division into elements or principles". Analytic or analytical can also have the following meanings: Chemistry * ...
at every point where they are defined; that is, everywhere for the sine and the cosine, and, for the tangent, everywhere except at for every integer . The trigonometric function are periodic functions, and their primitive period is for the sine and the cosine, and for the tangent, which is
increasing In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of ord ...
in each
open interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Othe ...
. At each end point of these intervals, the tangent function has a vertical
asymptote In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, ...
. In calculus, there are two equivalent definitions of trigonometric functions, either using power series or
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s. These definitions are equivalent, as starting from one of them, it is easy to retrieve the other as a property. However the definition through differential equations is somehow more natural, since, for example, the choice of the coefficients of the power series may appear as quite arbitrary, and the Pythagorean identity is much easier to deduce from the differential equations.


Definition by differential equations

Sine and cosine can be defined as the unique solution to the
initial value problem In multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or ot ...
: :\frac\sin x= \cos x,\ \frac\cos x= -\sin x,\ \sin(0)=0,\ \cos(0)=1. Differentiating again, \frac\sin x = \frac\cos x = -\sin x and \frac\cos x = -\frac\sin x = -\cos x, so both sine and cosine are solutions of the
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
:y''+y=0. Applying the
quotient rule In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let h(x)=f(x)/g(x), where both and are differentiable and g(x)\neq 0. The quotient rule states that the deriva ...
to the tangent \tan x = \sin x / \cos x, we derive :\frac\tan x = \frac = 1+\tan^2 x = \sec^2 x.


Power series expansion

Applying the differential equations to power series with indeterminate coefficients, one may deduce recurrence relations for the coefficients of the Taylor series of the sine and cosine functions. These recurrence relations are easy to solve, and give the series expansions : \begin \sin x & = x - \frac + \frac - \frac + \cdots \\ mu& = \sum_^\infty \fracx^ \\ pt\cos x & = 1 - \frac + \frac - \frac + \cdots \\ mu& = \sum_^\infty \fracx^. \end The radius of convergence of these series is infinite. Therefore, the sine and the cosine can be extended to
entire function In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any fin ...
s (also called "sine" and "cosine"), which are (by definition)
complex-valued function Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
s that are defined and
holomorphic In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivati ...
on the whole
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by th ...
. Being defined as fractions of entire functions, the other trigonometric functions may be extended to meromorphic functions, that is functions that are holomorphic in the whole complex plane, except some isolated points called
poles Poles,, ; singular masculine: ''Polak'', singular feminine: ''Polka'' or Polish people, are a West Slavic nation and ethnic group, who share a common history, culture, the Polish language and are identified with the country of Poland in Cen ...
. Here, the poles are the numbers of the form (2k+1)\frac \pi 2 for the tangent and the secant, or k\pi for the cotangent and the cosecant, where is an arbitrary integer. Recurrences relations may also be computed for the coefficients of the Taylor series of the other trigonometric functions. These series have a finite radius of convergence. Their coefficients have a
combinatorial Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many app ...
interpretation: they enumerate
alternating permutation In combinatorial mathematics, an alternating permutation (or zigzag permutation) of the set is a permutation (arrangement) of those numbers so that each entry is alternately greater or less than the preceding entry. For example, the five alt ...
s of finite sets. More precisely, defining : , the th up/down number, : , the th
Bernoulli number In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions ...
, and : , is the th Euler number, one has the following series expansions: : \begin \tan x & = \sum_^\infty \fracx^ \\ mu& = \sum_^\infty \fracx^ \\ mu& = x + \fracx^3 + \fracx^5 + \fracx^7 + \cdots, \qquad \text , x, < \frac. \end : \begin \csc x &= \sum_^\infty \fracx^ \\ mu&= x^ + \fracx + \fracx^3 + \fracx^5 + \cdots, \qquad \text 0 < , x, < \pi. \end : \begin \sec x &= \sum_^\infty \fracx^ = \sum_^\infty \fracx^ \\ mu&= 1 + \fracx^2 + \fracx^4 + \fracx^6 + \cdots, \qquad \text , x, < \frac. \end : \begin \cot x &= \sum_^\infty \fracx^ \\ mu&= x^ - \fracx - \fracx^3 - \fracx^5 - \cdots, \qquad \text 0 < , x, < \pi. \end


Continued fraction expansion

The following expansions are valid in the whole complex plane: : \sin x = \cfrac : \cos x = \cfrac :\tan x = \cfrac=\cfrac The last one was used in the historically first proof that π is irrational.


Partial fraction expansion

There is a series representation as
partial fraction expansion In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as ...
where just translated reciprocal functions are summed up, such that the poles of the cotangent function and the reciprocal functions match: : \pi \cot \pi x = \lim_\sum_^N \frac. This identity can be proved with the Herglotz trick. Combining the th with the th term lead to
absolutely convergent In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series \textstyle\sum_^\infty a_n is sa ...
series: : \pi \cot \pi x = \frac + 2x\sum_^\infty \frac. Similarly, one can find a partial fraction expansion for the secant, cosecant and tangent functions: : \pi\csc\pi x = \sum_^\infty \frac=\frac + 2x\sum_^\infty \frac, :\pi^2\csc^2\pi x=\sum_^\infty \frac, : \pi\sec\pi x = \sum_^\infty (-1)^n \frac, : \pi \tan \pi x = 2x\sum_^\infty \frac.


Infinite product expansion

The following infinite product for the sine is of great importance in complex analysis: :\sin z = z \prod_^\infty \left(1-\frac\right), \quad z\in\mathbb C. For the proof of this expansion, see Sine. From this, it can be deduced that :\cos z = \prod_^\infty \left(1-\frac\right), \quad z\in\mathbb C.


Relationship to exponential function (Euler's formula)

Euler's formula Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for a ...
relates sine and cosine to the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
: : e^ = \cos x + i\sin x. This formula is commonly considered for real values of , but it remains true for all complex values. ''Proof'': Let f_1(x)=\cos x + i\sin x, and f_2(x)=e^. One has df_j(x)/dx= if_j(x) for . The
quotient rule In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let h(x)=f(x)/g(x), where both and are differentiable and g(x)\neq 0. The quotient rule states that the deriva ...
implies thus that d/dx\, (f_1(x)/f_2(x))=0. Therefore, f_1(x)/f_2(x) is a constant function, which equals , as f_1(0)=f_2(0)=1. This proves the formula. One has :\begin e^ &= \cos x + i\sin x\\ pte^ &= \cos x - i\sin x. \end Solving this linear system in sine and cosine, one can express them in terms of the exponential function: : \begin\sin x &= \frac\\ pt\cos x &= \frac. \end When is real, this may be rewritten as : \cos x = \operatorname\left(e^\right), \qquad \sin x = \operatorname\left(e^\right). Most trigonometric identities can be proved by expressing trigonometric functions in terms of the complex exponential function by using above formulas, and then using the identity e^=e^ae^b for simplifying the result.


Definitions using functional equations

One can also define the trigonometric functions using various functional equations. For example, the sine and the cosine form the unique pair of continuous functions that satisfy the difference formula : \cos(x- y) = \cos x\cos y + \sin x\sin y\, and the added condition : 0 < x\cos x < \sin x < x\quad\text\quad 0 < x < 1.


In the complex plane

The sine and cosine of a complex number z=x+iy can be expressed in terms of real sines, cosines, and hyperbolic functions as follows: : \begin\sin z &= \sin x \cosh y + i \cos x \sinh y\\ pt\cos z &= \cos x \cosh y - i \sin x \sinh y\end By taking advantage of domain coloring, it is possible to graph the trigonometric functions as complex-valued functions. Various features unique to the complex functions can be seen from the graph; for example, the sine and cosine functions can be seen to be unbounded as the imaginary part of z becomes larger (since the color white represents infinity), and the fact that the functions contain simple zeros or poles is apparent from the fact that the hue cycles around each zero or pole exactly once. Comparing these graphs with those of the corresponding Hyperbolic functions highlights the relationships between the two.


Basic identities

Many identities interrelate the trigonometric functions. This section contains the most basic ones; for more identities, see List of trigonometric identities. These identities may be proved geometrically from the unit-circle definitions or the right-angled-triangle definitions (although, for the latter definitions, care must be taken for angles that are not in the interval , see
Proofs of trigonometric identities There are several equivalent ways for defining trigonometric functions, and the proof of the trigonometric identities between them depend on the chosen definition. The oldest and somehow the most elementary definition is based on the geometry of ...
). For non-geometrical proofs using only tools of
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
, one may use directly the differential equations, in a way that is similar to that of the above proof of Euler's identity. One can also use Euler's identity for expressing all trigonometric functions in terms of complex exponentials and using properties of the exponential function.


Parity

The cosine and the secant are even functions; the other trigonometric functions are odd functions. That is: :\begin \sin(-x) &=-\sin x\\ \cos(-x) &=\cos x\\ \tan(-x) &=-\tan x\\ \cot(-x) &=-\cot x\\ \csc(-x) &=-\csc x\\ \sec(-x) &=\sec x. \end


Periods

All trigonometric functions are periodic functions of period . This is the smallest period, except for the tangent and the cotangent, which have as smallest period. This means that, for every integer , one has :\begin \sin (x+2k\pi) &=\sin x\\ \cos (x+2k\pi) &=\cos x\\ \tan (x+k\pi) &=\tan x\\ \cot (x+k\pi) &=\cot x\\ \csc (x+2k\pi) &=\csc x\\ \sec (x+2k\pi) &=\sec x. \end


Pythagorean identity

The Pythagorean identity, is the expression of the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite ...
in terms of trigonometric functions. It is :\sin^2 x + \cos^2 x = 1. Dividing through by either \cos^2 x or \sin^2 x gives :\tan^2 x + 1 = \sec^2 x and :1 + \cot^2 x = \csc^2 x.


Sum and difference formulas

The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to Ptolemy. One can also produce them algebraically using
Euler's formula Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for a ...
. ; Sum :\begin \sin\left(x+y\right)&=\sin x \cos y + \cos x \sin y,\\ mu\cos\left(x+y\right)&=\cos x \cos y - \sin x \sin y,\\ mu\tan(x + y) &= \frac. \end ; Difference :\begin \sin\left(x-y\right)&=\sin x \cos y - \cos x \sin y,\\ mu\cos\left(x-y\right)&=\cos x \cos y + \sin x \sin y,\\ mu\tan(x - y) &= \frac. \end When the two angles are equal, the sum formulas reduce to simpler equations known as the
double-angle formulae In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involvi ...
. :\begin \sin 2x &= 2 \sin x \cos x = \frac, \\ mu\cos 2x &= \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x = \frac,\\ mu\tan 2x &= \frac. \end These identities can be used to derive the
product-to-sum identities In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involvin ...
. By setting t=\tan \tfrac12 \theta, all trigonometric functions of \theta can be expressed as rational fractions of t: :\begin \sin \theta &= \frac, \\ mu\cos \theta &= \frac,\\ mu\tan \theta &= \frac. \end Together with :d\theta = \frac \, dt, this is the tangent half-angle substitution, which reduces the computation of integrals and
antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolical ...
s of trigonometric functions to that of rational fractions.


Derivatives and antiderivatives

The derivatives of trigonometric functions result from those of sine and cosine by applying
quotient rule In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let h(x)=f(x)/g(x), where both and are differentiable and g(x)\neq 0. The quotient rule states that the deriva ...
. The values given for the
antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolical ...
s in the following table can be verified by differentiating them. The number  is a
constant of integration In calculus, the constant of integration, often denoted by C (or c), is a constant term added to an antiderivative of a function f(x) to indicate that the indefinite integral of f(x) (i.e., the set of all antiderivatives of f(x)), on a connected ...
. Alternatively, the derivatives of the 'co-functions' can be obtained using trigonometric identities and the chain rule: : \begin \frac &= \frac\sin(\pi/2-x)=-\cos(\pi/2-x)=-\sin x \, , \\ \frac &= \frac\sec(\pi/2 - x) = -\sec(\pi/2 - x)\tan(\pi/2 - x) = -\csc x \cot x \, , \\ \frac &= \frac\tan(\pi/2 - x) = -\sec^2(\pi/2 - x) = -\csc^2 x \, . \end


Inverse functions

The trigonometric functions are periodic, and hence not injective, so strictly speaking, they do not have an
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon ...
. However, on each interval on which a trigonometric function is
monotonic In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of ord ...
, one can define an inverse function, and this defines inverse trigonometric functions as multivalued functions. To define a true inverse function, one must restrict the domain to an interval where the function is monotonic, and is thus
bijective In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
from this interval to its image by the function. The common choice for this interval, called the set of principal values, is given in the following table. As usual, the inverse trigonometric functions are denoted with the prefix "arc" before the name or its abbreviation of the function. The notations , , etc. are often used for and , etc. When this notation is used, inverse functions could be confused with multiplicative inverses. The notation with the "arc" prefix avoids such a confusion, though "arcsec" for arcsecant can be confused with "
arcsecond A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The n ...
". Just like the sine and cosine, the inverse trigonometric functions can also be expressed in terms of infinite series. They can also be expressed in terms of
complex logarithm In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related: * A complex logarithm of a nonzero complex number z, defined to ...
s.


Applications


Angles and sides of a triangle

In this section , , denote the three (interior) angles of a triangle, and , , denote the lengths of the respective opposite edges. They are related by various formulas, which are named by the trigonometric functions they involve.


Law of sines

The law of sines states that for an arbitrary triangle with sides , , and and angles opposite those sides , and : \frac = \frac = \frac = \frac, where is the area of the triangle, or, equivalently, \frac = \frac = \frac = 2R, where is the triangle's
circumradius In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every pol ...
. It can be proved by dividing the triangle into two right ones and using the above definition of sine. The law of sines is useful for computing the lengths of the unknown sides in a triangle if two angles and one side are known. This is a common situation occurring in ''
triangulation In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points. Applications In surveying Specifically in surveying, triangulation involves only angle me ...
'', a technique to determine unknown distances by measuring two angles and an accessible enclosed distance.


Law of cosines

The law of cosines (also known as the cosine formula or cosine rule) is an extension of the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite ...
: c^2=a^2+b^2-2ab\cos C, or equivalently, \cos C=\frac. In this formula the angle at is opposite to the side . This theorem can be proved by dividing the triangle into two right ones and using the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite ...
. The law of cosines can be used to determine a side of a triangle if two sides and the angle between them are known. It can also be used to find the cosines of an angle (and consequently the angles themselves) if the lengths of all the sides are known.


Law of tangents

The law of tangents says that: :\frac = \frac.


Law of cotangents

If ''s'' is the triangle's semiperimeter, (''a'' + ''b'' + ''c'')/2, and ''r'' is the radius of the triangle's incircle, then ''rs'' is the triangle's area. Therefore Heron's formula implies that: : r = \sqrt. The law of cotangents says that: :\cot = \frac It follows that :\frac=\frac=\frac=\frac.


Periodic functions

The trigonometric functions are also important in physics. The sine and the cosine functions, for example, are used to describe
simple harmonic motion In mechanics and physics, simple harmonic motion (sometimes abbreviated ) is a special type of periodic motion of a body resulting from a dynamic equilibrium between an inertial force, proportional to the acceleration of the body away from the ...
, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion. Trigonometric functions also prove to be useful in the study of general periodic functions. The characteristic wave patterns of periodic functions are useful for modeling recurring phenomena such as sound or light waves. Under rather general conditions, a periodic function can be expressed as a sum of sine waves or cosine waves in a
Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''p ...
. Denoting the sine or cosine
basis functions In mathematics, a basis function is an element of a particular basis for a function space. Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be repres ...
by , the expansion of the periodic function takes the form: f(t) = \sum _^\infty c_k \varphi_k(t). For example, the square wave can be written as the
Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''p ...
f_\text(t) = \frac \sum_^\infty . In the animation of a square wave at top right it can be seen that just a few terms already produce a fairly good approximation. The superposition of several terms in the expansion of a sawtooth wave are shown underneath.


History

While the early study of trigonometry can be traced to antiquity, the trigonometric functions as they are in use today were developed in the medieval period. The chord function was discovered by Hipparchus of
Nicaea Nicaea, also known as Nicea or Nikaia (; ; grc-gre, Νίκαια, ) was an ancient Greek city in Bithynia, where located in northwestern Anatolia and is primarily known as the site of the First and Second Councils of Nicaea (the first and s ...
(180–125 BCE) and Ptolemy of Roman Egypt (90–165 CE). The functions of sine and versine (1 – cosine) can be traced back to the ''jyā'' and ''koti-jyā'' functions used in
Gupta period The Gupta Empire was an ancient Indian empire which existed from the early 4th century CE to late 6th century CE. At its zenith, from approximately 319 to 467 CE, it covered much of the Indian subcontinent. This period is considered as the Gol ...
Indian astronomy (''
Aryabhatiya ''Aryabhatiya'' (IAST: ') or ''Aryabhatiyam'' ('), a Sanskrit astronomical treatise, is the ''magnum opus'' and only known surviving work of the 5th century Indian mathematician Aryabhata. Philosopher of astronomy Roger Billard estimates that th ...
'', '' Surya Siddhanta''), via translation from Sanskrit to Arabic and then from Arabic to Latin. (See Aryabhata's sine table.) All six trigonometric functions in current use were known in
Islamic mathematics Mathematics during the Golden Age of Islam, especially during the 9th and 10th centuries, was built on Greek mathematics (Euclid, Archimedes, Apollonius) and Indian mathematics (Aryabhata, Brahmagupta). Important progress was made, such as fu ...
by the 9th century, as was the law of sines, used in
solving triangles Solution of triangles ( la, solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Appl ...
. With the exception of the sine (which was adopted from Indian mathematics), the other five modern trigonometric functions were discovered by Persian and Arab mathematicians, including the cosine, tangent, cotangent, secant and cosecant.
Al-Khwārizmī Muḥammad ibn Mūsā al-Khwārizmī ( ar, محمد بن موسى الخوارزمي, Muḥammad ibn Musā al-Khwārazmi; ), or al-Khwarizmi, was a Persian polymath from Khwarazm, who produced vastly influential works in mathematics, astronom ...
(c. 780–850) produced tables of sines, cosines and tangents. Circa 830,
Habash al-Hasib al-Marwazi Ahmad ibn 'Abdallah Habash Hasib Marwazi (766 - d. after 869 in Samarra, Iraq ) was a north-eastern Iranian astronomer, geographer, and mathematician from Merv in Khorasan who for the first time described the trigonometric ratios: sine, cosine, t ...
discovered the cotangent, and produced tables of tangents and cotangents.Jacques Sesiano, "Islamic mathematics", p. 157, in
Muhammad ibn Jābir al-Harrānī al-Battānī Abū ʿAbd Allāh Muḥammad ibn Jābir ibn Sinān al-Raqqī al-Ḥarrānī aṣ-Ṣābiʾ al-Battānī ( ar, محمد بن جابر بن سنان البتاني) ( Latinized as Albategnius, Albategni or Albatenius) (c. 858 – 929) was an astron ...
(853–929) discovered the reciprocal functions of secant and cosecant, and produced the first table of cosecants for each degree from 1° to 90°. The trigonometric functions were later studied by mathematicians including
Omar Khayyám Ghiyāth al-Dīn Abū al-Fatḥ ʿUmar ibn Ibrāhīm Nīsābūrī (18 May 1048 – 4 December 1131), commonly known as Omar Khayyam ( fa, عمر خیّام), was a polymath, known for his contributions to mathematics, astronomy, philosophy, a ...
,
Bhāskara II Bhāskara II (c. 1114–1185), also known as Bhāskarāchārya ("Bhāskara, the teacher"), and as Bhāskara II to avoid confusion with Bhāskara I, was an Indian mathematician and astronomer. From verses, in his main work, Siddhānta Shiroma ...
,
Nasir al-Din al-Tusi Muhammad ibn Muhammad ibn al-Hasan al-Tūsī ( fa, محمد ابن محمد ابن حسن طوسی 18 February 1201 – 26 June 1274), better known as Nasir al-Din al-Tusi ( fa, نصیر الدین طوسی, links=no; or simply Tusi in the West ...
, Jamshīd al-Kāshī (14th century), Ulugh Beg (14th century), Regiomontanus (1464),
Rheticus Georg Joachim de Porris, also known as Rheticus ( /ˈrɛtɪkəs/; 16 February 1514 – 5 December 1576), was a mathematician, astronomer, cartographer, navigational-instrument maker, medical practitioner, and teacher. He is perhaps best known for ...
, and Rheticus' student
Valentinus Otho Valentinus Otho (also Valentin Otto; born around 1545–46 possibly in Magdeburg – 8 April 1603 in Heidelberg) was a German mathematician and astronomer. Life In 1573 he came to Wittenberg, proposing to Johannes Praetorius an approximation o ...
.
Madhava of Sangamagrama Iriññāttappiḷḷi Mādhavan known as Mādhava of Sangamagrāma () was an Indian mathematician and astronomer from the town believed to be present-day Kallettumkara, Aloor Panchayath, Irinjalakuda in Thrissur District, Kerala, India. He is ...
(c. 1400) made early strides in the
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
of trigonometric functions in terms of
infinite series In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mat ...
. (See
Madhava series In mathematics, a Madhava series or Leibniz series is any one of the series in a collection of infinite series expressions all of which are believed to have been discovered by an Indian Mathematician and Astronomer Madhava of Sangamagrama (c.&nbs ...
and
Madhava's sine table Madhava's sine table is the table of trigonometric sines of various angles constructed by the 14th century Kerala mathematician-astronomer Madhava of Sangamagrama. The table lists the trigonometric sines of the twenty-four angles 3.75°, 7.50� ...
.) The tangent function was brought to Europe by
Giovanni Bianchini Giovanni Bianchini (in Latin, Johannes Blanchinus) (1410 – c. 1469) was a professor of mathematics and astronomy at the University of Ferrara and court astrologer of Leonello d'Este. He was an associate of Georg Purbach and Regiomontanus. T ...
in 1467 in trigonometry tables he created to support the calculation of stellar coordinates. The terms ''tangent'' and ''secant'' were first introduced by the Danish mathematician
Thomas Fincke Thomas Fincke (6 January 1561 – 24 April 1656) was a Danish mathematician and physicist, and a professor at the University of Copenhagen for more than 60 years. Biography Thomas Jacobsen Fincke was born in Flensburg in Schleswig. Fincke was ...
in his book ''Geometria rotundi'' (1583). The 17th century French mathematician
Albert Girard Albert Girard () (11 October 1595 in Saint-Mihiel, France − 8 December 1632 in Leiden, The Netherlands) was a French-born mathematician. He studied at the University of Leiden. He "had early thoughts on the fundamental theorem of algebra" and ...
made the first published use of the abbreviations ''sin'', ''cos'', and ''tan'' in his book ''Trigonométrie''. In a paper published in 1682,
Gottfried Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mat ...
proved that is not an
algebraic function In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations addit ...
of . Though introduced as ratios of sides of a
right triangle A right triangle (American English) or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right an ...
, and thus appearing to be rational functions, Leibnitz result established that they are actually
transcendental function In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed alg ...
s of their argument. The task of assimilating circular functions into algebraic expressions was accomplished by Euler in his ''
Introduction to the Analysis of the Infinite ''Introductio in analysin infinitorum'' (Latin: ''Introduction to the Analysis of the Infinite'') is a two-volume work by Leonhard Euler which lays the foundations of mathematical analysis. Written in Latin and published in 1748, the ''Introducti ...
'' (1748). His method was to show that the sine and cosine functions are
alternating series In mathematics, an alternating series is an infinite series of the form \sum_^\infty (-1)^n a_n or \sum_^\infty (-1)^ a_n with for all . The signs of the general terms alternate between positive and negative. Like any series, an alternati ...
formed from the even and odd terms respectively of the exponential series. He presented "
Euler's formula Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for a ...
", as well as near-modern abbreviations (''sin.'', ''cos.'', ''tang.'', ''cot.'', ''sec.'', and ''cosec.''). A few functions were common historically, but are now seldom used, such as the chord, the versine (which appeared in the earliest tables), the
coversine The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit ''Aryabhatia'',haversine, the
exsecant The exsecant (exsec, exs) and excosecant (excosec, excsc, exc) are trigonometric functions defined in terms of the secant and cosecant functions. They used to be important in fields such as surveying, railway engineering, civil engineering, astro ...
and the excosecant. The list of trigonometric identities shows more relations between these functions. * * * * * *


Etymology

The word derives from Latin ''
sinus Sinus may refer to: Anatomy * Sinus (anatomy), a sac or cavity in any organ or tissue ** Paranasal sinuses, air cavities in the cranial bones, especially those near the nose, including: *** Maxillary sinus, is the largest of the paranasal sinuses, ...
'', meaning "bend; bay", and more specifically "the hanging fold of the upper part of a toga", "the bosom of a garment", which was chosen as the translation of what was interpreted as the Arabic word ''jaib'', meaning "pocket" or "fold" in the twelfth-century translations of works by
Al-Battani Abū ʿAbd Allāh Muḥammad ibn Jābir ibn Sinān al-Raqqī al-Ḥarrānī aṣ-Ṣābiʾ al-Battānī ( ar, محمد بن جابر بن سنان البتاني) ( Latinized as Albategnius, Albategni or Albatenius) (c. 858 – 929) was an astron ...
and
al-Khwārizmī Muḥammad ibn Mūsā al-Khwārizmī ( ar, محمد بن موسى الخوارزمي, Muḥammad ibn Musā al-Khwārazmi; ), or al-Khwarizmi, was a Persian polymath from Khwarazm, who produced vastly influential works in mathematics, astronom ...
into Medieval Latin. The choice was based on a misreading of the Arabic written form ''j-y-b'' (), which itself originated as a transliteration from Sanskrit ', which along with its synonym ' (the standard Sanskrit term for the sine) translates to "bowstring", being in turn adopted from Ancient Greek "string". The word ''tangent'' comes from Latin ''tangens'' meaning "touching", since the line ''touches'' the circle of unit radius, whereas ''secant'' stems from Latin ''secans''—"cutting"—since the line ''cuts'' the circle.Oxford English Dictionary The prefix " co-" (in "cosine", "cotangent", "cosecant") is found in
Edmund Gunter Edmund Gunter (158110 December 1626), was an English clergyman, mathematician, geometer and astronomer of Welsh descent. He is best remembered for his mathematical contributions which include the invention of the Gunter's chain, the Gunter's q ...
's ''Canon triangulorum'' (1620), which defines the ''cosinus'' as an abbreviation for the ''sinus complementi'' (sine of the
complementary angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ar ...
) and proceeds to define the ''cotangens'' similarly.


See also

*
All Students Take Calculus All or ALL may refer to: Language * All, an indefinite pronoun in English * All, one of the English determiners * Allar language (ISO 639-3 code) * Allative case (abbreviated ALL) Music * All (band), an American punk rock band * ''All'' (All ...
– a mnemonic for recalling the signs of trigonometric functions in a particular quadrant of a Cartesian plane *
Bhaskara I's sine approximation formula In mathematics, Bhaskara I's sine approximation formula is a rational expression in one variable for the computation of the approximate values of the trigonometric sines discovered by Bhaskara I (c. 600 – c. 680), a seventh-century Indian m ...
*
Differentiation of trigonometric functions The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin� ...
*
Generalized trigonometry Ordinary trigonometry studies triangles in the Euclidean plane . There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle defini ...
* Generating trigonometric tables * Hyperbolic function *
List of integrals of trigonometric functions The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antide ...
* List of periodic functions * List of trigonometric identities * Polar sine – a generalization to vertex angles *
Proofs of trigonometric identities There are several equivalent ways for defining trigonometric functions, and the proof of the trigonometric identities between them depend on the chosen definition. The oldest and somehow the most elementary definition is based on the geometry of ...
* Versine – for several less used trigonometric functions


Notes


References

* *
Lars Ahlfors Lars Valerian Ahlfors (18 April 1907 – 11 October 1996) was a Finnish mathematician, remembered for his work in the field of Riemann surfaces and his text on complex analysis. Background Ahlfors was born in Helsinki, Finland. His mother, Si ...
, ''Complex Analysis: an introduction to the theory of analytic functions of one complex variable'', second edition, McGraw-Hill Book Company, New York, 1966. * Boyer, Carl B., ''A History of Mathematics'', John Wiley & Sons, Inc., 2nd edition. (1991). . * * Gal, Shmuel and Bachelis, Boris. An accurate elementary mathematical library for the IEEE floating point standard, ACM Transactions on Mathematical Software (1991). * Joseph, George G., ''The Crest of the Peacock: Non-European Roots of Mathematics'', 2nd ed. Penguin Books, London. (2000). . * Kantabutra, Vitit, "On hardware for computing exponential and trigonometric functions," ''IEEE Trans. Computers'' 45 (3), 328–339 (1996). * Maor, Eli,
Trigonometric Delights
', Princeton Univ. Press. (1998). Reprint edition (2002): . * Needham, Tristan
"Preface"
to
Visual Complex Analysis
'. Oxford University Press, (1999). . * * O'Connor, J. J., and E. F. Robertson

'' MacTutor History of Mathematics archive''. (1996). * O'Connor, J. J., and E. F. Robertson
"Madhava of Sangamagramma"
'' MacTutor History of Mathematics archive''. (2000). * Pearce, Ian G.
"Madhava of Sangamagramma"
, '' MacTutor History of Mathematics archive''. (2002). * * Weisstein, Eric W.
"Tangent"
from '' MathWorld'', accessed 21 January 2006.


External links

*
Visionlearning Module on Wave Mathematics

GonioLab
Visualization of the unit circle, trigonometric and hyperbolic functions

Article about the q-analog of sin at MathWorld
q-Cosine
Article about the q-analog of cos at MathWorld {{DEFAULTSORT:Trigonometric Functions Angle Trigonometry Elementary special functions Analytic functions Ratios Dimensionless numbers