Tangent Bundle
In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of manifold the tangent spaces and have no common vector. This is graphically illustrated in the accompanying picture for tangent bundle of circle , see Examples section: all tangents to a circle lie in the plane of the circle. In order to make them disjoint it is necessary to align them in a plane perpendicular to the plane of the circle. of the tangent spaces of M . That is, : \begin TM &= \bigsqcup_ T_xM \\ &= \bigcup_ \left\ \times T_xM \\ &= \bigcup_ \left\ \\ &= \left\ \end where T_x M denotes the tangent space to M at the point x . So, an element of TM can be thought of as a pair (x,v), where x is a point in M and v is a tangent vector to M at x . There is a natural projection : \pi : TM \t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Tangent Bundle
In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of manifold the tangent spaces and have no common vector. This is graphically illustrated in the accompanying picture for tangent bundle of circle , see Examples section: all tangents to a circle lie in the plane of the circle. In order to make them disjoint it is necessary to align them in a plane perpendicular to the plane of the circle. of the tangent spaces of M . That is, : \begin TM &= \bigsqcup_ T_xM \\ &= \bigcup_ \left\ \times T_xM \\ &= \bigcup_ \left\ \\ &= \left\ \end where T_x M denotes the tangent space to M at the point x . So, an element of TM can be thought of as a pair (x,v), where x is a point in M and v is a tangent vector to M at x . There is a natural projection : \pi : TM \t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cotangent Space
In differential geometry, the cotangent space is a vector space associated with a point x on a smooth (or differentiable) manifold \mathcal M; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, T^*_x\!\mathcal M is defined as the dual space of the tangent space at ''x'', T_x\mathcal M, although there are more direct definitions (see below). The elements of the cotangent space are called cotangent vectors or tangent covectors. Properties All cotangent spaces at points on a connected manifold have the same dimension, equal to the dimension of the manifold. All the cotangent spaces of a manifold can be "glued together" (i.e. unioned and endowed with a topology) to form a new differentiable manifold of twice the dimension, the cotangent bundle of the manifold. The tangent space and the cotangent space at a point are both real vector spaces of the same dimension and therefore isomorphic to each other via many possible isomorphisms. Th ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Atlas (topology)
In mathematics, particularly topology, one describes a manifold using an atlas. An atlas consists of individual ''charts'' that, roughly speaking, describe individual regions of the manifold. If the manifold is the surface of the Earth, then an atlas has its more common meaning. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles. Charts The definition of an atlas depends on the notion of a ''chart''. A chart for a topological space ''M'' (also called a coordinate chart, coordinate patch, coordinate map, or local frame) is a homeomorphism \varphi from an open subset ''U'' of ''M'' to an open subset of a Euclidean space. The chart is traditionally recorded as the ordered pair (U, \varphi). Formal definition of atlas An atlas for a topological space M is an indexed family \ of charts on M which covers M (that is, \bigcup_ U_ = M). If the codomain of each chart is the ''n''dimension ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the threedimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension, including the threedimensional space and the '' Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of '' proving'' all properties of the space as theorems, by starting from a few fundamental properties, called '' postulates'', which either were considered as evident (for example, there is exactly one straight line passing through two points), or seemed impossible to ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Parallelizable
In mathematics, a differentiable manifold M of dimension ''n'' is called parallelizable if there exist smooth vector fields \ on the manifold, such that at every point p of M the tangent vectors \ provide a basis of the tangent space at p. Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a global section on M. A particular choice of such a basis of vector fields on M is called a parallelization (or an absolute parallelism) of M. Examples *An example with n = 1 is the circle: we can take ''V''1 to be the unit tangent vector field, say pointing in the anticlockwise direction. The torus of dimension n is also parallelizable, as can be seen by expressing it as a cartesian product of circles. For example, take n = 2, and construct a torus from a square of graph paper with opposite edges glued together, to get an idea of the two tangent directions at each point. More generally, every Lie group ''G'' is parallelizabl ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Lie Group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two manifolds M and N, a differentiable map f \colon M \rightarrow N is called a diffeomorphism if it is a bijection and its inverse f^ \colon N \rightarrow M is differentiable as well. If these functions are r times continuously differentiable, f is called a C^rdiffeomorphism. Two manifolds M and N are diffeomorphic (usually denoted M \simeq N) if there is a diffeomorphism f from M to N. They are C^rdiffeomorphic if there is an r times continuously differentiable bijective map between them whose inverse is also r times continuously differentiable. Diffeomorphisms of subsets of manifolds Given a subset X of a manifold M and a subset Y of a manifold N, a function f:X\to Y is said to be smooth if for all p in X there is a neighbo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Contractible Space
In mathematics, a topological space ''X'' is contractible if the identity map on ''X'' is nullhomotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within that space. Properties A contractible space is precisely one with the homotopy type of a point. It follows that all the homotopy groups of a contractible space are trivial. Therefore any space with a nontrivial homotopy group cannot be contractible. Similarly, since singular homology is a homotopy invariant, the reduced homology groups of a contractible space are all trivial. For a topological space ''X'' the following are all equivalent: *''X'' is contractible (i.e. the identity map is nullhomotopic). *''X'' is homotopy equivalent to a onepoint space. *''X'' deformation retracts onto a point. (However, there exist contractible spaces which do not ''strongly'' deformation retract to a point.) *For any space ''Y'', any two maps ''f'',''g ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Smooth Structure
In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. Definition A smooth structure on a manifold M is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold M is an atlas for M such that each transition function is a smooth map, and two smooth atlases for M are smoothly equivalent provided their union is again a smooth atlas for M. This gives a natural equivalence relation on the set of smooth atlases. A smooth manifold is a topological manifold M together with a smooth structure on M. Maximal smooth atlases By taking the union of all atlases belonging to a smooth structure, we obtain a maximal smooth atlas. This atlas contains every chart that is compatible with the smooth structure. There is a natural onetoone correspondence between smooth structures and maximal smooth atlases. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Disjoint Union Topology
In general topology and related areas of mathematics, the disjoint union (also called the direct sum, free union, free sum, topological sum, or coproduct) of a family of topological spaces is a space formed by equipping the disjoint union of the underlying sets with a natural topology called the disjoint union topology. Roughly speaking, in the disjoint union the given spaces are considered as part of a single new space where each looks as it would alone and they are isolated from each other. The name ''coproduct'' originates from the fact that the disjoint union is the categorical dual of the product space construction. Definition Let be a family of topological spaces indexed by ''I''. Let :X = \coprod_i X_i be the disjoint union of the underlying sets. For each ''i'' in ''I'', let :\varphi_i : X_i \to X\, be the canonical injection (defined by \varphi_i(x)=(x,i)). The disjoint union topology on ''X'' is defined as the finest topology on ''X'' for which all the canonical injec ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Derivative (generalizations)
In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc. Fréchet derivative The Fréchet derivative defines the derivative for general normed vector spaces V, W. Briefly, a function f : U \to W, U an open subset of V, is called ''Fréchet differentiable'' at x \in U if there exists a bounded linear operator A:V\to W such that \lim_ \frac = 0. Functions are defined as being differentiable in some open neighbourhood of x, rather than at individual points, as not doing so tends to lead to many pathological counterexamples. The Fréchet derivative is quite similar to the formula for the derivative found in elementary onevariable calculus, \lim_\frac = A, and simply moves ''A'' to the left hand side. However, the Fréchet derivative ''A'' denotes the function t \mapsto f'(x) \cdot t. In multivariable calculus, in the context ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Whitney Sum
In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ..., a vector bundle is a topology, topological construction that makes precise the idea of a family of vector spaces parameterized by another space (mathematics), space X (for example X could be a topological space, a manifold, or an algebraic variety): to every point x of the space X we associate (or "attach") a vector space V(x) in such a way that these vector spaces fit together to form another space of the same kind as X (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over X. The simplest example is the case that the family of vector spaces is constant, i.e., there is a fixed vector space V such that V(x)=V for all x in X: in this case there is a copy of V for each x ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 