Up To
Two mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' with respect to ''R'' are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, ''x'' is unique up to ''R'' means that all objects ''x'' under consideration are in the same equivalence class with respect to the relation ''R''. Moreover, the equivalence relation ''R'' is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation ''R'' that relates two lists if one can be obtained by reordering (permutation) from the other. As another example, the stat ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Partitions Of 6set With 3 Singletons
Partition may refer to: Computing Hardware * Disk partitioning, the division of a hard disk drive * Memory partition, a subdivision of a computer's memory, usually for use by a single job Software * Partition (database), the division of a database * Logical partition (LPAR), a subset of a computer's resources, virtualized as a separate computer Problems * Binary space partitioning * Partition problem, an NPcomplete problem in computer science Mathematics * Partition (number theory), a way to write a number as a sum of other numbers * Multiplicative partition, a way to write a number as a product of other numbers * Partition of an interval * Partition of a set * Partition of unity, a certain kind of set of functions on a topological space * Plane partition * Graph partition Natural science * Partition function (quantum field theory) * Partition function (statistical mechanics) * Partition coefficient, a concept in organic chemistry Law and politics * Partition (law), t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Regular Polygon
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a straight line), if the edge length is fixed. General properties ''These properties apply to all regular polygons, whether convex or star.'' A regular ''n''sided polygon has rotational symmetry of order ''n''. All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon. Together with the property of equallength sides, this implies that every regular polygon also has an inscribed circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangentia ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Lecture Notes In Computer Science
''Lecture Notes in Computer Science'' is a series of computer science books published by Springer Science+Business Media since 1973. Overview The series contains proceedings, postproceedings, monographs, and Festschrifts. In addition, tutorials, stateoftheart surveys, and "hot topics" are increasingly being included. The series is indexed by DBLP. See also *''Monographiae Biologicae'', another monograph series published by Springer Science+Business Media *''Lecture Notes in Physics'' *''Lecture Notes in Mathematics'' *''Electronic Workshops in Computing ''Electronic Workshops in Computing'' (eWiC) is a publication series by the British Computer Society. The series provides free online access for conferences and workshops in the area of computing. For example, the EVA London Conference proceeding ...'', published by the British Computer Society References External links * Publications established in 1973 Computer science books Series of nonfiction books Springer ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Bisimulation
In theoretical computer science a bisimulation is a binary relation between state transition systems, associating systems that behave in the same way in that one system simulates the other and vice versa. Intuitively two systems are bisimilar if they, assuming we view them as playing a ''game'' according to some rules, match each other's moves. In this sense, each of the systems cannot be distinguished from the other by an observer. Formal definition Given a labelled state transition system (S, \Lambda, →), where S is a set of states, \Lambda is a set of labels and → is a set of labelled transitions (i.e., a subset of S \times \Lambda \times S), a bisimulation is a binary relation R \subseteq S \times S, such that both R and its converse R^T are simulations. From this follows that the symmetric closure of a bisimulation is a bisimulation, and that each symmetric simulation is a bisimulation. Thus some authors define bisimulation as a symmetric simulation. Equivalent ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Bisimulation
In theoretical computer science a bisimulation is a binary relation between state transition systems, associating systems that behave in the same way in that one system simulates the other and vice versa. Intuitively two systems are bisimilar if they, assuming we view them as playing a ''game'' according to some rules, match each other's moves. In this sense, each of the systems cannot be distinguished from the other by an observer. Formal definition Given a labelled state transition system (S, \Lambda, →), where S is a set of states, \Lambda is a set of labels and → is a set of labelled transitions (i.e., a subset of S \times \Lambda \times S), a bisimulation is a binary relation R \subseteq S \times S, such that both R and its converse R^T are simulations. From this follows that the symmetric closure of a bisimulation is a bisimulation, and that each symmetric simulation is a bisimulation. Thus some authors define bisimulation as a symmetric simulation. Equivalent ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Proof Techniques
A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or nonexhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work. Proofs employ logic expressed in mathematical symbols, along ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Infinitesimal
In mathematics, an infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not zero. The word ''infinitesimal'' comes from a 17thcentury Modern Latin coinage ''infinitesimus'', which originally referred to the "infinity th" item in a sequence. Infinitesimals do not exist in the standard real number system, but they do exist in other number systems, such as the surreal number system and the hyperreal number system, which can be thought of as the real numbers augmented with both infinitesimal and infinite quantities; the augmentations are the reciprocals of one another. Infinitesimal numbers were introduced in the development of calculus, in which the derivative was first conceived as a ratio of two infinitesimal quantities. This definition was not rigorously formalized. As calculus developed further, infinitesimals were replaced by limits, which can be calculated using the standard real numbers. Infinitesimals regained popul ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Standard Part Function
In nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every such hyperreal x, the unique real x_0 infinitely close to it, i.e. xx_0 is infinitesimal. As such, it is a mathematical implementation of the historical concept of adequality introduced by Pierre de Fermat,Karin Usadi Katz and Mikhail G. Katz (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. Foundations of Science.Searxiv The authors refer to the FermatRobinson standard part. as well as Leibniz's Transcendental law of homogeneity. The standard part function was first defined by Abraham Robinson who used the notation ^x for the standard part of a hyperreal x (see Robinson 1974). This concept plays a key role in defining the concepts of the calculus, such as continuity, the derivati ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hyperreal Number
In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but nonzero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers greater than anything of the form :1 + 1 + \cdots + 1 (for any finite number of terms). Such numbers are infinite, and their reciprocals are infinitesimals. The term "hyperreal" was introduced by Edwin Hewitt in 1948. The hyperreal numbers satisfy the transfer principle, a rigorous version of Leibniz's heuristic law of continuity. The transfer principle states that true firstorder statements about R are also valid in *R. For example, the commutative law of addition, , holds for the hyperreals just as it does for the reals; since R is a real closed field, so is *R. Since \sin()=0 for all integers ''n'', one also has \sin()=0 for all hyperintegers H. The transfer principle for ultrapowers is a consequence of Łoś' theorem of 1 ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Group Isomorphism
In abstract algebra, a group isomorphism is a function between two groups that sets up a onetoone correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished. Definition and notation Given two groups (G, *) and (H, \odot), a ''group isomorphism'' from (G, *) to (H, \odot) is a bijective group homomorphism from G to H. Spelled out, this means that a group isomorphism is a bijective function f : G \to H such that for all u and v in G it holds that f(u * v) = f(u) \odot f(v). The two groups (G, *) and (H, \odot) are isomorphic if there exists an isomorphism from one to the other. This is written (G, *) \cong (H, \odot). Often shorter and simpler notations can be used. When the relevant group operations are understood, they are omitted and on ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Isomorphism
In mathematics, an isomorphism is a structurepreserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finitedimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set w ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 