HOME

TheInfoList



OR:

In mathematics, a 3-manifold is a
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually cons ...
that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is th ...
looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.


Introduction


Definition

A
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
''X'' is a 3-manifold if it is a second-countable
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the m ...
and if every point in ''X'' has a
neighbourhood A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; American and British English spelling differences, see spelling differences) is a geographically localised community ...
that is homeomorphic to
Euclidean 3-space Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informa ...
.


Mathematical theory of 3-manifolds

The topological, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dimensions, and so there is a prevalence of very specialized techniques that do not generalize to dimensions greater than three. This special role has led to the discovery of close connections to a diversity of other fields, such as knot theory,
geometric group theory Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such group (mathematics), groups and topology, topological and geometry, geometric pro ...
,
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
,
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
, Teichmüller theory, topological quantum field theory, gauge theory,
Floer homology In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer in ...
, and
partial differential equations In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
. 3-manifold theory is considered a part of
low-dimensional topology In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot th ...
or geometric topology. A key idea in the theory is to study a 3-manifold by considering special
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
s embedded in it. One can choose the surface to be nicely placed in the 3-manifold, which leads to the idea of an incompressible surface and the theory of
Haken manifold In mathematics, a Haken manifold is a compact, P²-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in w ...
s, or one can choose the complementary pieces to be as nice as possible, leading to structures such as
Heegaard splitting In the mathematical field of geometric topology, a Heegaard splitting () is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies. Definitions Let ''V'' and ''W'' be handlebodies of genus ''g'', an ...
s, which are useful even in the non-Haken case. Thurston's contributions to the theory allow one to also consider, in many cases, the additional structure given by a particular Thurston model geometry (of which there are eight). The most prevalent geometry is hyperbolic geometry. Using a geometry in addition to special surfaces is often fruitful. The fundamental groups of 3-manifolds strongly reflect the geometric and topological information belonging to a 3-manifold. Thus, there is an interplay between
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
and topological methods.


Invariants describing 3-manifolds

3-manifolds are an interesting special case of low-dimensional topology because their topological invariants give a lot of information about their structure in general. If we let M be a 3-manifold and \pi = \pi_1(M) be its fundamental group, then a lot of information can be derived from them. For example, using Poincare duality and the Hurewicz theorem, we have the following
homology group In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topolog ...
s:
\begin H_0(M) &= H^3(M) =& \mathbb \\ H_1(M) &= H^2(M) =& \pi/ pi,\pi\\ H_2(M) &= H^1(M) =& \text(\pi,\mathbb) \\ H_3(M) &= H^0(M) = & \mathbb \end
where the last two groups are isomorphic to the group homology and cohomology of \pi, respectively; that is,
\begin H_1(\pi;\mathbb) &\cong \pi/ pi,\pi\\ H^1(\pi;\mathbb) &\cong \text(\pi,\mathbb) \end
From this information a basic homotopy theoretic classification of 3-manifolds can be found. Note from the Postnikov tower there is a canonical map
q: M \to B\pi
If we take the pushforward of the fundamental class \in H_3(M) into H_3(B\pi) we get an element \zeta_M = q_*( . It turns out the group \pi together with the group homology class \zeta_M \in H_3(\pi,\mathbb) gives a complete algebraic description of the
homotopy type In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deforma ...
of M.


Connected sums

One important topological operation is the
connected sum In mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classifi ...
of two 3-manifolds M_1\# M_2. In fact, from general theorems in topology, we find for a three manifold with a connected sum decomposition M = M_1\# \cdots \# M_n the invariants above for M can be computed from the M_i. In particular
\begin H_1(M) &= H_1(M_1)\oplus \cdots \oplus H_1(M_n) \\ H_2(M) &= H_2(M_1)\oplus \cdots \oplus H_2(M_n) \\ \pi_1(M) &= \pi_1(M_1) * \cdots * \pi_1(M_n) \end
Moreover, a 3-manifold M which cannot be described as a connected sum of two 3-manifolds is called prime.


Second homotopy groups

For the case of a 3-manifold given by a connected sum of prime 3-manifolds, it turns out there is a nice description of the second fundamental group as a \mathbb pi/math>-module. For the special case of having each \pi_1(M_i) is infinite but not cyclic, if we take based embeddings of a 2-sphere
\sigma_i:S^2 \to M where \sigma_i(S^2) \subset M_i - \ \subset M
then the second fundamental group has the presentation
\pi_2(M) = \frac
giving a straightforward computation of this group.


Important examples of 3-manifolds


Euclidean 3-space

Euclidean 3-space is the most important example of a 3-manifold, as all others are defined in relation to it. This is just the standard 3-dimensional
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
over the real numbers.


3-sphere

A 3-sphere is a higher-dimensional analogue of a
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is th ...
. It consists of the set of points equidistant from a fixed central point in 4-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
. Just as an ordinary sphere (or 2-sphere) is a two-dimensional
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
that forms the boundary of a ball in three dimensions, a 3-sphere is an object with three
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
s that forms the boundary of a ball in four dimensions. Many examples of 3-manifolds can be constructed by taking quotients of the 3-sphere by a finite group \pi acting freely on S^3 via a map \pi \to \text(4), so M = S^3/\pi.


Real projective 3-space

Real projective 3-space, or RP''3'', is the
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
of lines passing through the origin 0 in R4. It is a compact,
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
of dimension ''3'', and is a special case Gr(1, R4) of a
Grassmannian In mathematics, the Grassmannian is a space that parameterizes all -dimensional linear subspaces of the -dimensional vector space . For example, the Grassmannian is the space of lines through the origin in , so it is the same as the projective ...
space. RP3 is (
diffeomorphic In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two man ...
to)
SO(3) In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space \R^3 under the operation of composition. By definition, a rotation about the origin is a tr ...
, hence admits a group structure; the covering map ''S''3 → RP3 is a map of groups Spin(3) → SO(3), where Spin(3) is a Lie group that is the
universal cover A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete spa ...
of SO(3).


3-torus

The 3-dimensional torus is the product of 3 circles. That is: :\mathbf^3 = S^1 \times S^1 \times S^1. The 3-torus, T3 can be described as a quotient of R3 under integral shifts in any coordinate. That is, the 3-torus is R3 modulo the
action Action may refer to: * Action (narrative), a literary mode * Action fiction, a type of genre fiction * Action game, a genre of video game Film * Action film, a genre of film * ''Action'' (1921 film), a film by John Ford * ''Action'' (1980 fil ...
of the integer
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
Z3 (with the action being taken as vector addition). Equivalently, the 3-torus is obtained from the 3-dimensional cube by gluing the opposite faces together. A 3-torus in this sense is an example of a 3-dimensional compact manifold. It is also an example of a compact abelian Lie group. This follows from the fact that the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
is a compact abelian Lie group (when identified with the unit
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s with multiplication). Group multiplication on the torus is then defined by coordinate-wise multiplication.


Hyperbolic 3-space

Hyperbolic space is a homogeneous space that can be characterized by a constant negative curvature. It is the model of
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
. It is distinguished from
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
s with
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usual ...
curvature that define the
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, and models of
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
(like the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensio ...
) that have a constant positive curvature. When embedded to a Euclidean space (of a higher dimension), every point of a hyperbolic space is a saddle point. Another distinctive property is the amount of space covered by the 3-ball in hyperbolic 3-space: it increases
exponentially Exponential may refer to any of several mathematical topics related to exponentiation, including: *Exponential function, also: **Matrix exponential, the matrix analogue to the above *Exponential decay, decrease at a rate proportional to value *Expo ...
with respect to the radius of the ball, rather than polynomially.


Poincaré dodecahedral space

The Poincaré homology sphere (also known as Poincaré dodecahedral space) is a particular example of a homology sphere. Being a
spherical 3-manifold In mathematics, a spherical 3-manifold ''M'' is a 3-manifold of the form :M=S^3/\Gamma where \Gamma is a finite subgroup of SO(4) acting freely by rotations on the 3-sphere S^3. All such manifolds are prime, orientable, and closed. Spherical 3-ma ...
, it is the only homology 3-sphere (besides the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensio ...
itself) with a finite fundamental group. Its fundamental group is known as the
binary icosahedral group In mathematics, the binary icosahedral group 2''I'' or Coxeter&Moser: Generators and Relations for discrete groups: : Rl = Sm = Tn = RST is a certain nonabelian group of order 120. It is an extension of the icosahedral group ''I'' or (2,3,5) of o ...
and has order 120. This shows the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured ...
cannot be stated in homology terms alone. In 2003, lack of structure on the largest scales (above 60 degrees) in the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
as observed for one year by the
WMAP The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
spacecraft led to the suggestion, by Jean-Pierre Luminet of the Observatoire de Paris and colleagues, that the shape of the universe is a Poincaré sphere."Is the universe a dodecahedron?"
article at PhysicsWorld.
In 2008, astronomers found the best orientation on the sky for the model and confirmed some of the predictions of the model, using three years of observations by the WMAP spacecraft. However, there is no strong support for the correctness of the model, as yet.


Seifert–Weber space

In mathematics, Seifert–Weber space (introduced by Herbert Seifert and Constantin Weber) is a closed
hyperbolic 3-manifold In mathematics, more precisely in topology and differential geometry, a hyperbolic 3–manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to -1. It ...
. It is also known as Seifert–Weber dodecahedral space and hyperbolic dodecahedral space. It is one of the first discovered examples of closed hyperbolic 3-manifolds. It is constructed by gluing each face of a
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
to its opposite in a way that produces a closed 3-manifold. There are three ways to do this gluing consistently. Opposite faces are misaligned by 1/10 of a turn, so to match them they must be rotated by 1/10, 3/10 or 5/10 turn; a rotation of 3/10 gives the Seifert–Weber space. Rotation of 1/10 gives the Poincaré homology sphere, and rotation by 5/10 gives 3-dimensional
real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properties Construction A ...
. With the 3/10-turn gluing pattern, the edges of the original dodecahedron are glued to each other in groups of five. Thus, in the Seifert–Weber space, each edge is surrounded by five pentagonal faces, and the
dihedral angle A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the un ...
between these pentagons is 72°. This does not match the 117° dihedral angle of a regular dodecahedron in Euclidean space, but in
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
there exist regular dodecahedra with any dihedral angle between 60° and 117°, and the hyperbolic dodecahedron with dihedral angle 72° may be used to give the Seifert–Weber space a geometric structure as a hyperbolic manifold. It is a quotient space of the order-5 dodecahedral honeycomb, a regular
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety o ...
of hyperbolic 3-space by dodecahedra with this dihedral angle.


Gieseking manifold

In mathematics, the Gieseking manifold is a cusped hyperbolic 3-manifold of finite volume. It is non-orientable and has the smallest volume among non-compact hyperbolic manifolds, having volume approximately 1.01494161. It was discovered by . The Gieseking manifold can be constructed by removing the vertices from a
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all th ...
, then gluing the faces together in pairs using affine-linear maps. Label the vertices 0, 1, 2, 3. Glue the face with vertices 0,1,2 to the face with vertices 3,1,0 in that order. Glue the face 0,2,3 to the face 3,2,1 in that order. In the hyperbolic structure of the Gieseking manifold, this ideal tetrahedron is the canonical polyhedral decomposition of David B. A. Epstein and Robert C. Penner. Moreover, the angle made by the faces is \pi/3. The triangulation has one tetrahedron, two faces, one edge and no vertices, so all the edges of the original tetrahedron are glued together.


Some important classes of 3-manifolds

* Graph manifold *
Haken manifold In mathematics, a Haken manifold is a compact, P²-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in w ...
* Homology spheres *
Hyperbolic 3-manifold In mathematics, more precisely in topology and differential geometry, a hyperbolic 3–manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to -1. It ...
* I-bundles * Knot and link complements * Lens space *
Seifert fiber spaces A Seifert fiber space is a 3-manifold together with a decomposition as a disjoint union of circles. In other words, it is a S^1-bundle (circle bundle) over a 2-dimensional orbifold. Many 3-manifolds are Seifert fiber spaces, and they account for a ...
, Circle bundles *
Spherical 3-manifold In mathematics, a spherical 3-manifold ''M'' is a 3-manifold of the form :M=S^3/\Gamma where \Gamma is a finite subgroup of SO(4) acting freely by rotations on the 3-sphere S^3. All such manifolds are prime, orientable, and closed. Spherical 3-ma ...
*
Surface bundles over the circle In mathematics, a surface bundle over the circle is a fiber bundle with base space a circle, and with fiber space a surface. Therefore the total space has dimension 2 + 1 = 3. In general, fiber bundles over the circle are a special case of mappi ...
* Torus bundle


Hyperbolic link complements

A hyperbolic link is a link in the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensio ...
with
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-clas ...
that has a complete
Riemannian metric In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space '' ...
of constant negative curvature, i.e. has a
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
. A hyperbolic knot is a hyperbolic link with one component. The following examples are particularly well-known and studied. * Figure eight knot * Whitehead link *
Borromean rings In mathematics, the Borromean rings are three simple closed curves in three-dimensional space that are topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the t ...
The classes are not necessarily mutually exclusive.


Some important structures on 3-manifolds


Contact geometry

Contact geometry is the study of a geometric structure on
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
s given by a hyperplane distribution in the
tangent bundle In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of ...
and specified by a
one-form In differential geometry, a one-form on a differentiable manifold is a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M is a smooth mapping of the total space of the tangent bundle of M to \R whose restriction to e ...
, both of which satisfy a 'maximum non-degeneracy' condition called 'complete non-integrability'. From the Frobenius theorem, one recognizes the condition as the opposite of the condition that the distribution be determined by a codimension one
foliation In mathematics (differential geometry), a foliation is an equivalence relation on an ''n''-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension ''p'', modeled on the decomposition of ...
on the manifold ('complete integrability'). Contact geometry is in many ways an odd-dimensional counterpart of symplectic geometry, which belongs to the even-dimensional world. Both contact and symplectic geometry are motivated by the mathematical formalism of
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
, where one can consider either the even-dimensional phase space of a mechanical system or the odd-dimensional extended phase space that includes the time variable.


Haken manifold

A Haken manifold is a compact, P²-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in which case a Haken manifold is a compact, orientable, irreducible 3-manifold that contains an orientable, incompressible surface. A 3-manifold finitely covered by a Haken manifold is said to be virtually Haken. The
Virtually Haken conjecture In topology, an area of mathematics, the virtually Haken conjecture states that every compact, orientable, irreducible three-dimensional manifold with infinite fundamental group is ''virtually Haken''. That is, it has a finite cover (a covering s ...
asserts that every compact, irreducible 3-manifold with infinite fundamental group is virtually Haken. Haken manifolds were introduced by Wolfgang Haken. Haken proved that Haken manifolds have a hierarchy, where they can be split up into 3-balls along incompressible surfaces. Haken also showed that there was a finite procedure to find an incompressible surface if the 3-manifold had one. Jaco and Oertel gave an algorithm to determine if a 3-manifold was Haken.


Essential lamination

An essential lamination is a
lamination Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materia ...
where every leaf is incompressible and end incompressible, if the complementary regions of the lamination are irreducible, and if there are no spherical leaves. Essential laminations generalize the incompressible surfaces found in Haken manifolds.


Heegaard splitting

A Heegaard splitting is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies. Every closed,
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
three-manifold may be so obtained; this follows from deep results on the triangulability of three-manifolds due to Moise. This contrasts strongly with higher-dimensional manifolds which need not admit smooth or piecewise linear structures. Assuming smoothness the existence of a Heegaard splitting also follows from the work of Smale about handle decompositions from Morse theory.


Taut foliation

A taut foliation is a codimension 1
foliation In mathematics (differential geometry), a foliation is an equivalence relation on an ''n''-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension ''p'', modeled on the decomposition of ...
of a 3-manifold with the property that there is a single transverse circle intersecting every leaf. By transverse circle, is meant a closed loop that is always transverse to the tangent field of the foliation. Equivalently, by a result of
Dennis Sullivan Dennis Parnell Sullivan (born February 12, 1941) is an American mathematician known for his work in algebraic topology, geometric topology, and dynamical systems. He holds the Albert Einstein Chair at the City University of New York Graduate ...
, a codimension 1 foliation is taut if there exists a
Riemannian metric In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space '' ...
that makes each leaf a
minimal surface In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below). The term "minimal surface" is used because these surfaces originally arose as surfaces tha ...
. Taut foliations were brought to prominence by the work of William Thurston and
David Gabai David Gabai is an American mathematician and the Hughes-Rogers Professor of Mathematics at Princeton University. Focused on low-dimensional topology and hyperbolic geometry, he is a leading researcher in those subjects. Biography David Ga ...
.


Foundational results

Some results are named as conjectures as a result of historical artifacts. We begin with the purely topological:


Moise's theorem

In geometric topology, Moise's theorem, proved by Edwin E. Moise in, states that any topological 3-manifold has an essentially unique
piecewise-linear structure In mathematics, a piecewise linear (PL) manifold is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear ...
and
smooth structure In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. Definition A smooth structure on a manifold M is ...
. As corollary, every compact 3-manifold has a
Heegaard splitting In the mathematical field of geometric topology, a Heegaard splitting () is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies. Definitions Let ''V'' and ''W'' be handlebodies of genus ''g'', an ...
.


Prime decomposition theorem

The prime decomposition theorem for 3-manifolds states that every compact,
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
3-manifold is the
connected sum In mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classifi ...
of a unique ( up to
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomor ...
) collection of prime 3-manifolds. A manifold is ''prime'' if it cannot be presented as a connected sum of more than one manifold, none of which is the sphere of the same dimension.


Kneser–Haken finiteness

Kneser-Haken finiteness says that for each 3-manifold, there is a constant C such that any collection of surfaces of cardinality greater than C must contain parallel elements.


Loop and Sphere theorems

The loop theorem is a generalization of Dehn's lemma and should more properly be called the "disk theorem". It was first proven by Christos Papakyriakopoulos in 1956, along with Dehn's lemma and the Sphere theorem. A simple and useful version of the loop theorem states that if there is a map :f\colon (D^2,\partial D^2)\to (M,\partial M) \, with f, \partial D^2 not nullhomotopic in \partial M, then there is an embedding with the same property. The sphere theorem of gives conditions for elements of the second homotopy group of a 3-manifold to be represented by embedded spheres. One example is the following: Let M be an
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
3-manifold such that \pi_2(M) is not the trivial group. Then there exists a non-zero element of \pi_2(M) having a representative that is an
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is g ...
S^2\to M.


Annulus and Torus theorems

The annulus theorem states that if a pair of disjoint simple closed curves on the boundary of a three manifold are freely homotopic then they cobound a properly embedded annulus. This should not be confused with the high dimensional theorem of the same name. The torus theorem is as follows: Let M be a compact, irreducible 3-manifold with nonempty boundary. If M admits an essential map of a torus, then M admits an essential embedding of either a torus or an annulus


JSJ decomposition

The JSJ decomposition, also known as the toral decomposition, is a
topological In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
construct given by the following theorem: : Irreducible
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
closed (i.e., compact and without boundary) 3-manifolds have a unique (up to isotopy) minimal collection of disjointly embedded
incompressible In fluid mechanics or more generally continuum mechanics, incompressible flow ( isochoric flow) refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An eq ...
tori such that each component of the 3-manifold obtained by cutting along the tori is either atoroidal or Seifert-fibered. The acronym JSJ is for William Jaco, Peter Shalen, and Klaus Johannson. The first two worked together, and the third worked independently.


Scott core theorem

The Scott core theorem is a theorem about the finite presentability of fundamental groups of 3-manifolds due to G. Peter Scott. The precise statement is as follows: Given a 3-manifold (not necessarily compact) with finitely generated fundamental group, there is a compact three-dimensional
submanifold In mathematics, a submanifold of a manifold ''M'' is a subset ''S'' which itself has the structure of a manifold, and for which the inclusion map satisfies certain properties. There are different types of submanifolds depending on exactly which ...
, called the compact core or Scott core, such that its
inclusion map In mathematics, if A is a subset of B, then the inclusion map (also inclusion function, insertion, or canonical injection) is the function \iota that sends each element x of A to x, treated as an element of B: \iota : A\rightarrow B, \qquad \iota ...
induces an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
on fundamental groups. In particular, this means a finitely generated 3-manifold group is finitely presentable. A simplified proof is given in, and a stronger uniqueness statement is proven in.


Lickorish–Wallace theorem

The Lickorish–Wallace theorem states that any closed,
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
, connected 3-manifold may be obtained by performing Dehn surgery on a
framed link In mathematics, a knot is an embedding of the circle into three-dimensional Euclidean space, (also known as ). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of ...
in the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensio ...
with \pm 1 surgery coefficients. Furthermore, each component of the link can be assumed to be unknotted.


Waldhausen's theorems on topological rigidity

Friedhelm Waldhausen Friedhelm Waldhausen (born 1938 in Millich, Hückelhoven, Rhine Province) is a German mathematician known for his work in algebraic topology. He made fundamental contributions in the fields of 3-manifolds and (algebraic) K-theory. Career Wald ...
's theorems on topological rigidity say that certain 3-manifolds (such as those with an incompressible surface) are homeomorphic if there is an isomorphism of fundamental groups which respects the boundary.


Waldhausen conjecture on Heegaard splittings

Waldhausen conjectured that every closed orientable 3-manifold has only finitely many Heegaard splittings (up to homeomorphism) of any given genus.


Smith conjecture

The Smith conjecture (now proven) states that if ''f'' is a
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two ...
of the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensio ...
of finite order, then the
fixed point set A fixed point (sometimes shortened to fixpoint, also known as an invariant point) is a value that does not change under a given transformation. Specifically, in mathematics, a fixed point of a function is an element that is mapped to itself by th ...
of ''f'' cannot be a nontrivial
knot A knot is an intentional complication in cordage which may be practical or decorative, or both. Practical knots are classified by function, including hitches, bends, loop knots, and splices: a ''hitch'' fastens a rope to another object; a ' ...
.


Cyclic surgery theorem

The cyclic surgery theorem states that, for a compact,
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
,
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
, irreducible three-manifold ''M'' whose boundary is a
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not tou ...
''T'', if ''M'' is not a
Seifert-fibered space A Seifert fiber space is a 3-manifold together with a decomposition as a disjoint union of circles. In other words, it is a S^1-bundle (circle bundle) over a 2-dimensional orbifold. Many 3-manifolds are Seifert fiber spaces, and they account for ...
and ''r,s'' are slopes on ''T'' such that their Dehn fillings have cyclic fundamental group, then the distance between ''r'' and ''s'' (the minimal number of times that two simple closed curves in ''T'' representing ''r'' and ''s'' must intersect) is at most 1. Consequently, there are at most three Dehn fillings of ''M'' with cyclic fundamental group.


Thurston's hyperbolic Dehn surgery theorem and the Jørgensen–Thurston theorem

Thurston's hyperbolic Dehn surgery theorem states: M(u_1, u_2, \dots, u_n) is hyperbolic as long as a finite set of ''exceptional slopes'' E_i is avoided for the ''i''-th cusp for each ''i''. In addition, M(u_1, u_2, \dots, u_n) converges to ''M'' in ''H'' as all p_i^2+q_i^2 \rightarrow \infty for all p_i/q_i corresponding to non-empty Dehn fillings u_i. This theorem is due to William Thurston and fundamental to the theory of hyperbolic 3-manifolds. It shows that nontrivial limits exist in ''H''. Troels Jorgensen's study of the geometric topology further shows that all nontrivial limits arise by Dehn filling as in the theorem. Another important result by Thurston is that volume decreases under hyperbolic Dehn filling. In fact, the theorem states that volume decreases under topological Dehn filling, assuming of course that the Dehn-filled manifold is hyperbolic. The proof relies on basic properties of the Gromov norm. Jørgensen also showed that the volume function on this space is a continuous,
proper Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map for ...
function. Thus by the previous results, nontrivial limits in ''H'' are taken to nontrivial limits in the set of volumes. In fact, one can further conclude, as did Thurston, that the set of volumes of finite volume hyperbolic 3-manifolds has ordinal type \omega^\omega. This result is known as the Thurston-Jørgensen theorem. Further work characterizing this set was done by Gromov. Also, Gabai, Meyerhoff & Milley showed that the
Weeks manifold In mathematics, the Weeks manifold, sometimes called the Fomenko–Matveev–Weeks manifold, is a closed hyperbolic 3-manifold obtained by (5, 2) and (5, 1) Dehn surgeries on the Whitehead link. It has volume approximately equal to 0.942 ...
has the smallest volume of any closed orientable hyperbolic 3-manifold.


Thurston's hyperbolization theorem for Haken manifolds

One form of Thurston's geometrization theorem states: If ''M'' is an compact irreducible atoroidal Haken manifold whose boundary has zero Euler characteristic, then the interior of ''M'' has a complete hyperbolic structure of finite volume. The Mostow rigidity theorem implies that if a manifold of dimension at least 3 has a hyperbolic structure of finite volume, then it is essentially unique. The conditions that the manifold ''M'' should be irreducible and atoroidal are necessary, as hyperbolic manifolds have these properties. However the condition that the manifold be Haken is unnecessarily strong. Thurston's hyperbolization conjecture states that a closed irreducible atoroidal 3-manifold with infinite fundamental group is hyperbolic, and this follows from Perelman's proof of the Thurston geometrization conjecture.


Tameness conjecture, also called the Marden conjecture or tame ends conjecture

The tameness theorem states that every complete
hyperbolic 3-manifold In mathematics, more precisely in topology and differential geometry, a hyperbolic 3–manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to -1. It ...
with finitely generated fundamental group is topologically tame, in other words homeomorphic to the interior of a compact 3-manifold. The tameness theorem was conjectured by Marden. It was proved by Agol and, independently, by
Danny Calegari Danny Matthew Cornelius Calegari is a mathematician who is currently a professor of mathematics at the University of Chicago. His research interests include geometry, dynamical systems, low-dimensional topology, and geometric group theory. Educ ...
and
David Gabai David Gabai is an American mathematician and the Hughes-Rogers Professor of Mathematics at Princeton University. Focused on low-dimensional topology and hyperbolic geometry, he is a leading researcher in those subjects. Biography David Ga ...
. It is one of the fundamental properties of geometrically infinite hyperbolic 3-manifolds, together with the
density theorem for Kleinian groups In the mathematical theory of Kleinian groups, the density conjecture of Lipman Bers, Dennis Sullivan, and William Thurston, later proved independently by and , states that every finitely generated Kleinian group is an algebraic limit of geometric ...
and the ending lamination theorem. It also implies the Ahlfors measure conjecture.


Ending lamination conjecture

The ending lamination theorem, originally conjectured by William Thurston and later proven by Jeffrey Brock,
Richard Canary Richard Douglas Canary (born in 1962) is an American mathematician working mainly on low-dimensional topology. He is a professor at the University of Michigan. Canary obtained his Ph.D. from Princeton University in 1989 under the supervision of W ...
, and Yair Minsky, states that
hyperbolic 3-manifold In mathematics, more precisely in topology and differential geometry, a hyperbolic 3–manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to -1. It ...
s with finitely generated fundamental groups are determined by their topology together with certain "end invariants", which are geodesic
lamination Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materia ...
s on some surfaces in the boundary of the manifold.


Poincaré conjecture

The 3-sphere is an especially important 3-manifold because of the now-proven
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured ...
. Originally conjectured by Henri Poincaré, the theorem concerns a space that locally looks like ordinary three-dimensional space but is connected, finite in size, and lacks any boundary (a closed 3-manifold). The Poincaré conjecture claims that if such a space has the additional property that each loop in the space can be continuously tightened to a point, then it is necessarily a three-dimensional sphere. An analogous result has been known in higher dimensions for some time. After nearly a century of effort by mathematicians,
Grigori Perelman Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
presented a proof of the conjecture in three papers made available in 2002 and 2003 on
arXiv arXiv (pronounced "archive"—the X represents the Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not peer review. It consists of ...
. The proof followed on from the program of Richard S. Hamilton to use the
Ricci flow In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be ana ...
to attack the problem. Perelman introduced a modification of the standard Ricci flow, called ''Ricci flow with surgery'' to systematically excise singular regions as they develop, in a controlled way. Several teams of mathematicians have verified that Perelman's proof is correct.


Thurston's geometrization conjecture

Thurston's geometrization conjecture states that certain three-dimensional
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
s each have a unique geometric structure that can be associated with them. It is an analogue of the
uniformization theorem In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization ...
for two-dimensional
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
s, which states that every simply connected
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ver ...
can be given one of three geometries ( Euclidean,
spherical A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ce ...
, or
hyperbolic Hyperbolic is an adjective describing something that resembles or pertains to a hyperbola (a curve), to hyperbole (an overstatement or exaggeration), or to hyperbolic geometry. The following phenomena are described as ''hyperbolic'' because they ...
). In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by William , and implies several other conjectures, such as the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured ...
and Thurston's elliptization conjecture. Thurston's hyperbolization theorem implies that
Haken manifold In mathematics, a Haken manifold is a compact, P²-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in w ...
s satisfy the geometrization conjecture. Thurston announced a proof in the 1980s and since then several complete proofs have appeared in print.
Grigori Perelman Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
sketched a proof of the full geometrization conjecture in 2003 using
Ricci flow In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be ana ...
with surgery. There are now several different manuscripts (see below) with details of the proof. The Poincaré conjecture and the
spherical space form conjecture In geometric topology, the spherical space form conjecture (now a theorem) states that a finite group acting on the 3-sphere is conjugate to a group of isometries of the 3-sphere. History The conjecture was posed by Heinz Hopf in 1926 after de ...
are corollaries of the geometrization conjecture, although there are shorter proofs of the former that do not lead to the geometrization conjecture.


Virtually fibered conjecture and Virtually Haken conjecture

The virtually fibered conjecture, formulated by American
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History On ...
William Thurston, states that every closed, irreducible, atoroidal 3-manifold with infinite fundamental group has a finite cover which is a
surface bundle over the circle In mathematics, a surface bundle over the circle is a fiber bundle with base space a circle, and with fiber space a surface. Therefore the total space has dimension 2 + 1 = 3. In general, fiber bundles over the circle are a special case of mappi ...
. The virtually Haken conjecture states that every compact,
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
, irreducible three-dimensional manifold with infinite fundamental group is ''virtually Haken''. That is, it has a finite cover (a
covering space A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete spa ...
with a finite-to-one covering map) that is a
Haken manifold In mathematics, a Haken manifold is a compact, P²-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in w ...
. In a posting on the ArXiv on 25 Aug 2009, Daniel Wise implicitly implied (by referring to a then unpublished longer manuscript) that he had proven the Virtually fibered conjecture for the case where the 3-manifold is closed, hyperbolic, and Haken. This was followed by a survey article in Electronic Research Announcements in Mathematical Sciences. Several more preprints have followed, including the aforementioned longer manuscript by Wise.Daniel T. Wise, ''The structure of groups with a quasiconvex hierarchy'', https://docs.google.com/file/d/0B45cNx80t5-2NTU0ZTdhMmItZTIxOS00ZGUyLWE0YzItNTEyYWFiMjczZmIz/edit?pli=1 In March 2012, during a conference at Institut Henri Poincaré in Paris,
Ian Agol Ian Agol (born May 13, 1970) is an American mathematician who deals primarily with the topology of three-dimensional manifolds. Education and career Agol graduated with B.S. in mathematics from the California Institute of Technology in 1992 and ...
announced he could prove the
virtually Haken conjecture In topology, an area of mathematics, the virtually Haken conjecture states that every compact, orientable, irreducible three-dimensional manifold with infinite fundamental group is ''virtually Haken''. That is, it has a finite cover (a covering s ...
for closed hyperbolic 3-manifolds. The proof built on results of Kahn and Markovic in their proof of the
Surface subgroup conjecture In mathematics, the surface subgroup conjecture of Friedhelm Waldhausen states that the fundamental group of every closed, irreducible 3-manifold with infinite fundamental group has a surface subgroup. By "surface subgroup" we mean the fundament ...
and results of Wise in proving the Malnormal Special Quotient Theorem and results of Bergeron and Wise for the cubulation of groups. Taken together with Wise's results, this implies the virtually fibered conjecture for all closed hyperbolic 3-manifolds.


Simple loop conjecture

If f\colon S \rightarrow T is a map of closed connected surfaces such that f_\star \colon \pi_1(S) \rightarrow \pi_1(T) is not injective, then there exists a non-contractible simple closed curve \alpha \subset S such that f, _a is homotopically trivial. This conjecture was proven by
David Gabai David Gabai is an American mathematician and the Hughes-Rogers Professor of Mathematics at Princeton University. Focused on low-dimensional topology and hyperbolic geometry, he is a leading researcher in those subjects. Biography David Ga ...
.


Surface subgroup conjecture

The surface subgroup conjecture of
Friedhelm Waldhausen Friedhelm Waldhausen (born 1938 in Millich, Hückelhoven, Rhine Province) is a German mathematician known for his work in algebraic topology. He made fundamental contributions in the fields of 3-manifolds and (algebraic) K-theory. Career Wald ...
states that the fundamental group of every closed, irreducible 3-manifold with infinite fundamental group has a surface subgroup. By "surface subgroup" we mean the fundamental group of a closed surface not the 2-sphere. This problem is listed as Problem 3.75 in
Robion Kirby Robion Cromwell Kirby (born February 25, 1938) is a Professor of Mathematics at the University of California, Berkeley who specializes in low-dimensional topology. Together with Laurent C. Siebenmann he invented the Kirby–Siebenmann invariant f ...
's problem list. Assuming the
geometrization conjecture In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimens ...
, the only open case was that of closed
hyperbolic 3-manifold In mathematics, more precisely in topology and differential geometry, a hyperbolic 3–manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to -1. It ...
s. A proof of this case was announced in the Summer of 2009 by
Jeremy Kahn Jeremy Adam Kahn (born October 26, 1969) is an American mathematician. He works on hyperbolic geometry, Riemann surfaces and complex dynamics. Education Kahn grew up in New York City and attended Hunter College High School. He was a child prod ...
and Vladimir Markovic and outlined in a talk August 4, 2009 at the FRG (Focused Research Group) Conference hosted by the University of Utah. A preprint appeared on the arxiv in October 2009. Their paper was published in the
Annals of Mathematics The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the ...
in 2012. In June 2012, Kahn and Markovic were given the
Clay Research Award __NOTOC__ The Clay Research Award is an annual award given by the Oxford-based Clay Mathematics Institute to mathematicians to recognize their achievement in mathematical research. The following mathematicians have received the award: {, class=" ...
s by the Clay Mathematics Institute at a ceremony in
Oxford Oxford () is a city in England. It is the county town and only city of Oxfordshire. In 2020, its population was estimated at 151,584. It is north-west of London, south-east of Birmingham and north-east of Bristol. The city is home to the ...
.


Important conjectures


Cabling conjecture

The cabling conjecture states that if Dehn surgery on a knot in the 3-sphere yields a reducible 3-manifold, then that knot is a (p,q)-cable on some other knot, and the surgery must have been performed using the slope pq.


Lubotzky–Sarnak conjecture

The fundamental group of any finite volume hyperbolic ''n''-manifold does not have Property τ.


References


Further reading

* * * * * * * * *


External links

* *Strickland, Neil
A Bestiary of Topological Objects
{{authority control Geometric topology