Glucose Sensor
   HOME

TheInfoList



OR:

Glucose is a
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose Glucose is a sugar with the Chemical formula#Molecular formula, molecul ...
with the
molecular formula A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as paren ...
, which is often abbreviated as Glc. It is overall the most abundant
monosaccharide Monosaccharides (from Greek '' monos'': single, '' sacchar'': sugar), also called simple sugars, are the simplest forms of sugar and the most basic units (monomers) from which all carbohydrates are built. Chemically, monosaccharides are polyhy ...
, a subcategory of
carbohydrate A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
s. It is mainly made by
plants Plants are the eukaryotes that form the kingdom Plantae; they are predominantly photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with cyanobacteria to produce sugars f ...
and most
algae Algae ( , ; : alga ) is an informal term for any organisms of a large and diverse group of photosynthesis, photosynthetic organisms that are not plants, and includes species from multiple distinct clades. Such organisms range from unicellular ...
during
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
from water and carbon dioxide, using energy from sunlight. It is used by plants to make
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
, the most abundant carbohydrate in the world, for use in
cell wall A cell wall is a structural layer that surrounds some Cell type, cell types, found immediately outside the cell membrane. It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, ...
s, and by all living
organisms An organism is any living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have been pr ...
to make
adenosine triphosphate Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
(ATP), which is used by the cell as energy. In
energy metabolism Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study ...
, glucose is the most important source of energy in all
organism An organism is any life, living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have be ...
s. Glucose for metabolism is stored as a
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
, in plants mainly as
amylose Amylose is a polysaccharide made of α-D-glucose units, bonded to each other through α(1→4) glycosidic bonds. It is one of the two components of starch, making up approximately 20–25% of it. Because of its tightly packed Helix, helical struct ...
and
amylopectin Amylopectin is a water-insoluble polysaccharide and highly branched polymer of α-glucose units found in plants. It is one of the two components of starch, the other being amylose. Plants store starch within specialized organelles called amyloplas ...
, and in animals as
glycogen Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. It is the main storage form of glucose in the human body. Glycogen functions as one of three regularly used forms ...
. Glucose circulates in the blood of animals as
blood sugar The blood sugar level, blood sugar concentration, blood glucose level, or glycemia is the measure of glucose concentrated in the blood. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. For a 70 kg (1 ...
. The naturally occurring form is -glucose, while its
stereoisomer In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in ...
-glucose is produced synthetically in comparatively small amounts and is less biologically active. Glucose is a monosaccharide containing six carbon atoms and an
aldehyde In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
group, and is therefore an
aldohexose In chemistry, a hexose is a monosaccharide (simple sugar) with six carbon atoms. The chemical formula for all hexoses is , and their molecular weight is 180.156 g/mol. Hexoses exist in two forms, open-chain or cyclic, that easily convert into e ...
. The glucose molecule can exist in an open-chain (acyclic) as well as ring (cyclic) form. Glucose is naturally occurring and is found in its free state in fruits and other parts of plants. In animals, it is released from the breakdown of glycogen in a process known as
glycogenolysis Glycogenolysis is the breakdown of glycogen (n) to glucose-1-phosphate and glycogen (n-1). Glycogen branches are catabolized by the sequential removal of glucose monomers via phosphorolysis, by the enzyme glycogen phosphorylase. Mechanis ...
. Glucose, as
intravenous sugar solution Intravenous sugar solution, also known as dextrose solution, is a mixture of dextrose (glucose) and water. It is used to treat low blood sugar or water loss without electrolyte loss. Water loss without electrolyte loss may occur in fever, hype ...
, is on the
World Health Organization's List of Essential Medicines The WHO Model List of Essential Medicines (aka Essential Medicines List or EML), published by the World Health Organization (WHO), contains the medications considered to be most effective and safe to meet the most important needs in a health s ...
. It is also on the list in combination with
sodium chloride Sodium chloride , commonly known as Salt#Edible salt, edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs a ...
(table salt). The name glucose is derived from
Ancient Greek Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek ...
() 'wine, must', from () 'sweet'. The suffix ''
-ose The suffix ''-ose'' () is used in organic chemistry to form the names of sugars. This Latin suffix means "full of", "abounding in", "given to", or "like". Numerous systems exist to name specific sugars more descriptively. The suffix is also used mo ...
'' is a chemical classifier denoting a sugar.


History

Glucose was first isolated from
raisin A raisin is a Dried fruit, dried grape. Raisins are produced in many regions of the world and may be eaten raw or used in cooking, baking, and brewing. In the United Kingdom, Republic of Ireland, Ireland, New Zealand, Australia and South Afri ...
s in 1747 by the German chemist
Andreas Marggraf Andreas Sigismund Marggraf (; 3 March 1709 – 7 August 1782) was a German chemist from Berlin, then capital of the Margraviate of Brandenburg, and a pioneer of analytical chemistry. He isolated zinc in 1746 by heating calamine and carbon. Though ...
. Glucose was discovered in grapes by another German chemist Johann Tobias Lowitzin 1792, and distinguished as being different from cane sugar (
sucrose Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula . For human consumption, sucrose is extracted and refined ...
). Glucose is the term coined by
Jean Baptiste Dumas Jean Baptiste André Dumas (; 14 July 180010 April 1884) was a French chemist, best known for his works on organic analysis and synthesis, as well as the determination of atomic weights (relative atomic masses) and molecular weights by measuring ...
in 1838, which has prevailed in the chemical literature. Friedrich August Kekulé proposed the term dextrose (from the
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
, meaning "right"), because in aqueous solution of glucose, the plane of linearly polarized light is turned to the right. In contrast,
l-fructose Fructose (), or fruit sugar, is a ketonic simple sugar found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. It is one of the three dietary monosaccharides, along with glucose and galactose, that are absorb ...
(usually referred to as -fructose) (a ketohexose) and l-glucose (-glucose) turn linearly polarized light to the left. The earlier notation according to the rotation of the plane of linearly polarized light (''d'' and ''l''-nomenclature) was later abandoned in favor of the - and -notation, which refers to the absolute configuration of the asymmetric center farthest from the carbonyl group, and in concordance with the configuration of - or -glyceraldehyde.John F. Robyt: ''Essentials of Carbohydrate Chemistry''. Springer Science & Business Media, 2012, . p. 7. Since glucose is a basic necessity of many organisms, a correct understanding of its
chemical A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combin ...
makeup and structure contributed greatly to a general advancement in
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the science, scientific study of the structure, properties, and reactions of organic compounds and organic matter, organic materials, i.e., matter in its various forms that contain ...
. This understanding occurred largely as a result of the investigations of
Emil Fischer Hermann Emil Louis Fischer (; 9 October 1852 – 15 July 1919) was a German chemist and List of Nobel laureates in Chemistry, 1902 recipient of the Nobel Prize in Chemistry. He discovered the Fischer esterification. He also developed the Fisch ...
, a German chemist who received the 1902
Nobel Prize in Chemistry The Nobel Prize in Chemistry () is awarded annually by the Royal Swedish Academy of Sciences to scientists in the various fields of chemistry. It is one of the five Nobel Prizes established by the will of Alfred Nobel in 1895, awarded for outst ...
for his findings. The synthesis of glucose established the structure of organic material and consequently formed the first definitive validation of
Jacobus Henricus van 't Hoff Jacobus Henricus van 't Hoff Jr. (; 30 August 1852 – 1 March 1911) was a Dutch physical chemistry, physical chemist. A highly influential theoretical chemistry, theoretical chemist of his time, Van 't Hoff was the first winner of the Nobe ...
's theories of chemical kinetics and the arrangements of chemical bonds in carbon-bearing molecules. Between 1891 and 1894, Fischer established the
stereochemical Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. The study of stereochemistry focuses on the relationships between stereoisomers, which are defined ...
configuration of all the known sugars and correctly predicted the possible
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
s, applying
Van 't Hoff equation The Van 't Hoff equation relates the change in the equilibrium constant, , of a chemical reaction to the change in temperature, ''T'', given the standard enthalpy change, , for the process. The subscript r means "reaction" and the superscript \om ...
of asymmetrical carbon atoms. The names initially referred to the natural substances. Their
enantiomers In chemistry, an enantiomer (Help:IPA/English, /ɪˈnænti.əmər, ɛ-, -oʊ-/ Help:Pronunciation respelling key, ''ih-NAN-tee-ə-mər''), also known as an optical isomer, antipode, or optical antipode, is one of a pair of molecular entities whi ...
were given the same name with the introduction of systematic nomenclatures, taking into account absolute stereochemistry (e.g. Fischer nomenclature, / nomenclature). For the discovery of the metabolism of glucose
Otto Meyerhof Otto Fritz Meyerhof (; 12 April 1884 – 6 October 1951) was a German physician and biochemist who won the 1922 Nobel Prize in Physiology and Medicine. Biography Otto Fritz Meyerhof was born in Hannover, at Theaterplatz 16A (now:Rathenaustrasse ...
received the
Nobel Prize in Physiology or Medicine The Nobel Prize in Physiology or Medicine () is awarded yearly by the Nobel Assembly at the Karolinska Institute for outstanding discoveries in physiology or medicine. The Nobel Prize is not a single prize, but five separate prizes that, acco ...
in 1922.
Hans von Euler-Chelpin Hans Karl August Simon Euler-Chelpin, since 28 July 1884 von Euler-Chelpin (15 February 1873 – 6 November 1964), was a German-born Swedish biochemist. He won the Nobel Prize in Chemistry in 1929 with Arthur Harden for their investigations on ...
was awarded the Nobel Prize in Chemistry along with
Arthur Harden Sir Arthur Harden, FRS (12 October 1865 – 17 June 1940) was a British biochemist. He shared the Nobel Prize in Chemistry in 1929 with Hans Karl August Simon von Euler-Chelpin for their investigations into the fermentation of sugar and ferme ...
in 1929 for their "research on the
fermentation Fermentation is a type of anaerobic metabolism which harnesses the redox potential of the reactants to make adenosine triphosphate (ATP) and organic end products. Organic molecules, such as glucose or other sugars, are catabolized and reduce ...
of sugar and their share of enzymes in this process". In 1947,
Bernardo Houssay Bernardo Alberto Houssay (April 10, 1887 – September 21, 1971) was an Argentine physiologist. Houssay was a co-recipient of the 1947 Nobel Prize for Physiology or Medicine for discovering the role played by pituitary hormones in regulating the ...
(for his discovery of the role of the
pituitary gland The pituitary gland or hypophysis is an endocrine gland in vertebrates. In humans, the pituitary gland is located at the base of the human brain, brain, protruding off the bottom of the hypothalamus. The pituitary gland and the hypothalamus contr ...
in the metabolism of glucose and the derived carbohydrates) as well as
Carl Carl may refer to: *Carl, Georgia, city in USA *Carl, West Virginia, an unincorporated community *Carl (name), includes info about the name, variations of the name, and a list of people with the name *Carl², a TV series * "Carl", an episode of tel ...
and
Gerty Cori Gerty Theresa Cori (; August 15, 1896 – October 26, 1957) was a Bohemian-Austrian and American biochemist who in 1947 was the third woman to win a Nobel Prize in science, and the first woman to be awarded the Nobel Prize in Physiology or Me ...
(for their discovery of the conversion of glycogen from glucose) received the Nobel Prize in Physiology or Medicine. In 1970,
Luis Leloir Luis Federico Leloir (September 6, 1906 – December 2, 1987) was an Argentine physician and biochemist who received the 1970 Nobel Prize in Chemistry for his discovery of the metabolic pathways by which carbohydrates are synthesized and co ...
was awarded the Nobel Prize in Chemistry for the discovery of glucose-derived sugar nucleotides in the biosynthesis of carbohydrates.


Chemical and physical properties

Glucose forms white or colorless solids that are highly
soluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
in water and
acetic acid Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main compone ...
but poorly soluble in
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical compound and the simplest aliphatic Alcohol (chemistry), alcohol, with the chemical formula (a methyl group linked to a hydroxyl group, often ab ...
and
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula . It is an Alcohol (chemistry), alcohol, with its formula also written as , or EtOH, where Et is the ps ...
. They melt at (''α'') and (''beta''),
decompose Decomposition is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is essen ...
starting at with release of various volatile products, ultimately leaving a residue of
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
. Glucose has a pKa value of 12.16 at in water. With six carbon atoms, it is classed as a
hexose In chemistry, a hexose is a monosaccharide (simple sugar) with six carbon atoms. The chemical formula for all hexoses is , and their molecular weight is 180.156 g/mol. Hexoses exist in two forms, open-chain or cyclic, that easily convert into ...
, a subcategory of the
monosaccharide Monosaccharides (from Greek '' monos'': single, '' sacchar'': sugar), also called simple sugars, are the simplest forms of sugar and the most basic units (monomers) from which all carbohydrates are built. Chemically, monosaccharides are polyhy ...
s. -Glucose is one of the sixteen
aldohexose In chemistry, a hexose is a monosaccharide (simple sugar) with six carbon atoms. The chemical formula for all hexoses is , and their molecular weight is 180.156 g/mol. Hexoses exist in two forms, open-chain or cyclic, that easily convert into e ...
stereoisomer In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in ...
s. The -
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
, -glucose, also known as dextrose, occurs widely in nature, but the -isomer, -glucose, does not. Glucose can be obtained by
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
of carbohydrates such as milk sugar (
lactose Lactose is a disaccharide composed of galactose and glucose and has the molecular formula C12H22O11. Lactose makes up around 2–8% of milk (by mass). The name comes from (Genitive case, gen. ), the Latin word for milk, plus the suffix ''-o ...
), cane sugar (sucrose),
maltose } Maltose ( or ), also known as maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an α(1→4) bond. In the isomer isomaltose, the two glucose molecules are joined with an α(1→6) bond. Maltose is the tw ...
,
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
,
glycogen Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. It is the main storage form of glucose in the human body. Glycogen functions as one of three regularly used forms ...
, etc. Dextrose is commonly commercially manufactured from
starches Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human die ...
, such as
corn starch Cornflour, cornstarch, maize starch, or corn starch (American English) is the starch derived from corn (maize) grain. The starch is obtained from the endosperm of the seed, kernel. Corn starch is a common food ingredient, often used to thick ...
in the US and Japan, from potato and wheat starch in Europe, and from
tapioca starch Tapioca (; ) is a starch extracted from the tubers of the cassava plant (''Manihot esculenta,'' also known as manioc), a species native to the North Region, Brazil, North and Northeast Region, Brazil, Northeast regions of Brazil, but which has ...
in tropical areas. The manufacturing process uses hydrolysis via pressurized steaming at controlled pH in a jet followed by further enzymatic depolymerization. Unbonded glucose is one of the main ingredients of
honey Honey is a sweet and viscous substance made by several species of bees, the best-known of which are honey bees. Honey is made and stored to nourish bee colonies. Bees produce honey by gathering and then refining the sugary secretions of pl ...
. The term ''dextrose'' is often used in a clinical (related to patient's health status) or nutritional context (related to dietary intake, such as food labels or dietary guidelines), while "glucose" is used in a biological or physiological context (chemical processes and molecular interactions), but both terms refer to the same molecule, specifically D-glucose. ''Dextrose monohydrate'' is the hydrated form of D-glucose, meaning that it is a glucose molecule with an additional water molecule attached. Its chemical formula is  · . Dextrose monohydrate is also called ''hydrated D-glucose'', and commonly manufactured from plant starches. Dextrose monohydrate is utilized as the predominant type of dextrose in food applications, such as beverage mixes—it is a common form of glucose widely used as a nutrition supplement in production of foodstuffs. Dextrose monohydrate is primarily consumed in North America as a
corn syrup Corn syrup is a food syrup that is made from the starch of corn/maize and contains varying amounts of sugars: glucose, maltose and higher oligosaccharides, depending on the grade. Corn syrup is used in foods to soften Mouthfeel, texture, add vol ...
or
high-fructose corn syrup High-fructose corn syrup (HFCS), also known as glucose–fructose, isoglucose, and glucose–fructose syrup, is a sweetener made from corn starch. As in the production of conventional corn syrup, the starch is broken down into glucose by enzy ...
. ''Anhydrous dextrose'', on the other hand, is glucose that does not have any water molecules attached to it. Anhydrous chemical substances are commonly produced by eliminating water from a hydrated substance through methods such as heating or drying up (desiccation). Dextrose monohydrate can be dehydrated to anhydrous dextrose in industrial setting. Dextrose monohydrate is composed of approximately 9.5% water by mass; through the process of dehydration, this water content is eliminated to yield anhydrous (dry) dextrose. Anhydrous dextrose has the chemical formula , without any water molecule attached which is the same as glucose. Anhydrous dextrose on open air tends to absorb moisture and transform to the monohydrate, and it is more expensive to produce. Anhydrous dextrose (anhydrous D-glucose) has increased stability and increased shelf life, has medical applications, such as in oral
glucose tolerance test The glucose tolerance test (GTT, not to be confused with GGT test) is a medical test in which glucose is given and blood samples taken afterward to determine how quickly it is cleared from the blood. The test is usually used to test for diabetes, ...
. Whereas molecular weight (molar mass) for D-glucose monohydrate is 198.17 g/mol, that for anhydrous D-glucose is 180.16 g/mol The density of these two forms of glucose is also different. In terms of chemical structure, glucose is a monosaccharide, that is, a simple sugar. Glucose contains six carbon atoms and an
aldehyde group In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
, and is therefore an
aldohexose In chemistry, a hexose is a monosaccharide (simple sugar) with six carbon atoms. The chemical formula for all hexoses is , and their molecular weight is 180.156 g/mol. Hexoses exist in two forms, open-chain or cyclic, that easily convert into e ...
. The glucose molecule can exist in an
open-chain In chemistry, an open-chain compound (or open chain compound) or acyclic compound (Greek prefix ''α'' 'without' and ''κύκλος'' 'cycle') is a compound with a linear structure, rather than a cyclic one. An open-chain compound having no side ...
(acyclic) as well as ring (cyclic) form—due to the presence of
alcohol Alcohol may refer to: Common uses * Alcohol (chemistry), a class of compounds * Ethanol, one of several alcohols, commonly known as alcohol in everyday life ** Alcohol (drug), intoxicant found in alcoholic beverages ** Alcoholic beverage, an alco ...
and
aldehyde In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
or
ketone In organic chemistry, a ketone is an organic compound with the structure , where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group (a carbon-oxygen double bond C=O). The simplest ketone is acetone ( ...
functional groups, the form having the straight chain can easily convert into a chair-like
hemiacetal In organic chemistry, a hemiacetal is a functional group the general formula , where is a hydrogen atom or an organic substituent. They generally result from the nucleophilic Addition reaction, addition of an Alcohol (chemistry), alcohol (a compo ...
ring structure commonly found in carbohydrates.


Structure and nomenclature

Glucose is present in solid form as a
monohydrate In chemistry, a hydrate is a substance that contains water or its constituent elements. The chemical state of the water varies widely between different classes of hydrates, some of which were so labeled before their chemical structure was understo ...
with a closed
pyran In chemistry, pyran is a six-membered heterocyclic, non-aromatic ring, consisting of five carbon atoms and one oxygen atom and containing two double bonds. The molecular formula is C5H6O. There are two isomers of pyran that differ by the location ...
ring (α-D-glucopyranose monohydrate, sometimes known less precisely by dextrose hydrate). In aqueous solution, on the other hand, a small proportion of glucose can be found in an open-chain configuration while remaining predominantly as α- or β-
pyranose In organic chemistry, pyranose is a collective term for saccharides that have a chemical structure that includes a six-membered ring consisting of five carbon atoms and one oxygen atom (a heterocycle). There may be other carbons external to the ...
, which interconvert. From aqueous solutions, the three known forms can be crystallized: α-glucopyranose, β-glucopyranose and α-glucopyranose monohydrate. Glucose is a building block of the disaccharides lactose and sucrose (cane or beet sugar), of
oligosaccharide An oligosaccharide (; ) is a carbohydrate, saccharide polymer containing a small number (typically three to ten) of monosaccharides (simple sugars). Oligosaccharides can have many functions including Cell–cell recognition, cell recognition and ce ...
s such as
raffinose Raffinose is a trisaccharide composed of galactose, glucose, and fructose. It can be found in beans, cabbage, brussels sprouts, broccoli, asparagus, other vegetables, and whole grains. Raffinose can be hydrolyzed to D-galactose and sucrose by th ...
and of
polysaccharide Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long-chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with wat ...
s such as
starch Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diet ...
,
amylopectin Amylopectin is a water-insoluble polysaccharide and highly branched polymer of α-glucose units found in plants. It is one of the two components of starch, the other being amylose. Plants store starch within specialized organelles called amyloplas ...
,
glycogen Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. It is the main storage form of glucose in the human body. Glycogen functions as one of three regularly used forms ...
, and
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
. The
glass transition temperature The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials (or in amorphous regions within semicrystalline materials) from a hard and relatively brittle "glassy" state into a viscous or rub ...
of glucose is and the Gordon–Taylor constant (an experimentally determined constant for the prediction of the glass transition temperature for different mass fractions of a mixture of two substances)Patrick F. Fox: ''Advanced Dairy Chemistry Volume 3: Lactose, water, salts and vitamins'', Springer, 1992. Volume 3, . p. 316. is 4.5.Benjamin Caballero, Paul Finglas, Fidel Toldrá: ''Encyclopedia of Food and Health''. Academic Press (2016). , Volume 1, p. 76.


Open-chain form

A open-chain form of glucose makes up less than 0.02% of the glucose molecules in an aqueous solution at equilibrium. The rest is one of two cyclic hemiacetal forms. In its
open-chain In chemistry, an open-chain compound (or open chain compound) or acyclic compound (Greek prefix ''α'' 'without' and ''κύκλος'' 'cycle') is a compound with a linear structure, rather than a cyclic one. An open-chain compound having no side ...
form, the glucose molecule has an open (as opposed to
cyclic Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in s ...
) unbranched backbone of six carbon atoms, where C-1 is part of an
aldehyde group In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
. Therefore, glucose is also classified as an
aldose An aldose is a monosaccharide (a simple sugar) with a carbon backbone chain with a carbonyl group on the endmost carbon atom, making it an aldehyde, and hydroxyl groups connected to all the other carbon atoms. Aldoses can be distinguished from ket ...
, or an
aldohexose In chemistry, a hexose is a monosaccharide (simple sugar) with six carbon atoms. The chemical formula for all hexoses is , and their molecular weight is 180.156 g/mol. Hexoses exist in two forms, open-chain or cyclic, that easily convert into e ...
. The aldehyde group makes glucose a
reducing sugar A reducing sugar is any sugar that is capable of acting as a reducing agent. In an alkaline solution, a reducing sugar forms some aldehyde or ketone, which allows it to act as a reducing agent, for example in Benedict's reagent. In such a react ...
giving a positive reaction with the
Fehling test In organic chemistry, Fehling's solution is a chemical reagent used to differentiate between water-soluble carbohydrate and ketone () functional groups, and as a test for reducing sugars and non-reducing sugars, supplementary to the Tollens' rea ...
.


Cyclic forms

In solutions, the open-chain form of glucose (either "-" or "-") exists in equilibrium with several cyclic isomers, each containing a ring of carbons closed by one oxygen atom. In aqueous solution, however, more than 99% of glucose molecules exist as
pyranose In organic chemistry, pyranose is a collective term for saccharides that have a chemical structure that includes a six-membered ring consisting of five carbon atoms and one oxygen atom (a heterocycle). There may be other carbons external to the ...
forms. The open-chain form is limited to about 0.25%, and
furanose A furanose is a collective term for carbohydrates that have a chemical structure that includes a five-membered ring system consisting of four carbon atoms and one oxygen atom. The name derives from its similarity to the oxygen heterocycle furan, ...
forms exist in negligible amounts. The terms "glucose" and "-glucose" are generally used for these cyclic forms as well. The ring arises from the open-chain form by an intramolecular
nucleophilic addition In organic chemistry, a nucleophilic addition (AN) reaction is an addition reaction where a chemical compound with an electrophilic double or triple bond reacts with a nucleophile, such that the double or triple bond is broken. Nucleophilic addit ...
reaction between the aldehyde group (at C-1) and either the C-4 or C-5 hydroxyl group, forming a
hemiacetal In organic chemistry, a hemiacetal is a functional group the general formula , where is a hydrogen atom or an organic substituent. They generally result from the nucleophilic Addition reaction, addition of an Alcohol (chemistry), alcohol (a compo ...
linkage, . The reaction between C-1 and C-5 yields a six-membered
heterocyclic A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, proper ...
system called a pyranose, which is a monosaccharide sugar (hence "-ose") containing a derivatised
pyran In chemistry, pyran is a six-membered heterocyclic, non-aromatic ring, consisting of five carbon atoms and one oxygen atom and containing two double bonds. The molecular formula is C5H6O. There are two isomers of pyran that differ by the location ...
skeleton. The (much rarer) reaction between C-1 and C-4 yields a five-membered furanose ring, named after the cyclic ether
furan Furan is a Heterocyclic compound, heterocyclic organic compound, consisting of a five-membered aromatic Ring (chemistry), ring with four carbon Atom, atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as f ...
. In either case, each carbon in the ring has one hydrogen and one hydroxyl attached, except for the last carbon (C-4 or C-5) where the hydroxyl is replaced by the remainder of the open molecule (which is or respectively). The ring-closing reaction can give two products, denoted "α-" and "β-". When a glucopyranose molecule is drawn in the
Haworth projection In chemistry, a Haworth projection is a common way of writing a structural formula to represent the cyclic structure of monosaccharides with a simple three-dimensional perspective. A Haworth projection approximates the shapes of the actual mole ...
, the designation "α-" means that the hydroxyl group attached to C-1 and the group at C-5 lies on opposite sides of the ring's plane (a '' trans'' arrangement), while "β-" means that they are on the same side of the plane (a '' cis'' arrangement). Therefore, the open-chain isomer -glucose gives rise to four distinct cyclic isomers: α--glucopyranose, β--glucopyranose, α--glucofuranose, and β--glucofuranose. These five structures exist in equilibrium and interconvert, and the interconversion is much more rapid with acid
catalysis Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
.
The other open-chain isomer -glucose similarly gives rise to four distinct cyclic forms of -glucose, each the mirror image of the corresponding -glucose. The glucopyranose ring (α or β) can assume several non-planar shapes, analogous to the "chair" and "boat" conformations of
cyclohexane Cyclohexane is a cycloalkane with the molecular formula . Cyclohexane is non-polar. Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexan ...
. Similarly, the glucofuranose ring may assume several shapes, analogous to the "envelope" conformations of
cyclopentane Cyclopentane (also called C pentane) is a highly flammable alicyclic compound, alicyclic hydrocarbon with chemical formula C5H10, C5H10 and CAS number 287-92-3, consisting of a ring of five carbon atoms each bonded with two hydrogen atoms above and ...
. In the solid state, only the glucopyranose forms are observed. Some derivatives of glucofuranose, such as 1,2-''O''-isopropylidene--glucofuranose are stable and can be obtained pure as crystalline solids. For example, reaction of α-D-glucose with ''para''-tolylboronic acid reforms the normal pyranose ring to yield the 4-fold ester α-D-glucofuranose-1,2:3,5-bis(''p''-tolylboronate).


Mutarotation

Mutarotation consists of a temporary reversal of the ring-forming reaction, resulting in the open-chain form, followed by a reforming of the ring. The ring closure step may use a different group than the one recreated by the opening step (thus switching between pyranose and furanose forms), or the new hemiacetal group created on C-1 may have the same or opposite handedness as the original one (thus switching between the α and β forms). Thus, though the open-chain form is barely detectable in solution, it is an essential component of the equilibrium. The open-chain form is thermodynamically unstable, and it spontaneously
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
izes to the cyclic forms. (Although the ring closure reaction could in theory create four- or three-atom rings, these would be highly strained, and are not observed in practice.) In solutions at
room temperature Room temperature, colloquially, denotes the range of air temperatures most people find comfortable indoors while dressed in typical clothing. Comfortable temperatures can be extended beyond this range depending on humidity, air circulation, and ...
, the four cyclic isomers interconvert over a time scale of hours, in a process called
mutarotation In stereochemistry, mutarotation is the change in optical rotation of a chiral material in a solution due to a change in proportion of the two constituent anomers (i.e. the interconversion of their respective stereocenters) until equilibrium is re ...
. Starting from any proportions, the mixture converges to a stable ratio of α:β 36:64. The ratio would be α:β 11:89 if it were not for the influence of the
anomeric effect In organic chemistry, the anomeric effect or Edward-Lemieux effect (after J. T. Edward and Raymond Lemieux) is a stereoelectronic effect that describes the tendency of heteroatomic substituents adjacent to the heteroatom in the ring in, e.g., t ...
. Mutarotation is considerably slower at temperatures close to .


Optical activity

Whether in water or the solid form, -(+)-glucose is
dextrorotatory Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circul ...
, meaning it will rotate the direction of
polarized light , or , is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. One example of a polarize ...
clockwise as seen looking toward the light source. The effect is due to the
chirality Chirality () is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable fro ...
of the molecules, and indeed the mirror-image isomer, -(−)-glucose, is
levorotatory Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circul ...
(rotates polarized light counterclockwise) by the same amount. The strength of the effect is different for each of the five
tautomer In chemistry, tautomers () are structural isomers (constitutional isomers) of chemical compounds that readily interconvert. The chemical reaction interconverting the two is called tautomerization. This conversion commonly results from the reloca ...
s. The - prefix does not refer directly to the optical properties of the compound. It indicates that the C-5 chiral centre has the same handedness as that of -glyceraldehyde (which was so labelled because it is dextrorotatory). The fact that -glucose is dextrorotatory is a combined effect of its four chiral centres, not just of C-5; some of the other -aldohexoses are levorotatory. The conversion between the two anomers can be observed in a
polarimeter A polarimeter is a scientific instrument used to measure optical rotation: the angle of rotation caused by passing linearly polarized light through an Optical activity, optically active substance. Some chemical substances are optically active, ...
since pure α--glucose has a specific rotation angle of +112.2° mL/(dm·g), pure β--glucose of +17.5° mL/(dm·g).Manfred Hesse, Herbert Meier, Bernd Zeeh, Stefan Bienz, Laurent Bigler, Thomas Fox: ''Spektroskopische Methoden in der organischen Chemie''. 8th revised Edition. Georg Thieme, 2011, , p. 34 (in German). When equilibrium has been reached after a certain time due to mutarotation, the angle of rotation is +52.7° mL/(dm·g). By adding acid or base, this transformation is much accelerated. The equilibration takes place via the open-chain aldehyde form.


Isomerisation

In dilute
sodium hydroxide Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula . It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly corrosive base (chemistry), ...
or other dilute bases, the monosaccharides
mannose Mannose is a sugar with the formula , which sometimes is abbreviated Man. It is one of the monomers of the aldohexose series of carbohydrates. It is a C-2 epimer of glucose. Mannose is important in human metabolism, especially in the glycosylatio ...
, glucose and
fructose Fructose (), or fruit sugar, is a Ketose, ketonic monosaccharide, simple sugar found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. It is one of the three dietary monosaccharides, along with glucose and gal ...
interconvert (via a Lobry de Bruyn–Alberda–Van Ekenstein transformation), so that a balance between these isomers is formed. This reaction proceeds via an
enediol In organic chemistry, enols are a type of functional group or intermediate in organic chemistry containing a group with the formula (R = many substituents). The term ''enol'' is an abbreviation of ''alkenol'', a portmanteau deriving from "-ene ...
:


Biochemical properties

Glucose is the most abundant monosaccharide. Glucose is also the most widely used aldohexose in most living organisms. One possible explanation for this is that glucose has a lower tendency than other aldohexoses to react nonspecifically with the
amine In chemistry, amines (, ) are organic compounds that contain carbon-nitrogen bonds. Amines are formed when one or more hydrogen atoms in ammonia are replaced by alkyl or aryl groups. The nitrogen atom in an amine possesses a lone pair of elec ...
groups of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s. This reaction—
glycation Glycation (non-enzymatic glycosylation) is the covalent bond, covalent attachment of a sugar to a protein, lipid or nucleic acid molecule. Typical sugars that participate in glycation are glucose, fructose, and their derivatives. Glycation is th ...
—impairs or destroys the function of many proteins, e.g. in
glycated hemoglobin Glycated hemoglobin, also called glycohemoglobin, is a form of hemoglobin (Hb) that is chemically linked to a sugar. Most monosaccharides, including glucose, galactose, and fructose, spontaneously (that is, non-enzymatically) bond with hemoglob ...
. Glucose's low rate of glycation can be attributed to its having a more stable
cyclic form Cyclic form is a technique of musical construction, involving multiple sections or movements, in which a theme, melody, or thematic material occurs in more than one movement as a unifying device. Sometimes a theme may occur at the beginning and ...
compared to other aldohexoses, which means it spends less time than they do in its reactive open-chain form. The reason for glucose having the most stable cyclic form of all the aldohexoses is that its
hydroxy group In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
s (with the exception of the hydroxy group on the anomeric carbon of -glucose) are in the equatorial position. Presumably, glucose is the most abundant natural monosaccharide because it is less glycated with proteins than other monosaccharides.Jeremy M. Berg: ''Stryer Biochemie'' . Springer-Verlag, 2017, , p. 531. Another hypothesis is that glucose, being the only -aldohexose that has all five hydroxy substituents in the equatorial position in the form of β--glucose, is more readily accessible to chemical reactions, for example, for
esterification In chemistry, an ester is a compound derived from an acid (either organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group () of that acid is replaced by an organyl group (R). These compounds contain a distin ...
or
acetal In organic chemistry, an acetal is a functional group with the connectivity . Here, the R groups can be organic fragments (a carbon atom, with arbitrary other atoms attached to that) or hydrogen, while the R' groups must be organic fragments n ...
formation. For this reason, -glucose is also a highly preferred building block in natural polysaccharides (glycans). Polysaccharides that are composed solely of glucose are termed
glucan A glucan is a polysaccharide derived from D-glucose, linked by glycosidic bonds. Glucans are noted in two forms: alpha glucans and beta glucans. Many beta-glucans are medically important. They represent a drug target for antifungal medications of ...
s. Glucose is produced by plants through photosynthesis using sunlight, water and carbon dioxide and can be used by all living organisms as an energy and carbon source. However, most glucose does not occur in its free form, but in the form of its polymers, i.e. lactose, sucrose, starch and others which are energy reserve substances, and cellulose and
chitin Chitin (carbon, C8hydrogen, H13oxygen, O5nitrogen, N)n ( ) is a long-chain polymer of N-Acetylglucosamine, ''N''-acetylglucosamine, an amide derivative of glucose. Chitin is the second most abundant polysaccharide in nature (behind only cell ...
, which are components of the cell wall in plants or
fungi A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
and
arthropod Arthropods ( ) are invertebrates in the phylum Arthropoda. They possess an arthropod exoskeleton, exoskeleton with a cuticle made of chitin, often Mineralization (biology), mineralised with calcium carbonate, a body with differentiated (Metam ...
s, respectively. These polymers, when consumed by animals, fungi and bacteria, are degraded to glucose using enzymes. All animals are also able to produce glucose themselves from certain precursors as the need arises.
Neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s, cells of the
renal medulla The renal medulla (Latin: ''medulla renis'' 'marrow of the kidney') is the innermost part of the kidney. The renal medulla is split up into a number of sections, known as the renal pyramids. Blood enters into the kidney via the renal artery, which ...
and
erythrocytes Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
depend on glucose for their energy production.Peter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie'' .. Springer-Verlag, 2014, , p. 195. In adult humans, there is about of glucose,U. Satyanarayana: ''Biochemistry''. Elsevier Health Sciences, 2014, . p. 674. of which about is present in the blood. Approximately of glucose is produced in the liver of an adult in 24 hours. Many of the long-term complications of
diabetes Diabetes mellitus, commonly known as diabetes, is a group of common endocrine diseases characterized by sustained high blood sugar levels. Diabetes is due to either the pancreas not producing enough of the hormone insulin, or the cells of th ...
(e.g.,
blindness Visual or vision impairment (VI or VIP) is the partial or total inability of visual perception. In the absence of treatment such as corrective eyewear, assistive devices, and medical treatment, visual impairment may cause the individual difficul ...
,
kidney failure Kidney failure, also known as renal failure or end-stage renal disease (ESRD), is a medical condition in which the kidneys can no longer adequately filter waste products from the blood, functioning at less than 15% of normal levels. Kidney fa ...
, and
peripheral neuropathy Peripheral neuropathy, often shortened to neuropathy, refers to damage or disease affecting the nerves. Damage to nerves may impair sensation, movement, gland function, and/or organ function depending on which nerve fibers are affected. Neuropa ...
) are probably due to the glycation of proteins or
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
s. In contrast,
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
-regulated addition of sugars to protein is called
glycosylation Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
and is essential for the function of many proteins.


Uptake

Ingested glucose initially binds to the receptor for sweet taste on the tongue in humans. This complex of the proteins
T1R2 T1R2 - Taste receptor type 1 member 2 is a protein that in humans is encoded by the ''TAS1R2'' gene. The sweet taste receptor is predominantly formed as a dimer of T1R2 and T1R3 by which different organisms sense this taste. In songbirds, howeve ...
and
T1R3 Taste receptor type 1 member 3 is a protein that in humans is encoded by the ''TAS1R3'' gene. The ''TAS1R3'' gene encodes the human homolog of mouse Sac taste receptor, a major determinant of differences between sweet-sensitive and -insensitive m ...
makes it possible to identify glucose-containing food sources. Glucose mainly comes from food—about per day is produced by conversion of food,Peter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie''. Springer-Verlag, 2014, , p. 404. but it is also synthesized from other metabolites in the body's cells. In humans, the breakdown of glucose-containing polysaccharides happens in part already during
chewing Chewing or mastication is the process by which food is crushed and ground by the teeth. It is the first step in the process of digestion, allowing a greater surface area for digestive enzymes to break down the foods. During the mastication proc ...
by means of
amylase An amylase () is an enzyme that catalysis, catalyses the hydrolysis of starch (Latin ') into sugars. Amylase is present in the saliva of humans and some other mammals, where it begins the chemical process of digestion. Foods that contain large ...
, which is contained in
saliva Saliva (commonly referred as spit or drool) is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells (from which ...
, as well as by
maltase Maltase is an informal name for a family of enzymes that catalyze the hydrolysis of disaccharide maltose into two simple sugars of glucose. Maltases are found in plants, bacteria, yeast, humans, and other vertebrates. Digestion of starch requi ...
,
lactase Lactase () is an enzyme produced by many organisms and is essential to the complete digestion of whole milk. It breaks down the sugar lactose into its component parts, galactose and glucose. Lactase is found in the brush border of the small ...
, and
sucrase Sucrases are digestive enzymes that catalyze the hydrolysis of sucrose to its component monosaccharides, fructose and glucose. One form, sucrase-isomaltase, is secreted in the small intestine on the brush border. The enzyme invertase, which occurs ...
on the
brush border A brush border (striated border or brush border membrane) is the microvillus-covered surface of simple cuboidal and simple columnar epithelium found in different parts of the body. Microvilli are approximately 100 nanometers in diameter and th ...
of the
small intestine The small intestine or small bowel is an organ (anatomy), organ in the human gastrointestinal tract, gastrointestinal tract where most of the #Absorption, absorption of nutrients from food takes place. It lies between the stomach and large intes ...
. Glucose is a building block of many carbohydrates and can be split off from them using certain enzymes.
Glucosidases Glucosidases are the glycoside hydrolase enzymes categorized under the EC number 3.2.1. Function Alpha-glucosidases are enzymes involved in breaking down complex carbohydrates such as starch and glycogen into their monomers. They catalyze the ...
, a subgroup of the glycosidases, first catalyze the hydrolysis of long-chain glucose-containing polysaccharides, removing terminal glucose. In turn, disaccharides are mostly degraded by specific glycosidases to glucose. The names of the degrading enzymes are often derived from the particular poly- and disaccharide; inter alia, for the degradation of polysaccharide chains there are amylases (named after amylose, a component of starch), cellulases (named after cellulose), chitinases (named after chitin), and more. Furthermore, for the cleavage of disaccharides, there are maltase, lactase, sucrase,
trehalase The enzyme Trehalase is a glycoside hydrolase, produced by cells in the brush border of the small intestine, which catalyzes the conversion of trehalose to glucose. It is found in most animals. The non-reducing disaccharide trehalose (α-D-gluc ...
, and others. In humans, about 70 genes are known that code for glycosidases. They have functions in the digestion and degradation of glycogen,
sphingolipid Sphingolipids are a class of lipids containing a backbone of sphingoid bases, which are a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sp ...
s,
mucopolysaccharides Glycosaminoglycans (GAGs) or mucopolysaccharides are long, linear polysaccharides consisting of repeating disaccharide units (i.e. two-sugar units). The repeating two-sugar unit consists of a uronic sugar and an amino sugar, except in the case o ...
, and poly(
ADP-ribose Adenosine diphosphate ribose (ADPR) is an ester molecule formed into chains by the enzyme poly ADP ribose polymerase. ADPR is created from cyclic ADP-ribose (cADPR) by the CD38 enzyme using nicotinamide adenine dinucleotide (NAD+) as a cofactor. ...
). Humans do not produce cellulases, chitinases, or trehalases, but the bacteria in the
gut microbiota Gut microbiota, gut microbiome, or gut flora are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the g ...
do. In order to get into or out of cell membranes of cells and membranes of cell compartments, glucose requires special transport proteins from the
major facilitator superfamily The major facilitator superfamily (MFS) is a Protein superfamily, superfamily of membrane transport proteins that facilitate movement of small solutes across cell membranes in response to chemiosmosis, chemiosmotic gradients. Function The major ...
. In the small intestine (more precisely, in the
jejunum The jejunum is the second part of the small intestine in humans and most higher vertebrates, including mammals, reptiles, and birds. Its lining is specialized for the absorption by enterocytes of small nutrient molecules which have been pr ...
),Harold A. Harper: ''Medizinische Biochemie'' . Springer-Verlag, 2013, , p. 641. glucose is taken up into the intestinal
epithelium Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
with the help of
glucose transporter Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose across the plasma membrane, a process known as facilitated diffusion. Because glucose is a vital source of energy for all life, these transporte ...
s via a
secondary active transport In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular ...
mechanism called sodium ion-glucose
symport A symporter is an integral membrane protein that is involved in the transport of two (or more) different molecules across the cell membrane in the same direction. The symporter works in the plasma membrane and molecules are transported across the ...
via sodium/glucose cotransporter 1 (SGLT1). Further transfer occurs on the
basolateral The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extra ...
side of the intestinal epithelial cells via the glucose transporter
GLUT2 Glucose transporter 2 (GLUT2) also known as solute carrier family 2 (facilitated glucose transporter), member 2 (SLC2A2) is a transmembrane carrier protein that enables protein facilitated glucose movement across cell membranes. It is the princi ...
, as well uptake into
liver cells A hepatocyte is a cell of the main parenchymal tissue of the liver. Hepatocytes make up 80% of the liver's mass. These cells are involved in: * Protein synthesis * Protein storage * Transformation of carbohydrates * Synthesis of cholesterol, bile ...
, kidney cells, cells of the
islets of Langerhans The pancreatic islets or islets of Langerhans are the regions of the pancreas that contain its endocrine (hormone-producing) cells, discovered in 1869 by German pathological anatomist Paul Langerhans. The pancreatic islets constitute 1–2% o ...
,
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s,
astrocyte Astrocytes (from Ancient Greek , , "star" and , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of en ...
s, and
tanycyte Tanycytes are highly specialized ependymal cells found in the third ventricle of the brain, and on the floor of the fourth ventricle. Each tanycyte has a long basal process that extends deep into the hypothalamus. It is possible that their functi ...
s. Glucose enters the liver via the
portal vein The portal vein or hepatic portal vein (HPV) is a blood vessel that carries blood from the gastrointestinal tract, gallbladder, pancreas and spleen to the liver. This blood contains nutrients and toxins extracted from digested contents. Approxima ...
and is stored there as a cellular glycogen. In the liver cell, it is
phosphorylated In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writt ...
by
glucokinase Glucokinase () is an enzyme that facilitates phosphorylation of glucose to glucose-6-phosphate. Glucokinase is expressed in cells of the liver and pancreas of humans and most other vertebrates. In each of these organs it plays an important ro ...
at position 6 to form
glucose 6-phosphate Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this w ...
, which cannot leave the cell.
Glucose 6-phosphatase The enzyme glucose 6-phosphatase (EC 3.1.3.9, G6Pase; systematic name D-glucose-6-phosphate phosphohydrolase) catalyzes the hydrolysis of glucose 6-phosphate, resulting in the creation of a phosphate group and free glucose: : D-glucose 6-ph ...
can convert glucose 6-phosphate back into glucose exclusively in the liver, so the body can maintain a sufficient blood glucose concentration. In other cells, uptake happens by passive transport through one of the 14 GLUT proteins. In the other cell types, phosphorylation occurs through a
hexokinase A hexokinase is an enzyme that irreversibly phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important p ...
, whereupon glucose can no longer diffuse out of the cell. The glucose transporter
GLUT1 Glucose transporter 1 (or GLUT1), also known as solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1), is a uniporter protein that in humans is encoded by the ''SLC2A1'' gene. GLUT1 facilitates the transport of glucose acro ...
is produced by most cell types and is of particular importance for nerve cells and pancreatic β-cells.
GLUT3 Glucose transporter 3 (or GLUT3), also known as solute carrier family 2, facilitated glucose transporter member 3 (SLC2A3) is a protein that in humans is encoded by the ''SLC2A3'' gene. GLUT3 facilitates the transport of glucose across the plas ...
is highly expressed in nerve cells. Glucose from the bloodstream is taken up by
GLUT4 Glucose transporter type 4 (GLUT4), also known as solute carrier family 2, facilitated glucose transporter member 4, is a protein encoded, in humans, by the ''SLC2A4'' gene. GLUT4 is the insulin-regulated glucose transporter found primarily in ad ...
from
muscle cell A muscle cell, also known as a myocyte, is a mature contractile Cell (biology), cell in the muscle of an animal. In humans and other vertebrates there are three types: skeletal muscle, skeletal, smooth muscle, smooth, and Cardiac muscle, cardiac ...
s (of the
skeletal muscle Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
and
heart muscle Cardiac muscle (also called heart muscle or myocardium) is one of three types of vertebrate muscle tissues, the others being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of ...
) and
fat cell Adipocytes, also known as lipocytes and fat cells, are the cells that primarily compose adipose tissue, specialized in storing energy as fat. Adipocytes are derived from mesenchymal stem cells which give rise to adipocytes through adipogenesis. ...
s.
GLUT14 Solute carrier family 2 (facilitated glucose transporter), member 14 is a protein that in humans is encoded by the SLC2A14 gene. Members of the glucose transporter (GLUT) family, including SLC2A14, are highly conserved integral membrane proteins ...
is expressed exclusively in
testicle A testicle or testis ( testes) is the gonad in all male bilaterians, including humans, and is Homology (biology), homologous to the ovary in females. Its primary functions are the production of sperm and the secretion of Androgen, androgens, p ...
s. Excess glucose is broken down and converted into fatty acids, which are stored as
triglyceride A triglyceride (from '' tri-'' and '' glyceride''; also TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. Triglycerides are the main constituents of body fat in humans and other vertebrates ...
s. In the
kidney In humans, the kidneys are two reddish-brown bean-shaped blood-filtering organ (anatomy), organs that are a multilobar, multipapillary form of mammalian kidneys, usually without signs of external lobulation. They are located on the left and rig ...
s, glucose in the urine is absorbed via SGLT1 and
SGLT2 The sodium/glucose cotransporter 2 (SGLT2) is a protein that in humans is encoded by the (solute carrier family 5 (sodium/glucose cotransporter)) gene. Function SGLT2 is a member of the sodium-glucose transport proteins, sodium glucose cotra ...
in the apical cell membranes and transmitted via GLUT2 in the basolateral cell membranes. About 90% of kidney glucose reabsorption is via SGLT2 and about 3% via SGLT1.


Biosynthesis

In plants and some
prokaryote A prokaryote (; less commonly spelled procaryote) is a unicellular organism, single-celled organism whose cell (biology), cell lacks a cell nucleus, nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Ancient Gree ...
s, glucose is a product of
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
. Glucose is also formed by the breakdown of polymeric forms of glucose like
glycogen Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. It is the main storage form of glucose in the human body. Glycogen functions as one of three regularly used forms ...
(in animals and
mushroom A mushroom or toadstool is the fleshy, spore-bearing Sporocarp (fungi), fruiting body of a fungus, typically produced above ground on soil or another food source. ''Toadstool'' generally refers to a poisonous mushroom. The standard for the n ...
s) or starch (in plants). The cleavage of glycogen is termed glycogenolysis, the cleavage of starch is called starch degradation. The metabolic pathway that begins with molecules containing two to four carbon atoms (C) and ends in the glucose molecule containing six carbon atoms is called gluconeogenesis and occurs in all living organisms. The smaller starting materials are the result of other metabolic pathways. Ultimately almost all
biomolecule A biomolecule or biological molecule is loosely defined as a molecule produced by a living organism and essential to one or more typically biological processes. Biomolecules include large macromolecules such as proteins, carbohydrates, lipids ...
s come from the assimilation of carbon dioxide in plants and microbes during photosynthesis. The free energy of formation of α--glucose is 917.2 kilojoules per mole. In humans, gluconeogenesis occurs in the liver and kidney,Leszek Szablewski: ''Glucose Homeostasis and Insulin Resistance''. Bentham Science Publishers, 2011, , p. 46. but also in other cell types. In the liver about of glycogen are stored, in skeletal muscle about .Peter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie'' . Springer-Verlag, 2014, , p. 389. However, the glucose released in muscle cells upon cleavage of the glycogen can not be delivered to the circulation because glucose is phosphorylated by the hexokinase, and a glucose-6-phosphatase is not expressed to remove the phosphate group. Unlike for glucose, there is no transport protein for
glucose-6-phosphate Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this wa ...
. Gluconeogenesis allows the organism to build up glucose from other metabolites, including lactate or certain
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s, while consuming energy. The renal
tubular cell The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure c ...
s can also produce glucose. Glucose also can be found outside of living organisms in the ambient environment. Glucose concentrations in the atmosphere are detected via collection of samples by aircraft and are known to vary from location to location. For example, glucose concentrations in atmospheric air from inland China range from 0.8 to 20.1 pg/L, whereas east coastal China glucose concentrations range from 10.3 to 142 pg/L.


Glucose degradation

In humans, glucose is metabolized by glycolysis and the pentose phosphate pathway.H. Robert Horton,
Laurence A. Moran Laurence "Larry" A. Moran is a Canadian biochemist and professor emeritus at the University of Toronto. He is co-author of multiple editions of the textbook ''Principles of Biochemistry'' and the book ''What’s In Your Genome? 90% of Your Genome Is ...
, K. Gray Scrimgeour, Marc D. Perry, J. David Rawn: ''Biochemie'' . Pearson Studium; 4. aktualisierte Auflage 2008; ; pp. 490–496.
Glycolysis is used by all living organisms,Brian K. Hall: ''Strickberger's Evolution''. Jones & Bartlett Publishers, 2013, , p. 164. with small variations, and all organisms generate energy from the breakdown of monosaccharides. In the further course of the metabolism, it can be completely degraded via
oxidative decarboxylation Oxidative decarboxylation is a decarboxylation reaction caused by oxidation. Most are accompanied by α- Ketoglutarate α- Decarboxylation caused by dehydrogenation of hydroxyl carboxylic acids such as carbonyl carboxylic malic acid, isocitric a ...
, the
citric acid cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
(synonym ''Krebs cycle'') and the
respiratory chain An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this ...
to water and carbon dioxide. If there is not enough oxygen available for this, the glucose degradation in animals occurs anaerobic to lactate via lactic acid fermentation and releases much less energy. Muscular lactate enters the liver through the bloodstream in mammals, where gluconeogenesis occurs (
Cori cycle The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, is a metabolic pathway in which lactic acid, lactate, produced by anaerobic glycolysis in muscles, is transported to the liver ...
). With a high supply of glucose, the metabolite
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidation, o ...
from the Krebs cycle can also be used for
fatty acid synthesis In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes. Two ''De novo synthesis, de novo'' fatty acid syntheses can be distinguished: cytosolic fatty acid synthesis (FAS/FASI) ...
. Glucose is also used to replenish the body's glycogen stores, which are mainly found in liver and skeletal muscle. These processes are
hormonally A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs or tissues by complex biological processes to regulate physiology and behavior. Hormones a ...
regulated. In other living organisms, other forms of fermentation can occur. The bacterium ''
Escherichia coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Escherichia'' that is commonly fo ...
'' can grow on nutrient media containing glucose as the sole carbon source. In some bacteria and, in modified form, also in archaea, glucose is degraded via the Entner-Doudoroff pathway. With glucose, a mechanism for
gene regulation Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are wide ...
was discovered in ''E. coli'', the
catabolite repression Carbon catabolite repression, or simply catabolite repression, is an important part of global control system of various bacteria and other microorganisms. Catabolite repression allows microorganisms to adapt quickly to a preferred (rapidly metabo ...
(formerly known as ''glucose effect''). Use of glucose as an energy source in cells is by either aerobic respiration, anaerobic respiration, or fermentation. The first step of glycolysis is the
phosphorylation In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writ ...
of glucose by a
hexokinase A hexokinase is an enzyme that irreversibly phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important p ...
to form
glucose 6-phosphate Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this w ...
. The main reason for the immediate phosphorylation of glucose is to prevent its diffusion out of the cell as the charged
phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
group prevents glucose 6-phosphate from easily crossing the
cell membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
. Furthermore, addition of the high-energy phosphate group activates glucose for subsequent breakdown in later steps of glycolysis. In anaerobic respiration, one glucose molecule produces a net gain of two ATP molecules (four ATP molecules are produced during glycolysis through substrate-level phosphorylation, but two are required by enzymes used during the process). In aerobic respiration, a molecule of glucose is much more profitable in that a maximum net production of 30 or 32 ATP molecules (depending on the organism) is generated.
Tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
cells often grow comparatively quickly and consume an above-average amount of glucose by glycolysis, which leads to the formation of lactate, the end product of fermentation in mammals, even in the presence of oxygen. This is called the Warburg effect. For the increased uptake of glucose in tumors various SGLT and GLUT are overly produced. In
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom (biology), kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are est ...
, ethanol is fermented at high glucose concentrations, even in the presence of oxygen (which normally leads to respiration rather than fermentation). This is called the
Crabtree effect The Crabtree effect, named after the English biochemist Herbert Grace Crabtree, describes the phenomenon whereby the yeast, ''Saccharomyces cerevisiae'', produces ethanol (alcohol) in aerobic conditions at high external glucose concentrations rat ...
. Glucose can also degrade to form carbon dioxide through abiotic means. This has been demonstrated to occur experimentally via oxidation and hydrolysis at 22 °C and a pH of 2.5.


Energy source

Glucose is a ubiquitous fuel in
biology Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
. It is used as an energy source in organisms, from bacteria to humans, through either
aerobic respiration Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cellu ...
,
anaerobic respiration Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. In aerobic organisms undergoing ...
(in bacteria), or
fermentation Fermentation is a type of anaerobic metabolism which harnesses the redox potential of the reactants to make adenosine triphosphate (ATP) and organic end products. Organic molecules, such as glucose or other sugars, are catabolized and reduce ...
. Glucose is the human body's key source of energy, through aerobic respiration, providing about 3.75 
kilocalorie The calorie is a unit of energy that originated from the caloric theory of heat. The large calorie, food calorie, dietary calorie, kilocalorie, or kilogram calorie is defined as the amount of heat needed to raise the temperature of one liter of w ...
s (16 
kilojoule The joule ( , or ; symbol: J) is the unit of energy in the International System of Units (SI). In terms of SI base units, one joule corresponds to one kilogram- metre squared per second squared One joule is equal to the amount of work don ...
s) of
food energy Food energy is chemical energy that animals and humans derive from food to sustain their metabolism and muscular activity. Most animals derive most of their energy from aerobic respiration, namely combining the carbohydrates, fats, and protein ...
per gram. Breakdown of carbohydrates (e.g., starch) yields mono- and
disaccharide A disaccharide (also called a double sugar or ''biose'') is the sugar formed when two monosaccharides are joined by glycosidic linkage. Like monosaccharides, disaccharides are simple sugars soluble in water. Three common examples are sucrose, ...
s, most of which is glucose. Through
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
and later in the reactions of the
citric acid cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
and
oxidative phosphorylation Oxidative phosphorylation(UK , US : or electron transport-linked phosphorylation or terminal oxidation, is the metabolic pathway in which Cell (biology), cells use enzymes to Redox, oxidize nutrients, thereby releasing chemical energy in order ...
, glucose is
oxidize Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
d to eventually form
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
and water, yielding energy mostly in the form of
adenosine triphosphate Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
(ATP). The insulin reaction, and other mechanisms, regulate the concentration of glucose in the blood. The physiological caloric value of glucose, depending on the source, is 16.2 kilojoules per gramGeorg Schwedt: ''Zuckersüße Chemie'' . John Wiley & Sons, 2012, , p. 100. or 15.7 kJ/g (3.74 kcal/g). The high availability of carbohydrates from plant biomass has led to a variety of methods during evolution, especially in microorganisms, to utilize glucose for energy and carbon storage. Differences exist in which end product can no longer be used for energy production. The presence of individual genes, and their gene products, the enzymes, determine which reactions are possible. The metabolic pathway of glycolysis is used by almost all living beings. An essential difference in the use of glycolysis is the recovery of
NADPH Nicotinamide adenine dinucleotide phosphate, abbreviated NADP or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require N ...
as a reductant for
anabolism Anabolism () is the set of metabolic pathways that construct macromolecules like DNA or RNA from smaller units. These reactions require energy, known also as an Endergonic reaction, endergonic process. Anabolism is the building-up aspect of metabo ...
that would otherwise have to be generated indirectly. Glucose and oxygen supply almost all the energy for the
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
, so its availability influences
psychological Psychology is the scientific study of mind and behavior. Its subject matter includes the behavior of humans and nonhumans, both consciousness, conscious and Unconscious mind, unconscious phenomena, and mental processes such as thoughts, feel ...
processes. When glucose is low, psychological processes requiring mental effort (e.g.,
self-control Self-control is an aspect of inhibitory control, one of the core executive functions. Executive functions are cognitive processes that are necessary for regulating one's behavior in order to achieve specific goals. Defined more independen ...
, effortful decision-making) are impaired. In the brain, which is dependent on glucose and oxygen as the major source of energy, the glucose concentration is usually 4 to 6 mM (5 mM equals 90 mg/dL), but decreases to 2 to 3 mM when fasting.
Confusion In psychology, confusion is the quality or emotional state of being bewildered or unclear. The term "acute mental confusion"
occurs below 1 mM and
coma A coma is a deep state of prolonged unconsciousness in which a person cannot be awakened, fails to Nociception, respond normally to Pain, painful stimuli, light, or sound, lacks a normal Circadian rhythm, sleep-wake cycle and does not initiate ...
at lower levels. The glucose in the blood is called
blood sugar The blood sugar level, blood sugar concentration, blood glucose level, or glycemia is the measure of glucose concentrated in the blood. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. For a 70 kg (1 ...
. Blood sugar levels are regulated by glucose-binding nerve cells in the
hypothalamus The hypothalamus (: hypothalami; ) is a small part of the vertebrate brain that contains a number of nucleus (neuroanatomy), nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrin ...
. In addition, glucose in the brain binds to glucose receptors of the
reward system The reward system (the mesocorticolimbic circuit) is a group of neural structures responsible for incentive salience (i.e., "wanting"; desire or craving for a reward and motivation), associative learning (primarily positive reinforcement and c ...
in the
nucleus accumbens The nucleus accumbens (NAc or NAcc; also known as the accumbens nucleus, or formerly as the ''nucleus accumbens septi'', Latin for ' nucleus adjacent to the septum') is a region in the basal forebrain rostral to the preoptic area of the hypo ...
. The binding of glucose to the sweet receptor on the tongue induces a release of various hormones of energy metabolism, either through glucose or through other sugars, leading to an increased cellular uptake and lower blood sugar levels.
Artificial sweetener A sugar substitute or artificial sweetener, is a food additive that provides a sweetness like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie () or low-calorie sweetener. Arti ...
s do not lower blood sugar levels. The blood sugar content of a healthy person in the short-time fasting state, e.g. after overnight fasting, is about 70 to 100 mg/dL of blood (4 to 5.5 mM). In
blood plasma Blood plasma is a light Amber (color), amber-colored liquid component of blood in which blood cells are absent, but which contains Blood protein, proteins and other constituents of whole blood in Suspension (chemistry), suspension. It makes up ...
, the measured values are about 10–15% higher. In addition, the values in the
arterial An artery () is a blood vessel in humans and most other animals that takes oxygenated blood away from the heart in the systemic circulation to one or more parts of the body. Exceptions that carry deoxygenated blood are the pulmonary arteries in ...
blood are higher than the concentrations in the
venous Veins () are blood vessels in the circulatory system of humans and most other animals that carry blood towards the heart. Most veins carry deoxygenated blood from the tissues back to the heart; exceptions are those of the pulmonary and fetal c ...
blood since glucose is absorbed into the tissue during the passage of the
capillary bed A capillary is a small blood vessel, from 5 to 10 micrometres in diameter, and is part of the microcirculation system. Capillaries are microvessels and the smallest blood vessels in the body. They are composed of only the tunica intima (the inn ...
. Also in the capillary blood, which is often used for blood sugar determination, the values are sometimes higher than in the venous blood. The glucose content of the blood is regulated by the hormones
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (''INS)'' gene. It is the main Anabolism, anabolic hormone of the body. It regulates the metabol ...
,
incretin Incretins are a group of metabolic hormones that decrease Blood sugar level, blood glucose levels. Incretins are released after eating and augment the secretion of insulin released from Pancreas, pancreatic beta cells of the islets of Langerhans ...
and
glucagon Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises the concentration of glucose and fatty acids in the bloodstream and is considered to be the main catabolic hormone of the body. It is also used as a Glucagon (medic ...
. Insulin lowers the glucose level, glucagon increases it. Furthermore, the hormones
adrenaline Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands a ...
,
thyroxine Thyroxine, also known as T4, is a hormone produced by the thyroid gland. It is the primary form of thyroid hormone found in the blood and acts as a prohormone of the more active thyroid hormone, triiodothyronine (T3). Thyroxine and its acti ...
,
glucocorticoid Glucocorticoids (or, less commonly, glucocorticosteroids) are a class of corticosteroids, which are a class of steroid hormones. Glucocorticoids are corticosteroids that bind to the glucocorticoid receptor that is present in almost every vertebra ...
s,
somatotropin Growth hormone (GH) or somatotropin, also known as human growth hormone (hGH or HGH) in its human form, is a peptide hormone that stimulates growth, cell reproduction, and cell regeneration in humans and other animals. It is thus important in h ...
and
adrenocorticotropin Adrenocorticotropic hormone (ACTH; also adrenocorticotropin, corticotropin) is a polypeptide tropic hormone produced by and secreted by the anterior pituitary gland. It is also used as a medication and diagnostic agent. ACTH is an important ...
lead to an increase in the glucose level. There is also a hormone-independent regulation, which is referred to as
glucose autoregulation Glucose is a sugar with the molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae during photosynthesis from water and ...
. After food intake the blood sugar concentration increases. Values over 180 mg/dL in venous whole blood are pathological and are termed
hyperglycemia Hyperglycemia is a condition where unusually high amount of glucose is present in blood. It is defined as blood glucose level exceeding 6.9 mmol/L (125 mg/dL) after fasting for 8 hours or 10 mmol/L (180 mg/dL) 2 hours after eating. Blood gluc ...
, values below 40 mg/dL are termed
hypoglycaemia Hypoglycemia (American English), also spelled hypoglycaemia or hypoglycæmia (British English), sometimes called low blood sugar, is a fall in blood sugar to levels below normal, typically below 70 mg/dL (3.9 mmol/L). Whipple's tria ...
. When needed, glucose is released into the bloodstream by glucose-6-phosphatase from glucose-6-phosphate originating from liver and kidney glycogen, thereby regulating the
homeostasis In biology, homeostasis (British English, British also homoeostasis; ) is the state of steady internal physics, physical and chemistry, chemical conditions maintained by organism, living systems. This is the condition of optimal functioning fo ...
of blood glucose concentration. In
ruminant Ruminants are herbivorous grazing or browsing artiodactyls belonging to the suborder Ruminantia that are able to acquire nutrients from plant-based food by fermenting it in a specialized stomach prior to digestion, principally through microb ...
s, the blood glucose concentration is lower (60 mg/dL in
cattle Cattle (''Bos taurus'') are large, domesticated, bovid ungulates widely kept as livestock. They are prominent modern members of the subfamily Bovinae and the most widespread species of the genus '' Bos''. Mature female cattle are calle ...
and 40 mg/dL in
sheep Sheep (: sheep) or domestic sheep (''Ovis aries'') are a domesticated, ruminant mammal typically kept as livestock. Although the term ''sheep'' can apply to other species in the genus '' Ovis'', in everyday usage it almost always refers to d ...
), because the carbohydrates are converted more by their gut microbiota into
short-chain fatty acid Short-chain fatty acids (SCFAs) are fatty acids of two to six carbon atoms. The SCFAs' lower limit is interpreted differently, either with one, two, three or four carbon atoms. Derived from intestine, intestinal microbe, microbial fermentation of ...
s.Harold A. Harper: ''Medizinische Biochemie''. Springer-Verlag, 2013, , p. 294. Some glucose is converted to
lactic acid Lactic acid is an organic acid. It has the molecular formula C3H6O3. It is white in the solid state and it is miscible with water. When in the dissolved state, it forms a colorless solution. Production includes both artificial synthesis as wel ...
by
astrocyte Astrocytes (from Ancient Greek , , "star" and , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of en ...
s, which is then utilized as an energy source by
brain cells Brain cells make up the functional tissue of the brain. The rest of the brain tissue is the structural stroma that includes connective tissue such as the meninges, blood vessels, and ducts. The two main types of cells in the brain are neurons, ...
; some glucose is used by intestinal cells and
red blood cell Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
s, while the rest reaches the
liver The liver is a major metabolic organ (anatomy), organ exclusively found in vertebrates, which performs many essential biological Function (biology), functions such as detoxification of the organism, and the Protein biosynthesis, synthesis of var ...
,
adipose tissue Adipose tissue (also known as body fat or simply fat) is a loose connective tissue composed mostly of adipocytes. It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, Blood vessel, vascular endothel ...
and
muscle Muscle is a soft tissue, one of the four basic types of animal tissue. There are three types of muscle tissue in vertebrates: skeletal muscle, cardiac muscle, and smooth muscle. Muscle tissue gives skeletal muscles the ability to muscle contra ...
cells, where it is absorbed and stored as glycogen (under the influence of
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (''INS)'' gene. It is the main Anabolism, anabolic hormone of the body. It regulates the metabol ...
). Liver cell glycogen can be converted to glucose and returned to the blood when insulin is low or absent; muscle cell glycogen is not returned to the blood because of a lack of enzymes. In
fat cells Adipocytes, also known as lipocytes and fat cells, are the cell (biology), cells that primarily compose adipose tissue, specialized in storing energy as fat. Adipocytes are derived from mesenchymal stem cells which give rise to adipocytes through ...
, glucose is used to power reactions that synthesize some
fat In nutrition science, nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such chemical compound, compounds, most commonly those that occur in living beings or in food. The term often refers specif ...
types and have other purposes. Glycogen is the body's "glucose energy storage" mechanism, because it is much more "space efficient" and less reactive than glucose itself. As a result of its importance in human health, glucose is an analyte in
glucose test Many types of glucose tests exist and they can be used to estimate blood sugar levels at a given time or, over a longer period of time, to obtain average levels or to see how fast the body is able to normalize changed glucose levels. Eating food ...
s that are common medical
blood test A blood test is a medical laboratory, laboratory analysis performed on a blood sample that is usually extracted from a vein in the arm using a hypodermic needle, or via fingerprick. Multiple tests for specific blood components, such as a glucose ...
s. Eating or fasting prior to taking a blood sample has an effect on analyses for glucose in the blood; a high fasting glucose blood sugar level may be a sign of
prediabetes Prediabetes is a component of metabolic syndrome and is characterized by elevated blood sugar levels that fall below the threshold to diagnose diabetes mellitus. It usually does not cause symptoms, but people with prediabetes often have obesity ( ...
or
diabetes mellitus Diabetes mellitus, commonly known as diabetes, is a group of common endocrine diseases characterized by sustained hyperglycemia, high blood sugar levels. Diabetes is due to either the pancreas not producing enough of the hormone insulin, or th ...
. The
glycemic index The glycemic (glycaemic) index (GI; ) is a number from 0 to 100 assigned to a food, with pure glucose arbitrarily given the value of 100, which represents the relative rise in the blood glucose level two hours after consuming that food. The GI of ...
is an indicator of the speed of resorption and conversion to blood glucose levels from ingested carbohydrates, measured as the
area under the curve In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus,Inte ...
of blood glucose levels after consumption in comparison to glucose (glucose is defined as 100).Richard A. Harvey, Denise R. Ferrier: ''Biochemistry''. 5th Edition, Lippincott Williams & Wilkins, 2011, , p. 366. The clinical importance of the glycemic index is controversial,U Satyanarayana: ''Biochemistry''. Elsevier Health Sciences, 2014, , p. 508. as foods with high fat contents slow the resorption of carbohydrates and lower the glycemic index, e.g. ice cream. An alternative indicator is the
insulin index The insulin index of food represents how much it elevates the concentration of insulin in the blood during the two-hour period after the food is ingested. The index is similar to the glycemic index (GI) and glycemic load (GL), but rather than relyi ...
, measured as the impact of carbohydrate consumption on the blood insulin levels. The
glycemic load The glycemic load (GL) of food is a number that estimates how much the food will raise a person's blood glucose level after it is eaten. One unit of glycemic load approximates the effect of eating one gram of glucose. Glycemic load accounts for ho ...
is an indicator for the amount of glucose added to blood glucose levels after consumption, based on the glycemic index and the amount of consumed food.


Precursor

Organisms use glucose as a precursor for the synthesis of several important substances. Starch,
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
, and glycogen ("animal starch") are common glucose
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s (polysaccharides). Some of these polymers (starch or glycogen) serve as energy stores, while others (cellulose and
chitin Chitin (carbon, C8hydrogen, H13oxygen, O5nitrogen, N)n ( ) is a long-chain polymer of N-Acetylglucosamine, ''N''-acetylglucosamine, an amide derivative of glucose. Chitin is the second most abundant polysaccharide in nature (behind only cell ...
, which is made from a derivative of glucose) have structural roles. Oligosaccharides of glucose combined with other sugars serve as important energy stores. These include lactose, the predominant sugar in milk, which is a glucose-galactose disaccharide, and sucrose, another disaccharide which is composed of glucose and fructose. Glucose is also added onto certain proteins and
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
s in a process called
glycosylation Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
. This is often critical for their functioning. The enzymes that join glucose to other molecules usually use
phosphorylated In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writt ...
glucose to power the formation of the new bond by coupling it with the breaking of the glucose-phosphate bond. Other than its direct use as a monomer, glucose can be broken down to synthesize a wide variety of other biomolecules. This is important, as glucose serves both as a primary store of energy and as a source of organic carbon. Glucose can be broken down and converted into lipids. It is also a precursor for the synthesis of other important molecules such as
vitamin C Vitamin C (also known as ascorbic acid and ascorbate) is a water-soluble vitamin found in citrus and other fruits, berries and vegetables. It is also a generic prescription medication and in some countries is sold as a non-prescription di ...
(ascorbic acid). In living organisms, glucose is converted to several other chemical compounds that are the starting material for various
metabolic pathway In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell (biology), cell. The reactants, products, and Metabolic intermediate, intermediates of an enzymatic reaction are known as metabolites, which are ...
s. Among them, all other monosaccharidesPeter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie'' . Springer-Verlag, 2014, , p. 27. such as fructose (via the
polyol pathway The polyol pathway is a two-step process that converts glucose to fructose. In this pathway glucose is reduced to sorbitol, which is subsequently oxidized to fructose. It is also called the sorbitol-aldose reductase pathway. The pathway is impli ...
),Peter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie'' . Springer-Verlag, 2014, , p. 199, 200. mannose (the epimer of glucose at position 2), galactose (the epimer at position 4), fucose, various
uronic acids 300px, The glucose.html" ;"title="Fischer projections of D-glucose">Fischer projections of D-glucose (left) and D-glucuronic acid (right). Glucose's terminal carbon's primary alcohol group has been oxidized to a carboxylic acid. Uronic acids ...
and the
amino sugar In organic chemistry, an amino sugar is a sugar molecule in which a hydroxyl group has been replaced with an amine group. More than 60 amino sugars are known, with one of the most abundant being N-Acetylglucosamine, ''N''-acetyl--glucosamine (a 2- ...
s are produced from glucose.Peter C. Heinrich: ''Löffler/Petrides Biochemie und Pathobiochemie'' . Springer-Verlag, 2014, , p. 214. In addition to the phosphorylation to glucose-6-phosphate, which is part of the glycolysis, glucose can be oxidized during its degradation to glucono-1,5-lactone. Glucose is used in some bacteria as a building block in the
trehalose Trehalose (from Turkish '' tıgala'' – a sugar derived from insect cocoons + -ose) is a sugar consisting of two molecules of glucose. It is also known as mycose or tremalose. Some bacteria, fungi, plants and invertebrate animals synthesize it ...
or the
dextran Dextran is a complex branched glucan (polysaccharide derived from the condensation of glucose), originally derived from wine. IUPAC defines dextrans as "Branched poly-α-d-glucosides of microbial origin having glycosidic bonds predominantly C-1 ...
biosynthesis and in animals as a building block of glycogen. Glucose can also be converted from bacterial
xylose isomerase In enzymology, a xylose isomerase () is an enzyme that catalyzes the interconversion of D-xylose and D-xylulose. This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and keto ...
to fructose. In addition, glucose
metabolite In biochemistry, a metabolite is an intermediate or end product of metabolism. The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, c ...
s produce all nonessential amino acids,
sugar alcohol Sugar alcohols (also called polyhydric alcohols, polyalcohols, alditols or glycitols) are organic compounds, typically derived from sugars, containing one hydroxyl group attached to each carbon atom. They are white, water-soluble solids that c ...
s such as
mannitol Mannitol is a type of sugar alcohol used as a sweetener and medication. It is used as a low calorie sweetener as it is poorly absorbed by the intestines. As a medication, it is used to decrease pressure in the eyes, as in glaucoma, and to l ...
and
sorbitol Sorbitol (), less commonly known as glucitol (), is a sugar alcohol with a sweet taste which the human body metabolizes slowly. It can be obtained by reduction of glucose, which changes the converted aldehyde group (−CHO) to a primary alco ...
,
fatty acid In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
s,
cholesterol Cholesterol is the principal sterol of all higher animals, distributed in body Tissue (biology), tissues, especially the brain and spinal cord, and in Animal fat, animal fats and oils. Cholesterol is biosynthesis, biosynthesized by all anima ...
and
nucleic acid Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a pentose, 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nuclei ...
s. Finally, glucose is used as a building block in the
glycosylation Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
of proteins to
glycoprotein Glycoproteins are proteins which contain oligosaccharide (sugar) chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known a ...
s,
glycolipid Glycolipids () are lipids with a carbohydrate attached by a glycosidic (covalent) bond. Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the c ...
s,
peptidoglycan Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like layer (sacculus) that surrounds the bacterial cytoplasmic membrane. The sugar component consists of alternating ...
s,
glycoside In chemistry, a glycoside is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. ...
s and other substances (catalyzed by
glycosyltransferase Glycosyltransferases (GTFs, Gtfs) are enzymes ( EC 2.4) that establish natural glycosidic linkages. They catalyze the transfer of saccharide moieties from an activated nucleotide sugar (also known as the "glycosyl donor") to a nucleophilic gl ...
s) and can be cleaved from them by
glycosidase In biochemistry, glycoside hydrolases (also called glycosidases or glycosyl hydrolases) are a class of enzymes which catalyze the hydrolysis of glycosidic bonds in complex sugars. They are extremely common enzymes, with roles in nature inclu ...
s.


Regulatory role in cell differentiation

In addition to its well-known function as a cellular energy source, glucose has been identified as a master regulator of tissue maturation. A 2025 study by Stanford Medicine uncovered that glucose, in its intact (non-metabolized) form, can bind to various regulatory proteins involved in gene expression. One such protein is IRF6, which alters its conformation upon glucose binding, thereby influencing the expression of genes associated with stem cell differentiation. This regulatory role is independent of glucose’s catabolic function and has been observed across multiple tissue types, including skin, bone, fat, and white blood cells. The research demonstrated that even glucose analogs incapable of metabolism could promote differentiation, suggesting a signaling function for glucose. These findings have potential implications in understanding and treating diseases characterized by impaired differentiation, such as diabetes and certain cancers.


Pathology


Diabetes

Diabetes Diabetes mellitus, commonly known as diabetes, is a group of common endocrine diseases characterized by sustained high blood sugar levels. Diabetes is due to either the pancreas not producing enough of the hormone insulin, or the cells of th ...
is a metabolic disorder where the body is unable to regulate levels of glucose in the blood either because of a lack of insulin in the body or the failure, by cells in the body, to respond properly to insulin. Each of these situations can be caused by persistently high elevations of blood glucose levels, through pancreatic burnout and
insulin resistance Insulin resistance (IR) is a pathological response in which cells in insulin-sensitive tissues in the body fail to respond normally to the hormone insulin or downregulate insulin receptors in response to hyperinsulinemia. Insulin is a horm ...
. The
pancreas The pancreas (plural pancreases, or pancreata) is an Organ (anatomy), organ of the Digestion, digestive system and endocrine system of vertebrates. In humans, it is located in the abdominal cavity, abdomen behind the stomach and functions as a ...
is the organ responsible for the secretion of the hormones insulin and glucagon. Insulin is a hormone that regulates glucose levels, allowing the body's cells to absorb and use glucose. Without it, glucose cannot enter the cell and therefore cannot be used as fuel for the body's functions. If the pancreas is exposed to persistently high elevations of blood glucose levels, the insulin-producing cells in the pancreas could be damaged, causing a lack of insulin in the body. Insulin resistance occurs when the pancreas tries to produce more and more insulin in response to persistently elevated blood glucose levels. Eventually, the rest of the body becomes resistant to the insulin that the pancreas is producing, thereby requiring more insulin to achieve the same blood glucose-lowering effect, and forcing the pancreas to produce even more insulin to compete with the resistance. This negative spiral contributes to pancreatic burnout, and the disease progression of diabetes. To monitor the body's response to blood glucose-lowering therapy, glucose levels can be measured.
Blood glucose monitoring Blood glucose monitoring is the use of a glucose meter for testing the concentration of glucose in the blood (Blood sugar level, glycemia). Particularly important in diabetes management, a blood glucose test is typically performed by piercing ...
can be performed by multiple methods, such as the fasting glucose test which measures the level of glucose in the blood after 8 hours of fasting. Another test is the 2-hour glucose tolerance test (GTT)for this test, the person has a fasting glucose test done, then drinks a 75-gram glucose drink and is retested. This test measures the ability of the person's body to process glucose. Over time the blood glucose levels should decrease as insulin allows it to be taken up by cells and exit the blood stream.


Hypoglycemia management

Individuals with diabetes or other conditions that result in
low blood sugar Hypoglycemia (American English), also spelled hypoglycaemia or hypoglycæmia (British English), sometimes called low blood sugar, is a fall in blood sugar to levels below normal, typically below 70 mg/dL (3.9 mmol/L). Whipple's tria ...
often carry small amounts of sugar in various forms. One sugar commonly used is glucose, often in the form of glucose tablets (glucose pressed into a tablet shape sometimes with one or more other ingredients as a binder),
hard candy A hard candy (American English), or boiled sweet (British English), is a sugar candy prepared from one or more sugar-based syrups that is heated to a temperature of 160 °C (320 °F) to make candy. Among the many hard candy varieti ...
, or
sugar packet A sugar packet is a delivery method for one serving of sugar or other sweetener. Sugar packets are commonly supplied in restaurants, coffeehouses, and tea houses, where they are preferred to sugar bowls or sugar dispensers for reasons of neatnes ...
.


Sources

Most dietary carbohydrates contain glucose, either as their only building block (as in the polysaccharides starch and glycogen), or together with another monosaccharide (as in the hetero-polysaccharides sucrose and lactose). Unbound glucose is one of the main ingredients of honey. Glucose is extremely abundant and has been isolated from a variety of natural sources across the world, including male cones of the coniferous tree ''Wollemia nobilis'' in Rome, the roots of ''Ilex asprella'' plants in China, and straws from rice in California.


Commercial production

Glucose is produced industrially from starch by
enzymatic An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as produc ...
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
using
glucose amylase Glucose is a sugar with the molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae during photosynthesis from water and ...
or by the use of
acids An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen cation, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid. The first category of acids are the ...
. Enzymatic hydrolysis has largely displaced acid-catalyzed hydrolysis reactions.P. J. Fellows: ''Food Processing Technology. Woodhead Publishing'', 2016, , p. 197. The result is glucose syrup (enzymatically with more than 90% glucose in the dry matter) with an annual worldwide production volume of 20 million tonnes (as of 2011).Thomas Becker, Dietmar Breithaupt, Horst Werner Doelle, Armin Fiechter, Günther Schlegel, Sakayu Shimizu, Hideaki Yamada: ''Biotechnology'', in: ''Ullmann's Encyclopedia of Industrial Chemistry'', 7th Edition, Wiley-VCH, 2011. . Volume 6, p. 48. This is the reason for the former common name "starch sugar". The amylases most often come from ''
Bacillus licheniformis ''Bacillus licheniformis'' is a bacterium commonly found in the soil. It is found on bird feathers, especially chest and back plumage, and most often in ground-dwelling birds (like sparrows) and aquatic species (like ducks). It is a gram-positi ...
''The Amylase Research Society of Japan: ''Handbook of Amylases and Related Enzymes''. Elsevier, 2014, , p. 195. or ''
Bacillus subtilis ''Bacillus subtilis'' (), known also as the hay bacillus or grass bacillus, is a gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus ''Bacill ...
'' (strain MN-385), which are more thermostable than the originally used enzymes. Starting in 1982,
pullulanase Pullulanase (, ''limit dextrinase'', ''amylopectin 6-glucanohydrolase'', ''bacterial debranching enzyme'', ''debranching enzyme'', ''α-dextrin endo-1,6-α-glucosidase'', ''R-enzyme'', ''pullulan α-1,6-glucanohydrolase'') is a specific kind of g ...
s from ''
Aspergillus niger ''Aspergillus niger'' is a mold classified within the ''Nigri'' section of the ''Aspergillus'' genus. The ''Aspergillus'' genus consists of common molds found throughout the environment within soil and water, on vegetation, in fecal matter, on de ...
'' were used in the production of glucose syrup to convert amylopectin to starch (amylose), thereby increasing the yield of glucose. The reaction is carried out at a pH = 4.6–5.2 and a temperature of 55–60 °C.
Corn syrup Corn syrup is a food syrup that is made from the starch of corn/maize and contains varying amounts of sugars: glucose, maltose and higher oligosaccharides, depending on the grade. Corn syrup is used in foods to soften Mouthfeel, texture, add vol ...
has between 20% and 95% glucose in the dry matter. The Japanese form of the glucose syrup,
Mizuame is a sweetener from Japan. A clear, thick, sticky liquid, it is made by converting starch to sugars. is added to to give them a sheen, eaten in ways similar to honey, and can be a main ingredient in sweets. Some are produced in a very simila ...
, is made from
sweet potato The sweet potato or sweetpotato (''Ipomoea batatas'') is a dicotyledonous plant in the morning glory family, Convolvulaceae. Its sizeable, starchy, sweet-tasting tuberous roots are used as a root vegetable, which is a staple food in parts of ...
or
rice Rice is a cereal grain and in its Domestication, domesticated form is the staple food of over half of the world's population, particularly in Asia and Africa. Rice is the seed of the grass species ''Oryza sativa'' (Asian rice)—or, much l ...
starch. Many crops can be used as the source of starch.
Maize Maize (; ''Zea mays''), also known as corn in North American English, is a tall stout grass that produces cereal grain. It was domesticated by indigenous peoples in southern Mexico about 9,000 years ago from wild teosinte. Native American ...
, rice,
wheat Wheat is a group of wild and crop domestication, domesticated Poaceae, grasses of the genus ''Triticum'' (). They are Agriculture, cultivated for their cereal grains, which are staple foods around the world. Well-known Taxonomy of wheat, whe ...
,
cassava ''Manihot esculenta'', common name, commonly called cassava, manioc, or yuca (among numerous regional names), is a woody shrub of the spurge family, Euphorbiaceae, native to South America, from Brazil, Paraguay and parts of the Andes. Although ...
,
potato The potato () is a starchy tuberous vegetable native to the Americas that is consumed as a staple food in many parts of the world. Potatoes are underground stem tubers of the plant ''Solanum tuberosum'', a perennial in the nightshade famil ...
,
barley Barley (), a member of the grass family, is a major cereal grain grown in temperate climates globally. It was one of the first cultivated grains; it was domesticated in the Fertile Crescent around 9000 BC, giving it nonshattering spikele ...
, sweet potato,Alan Davidson: ''The Oxford Companion to Food''. OUP Oxford, 2014, , p. 527.
corn husk Husk (or hull) in botany is the outer shell or coating of a seed. In the United States, the term husk often refers to the leafy outer covering of an ear of maize (corn) as it grows on the plant. Literally, a husk or hull includes the protective ...
and
sago Sago () is a starch extracted from the pith, or spongy core tissue, of various tropical palm stems, especially those of ''Metroxylon sagu''. It is a major staple food for the lowland peoples of New Guinea and the Maluku Islands, where it is c ...
are all used in various parts of the world. In the
United States The United States of America (USA), also known as the United States (U.S.) or America, is a country primarily located in North America. It is a federal republic of 50 U.S. state, states and a federal capital district, Washington, D.C. The 48 ...
,
corn starch Cornflour, cornstarch, maize starch, or corn starch (American English) is the starch derived from corn (maize) grain. The starch is obtained from the endosperm of the seed, kernel. Corn starch is a common food ingredient, often used to thick ...
(from maize) is used almost exclusively. Some commercial glucose occurs as a component of
invert sugar Inverted sugar syrup is a syrup mixture of the monosaccharides glucose and fructose, made by splitting disaccharide sucrose. This mixture's optical rotation is opposite to that of the original sugar, which is why it is called an ''invert'' sug ...
, a roughly 1:1 mixture of glucose and fructose that is produced from sucrose. In principle, cellulose could be hydrolyzed to glucose, but this process is not yet commercially practical.


Conversion to fructose

In the US, almost exclusively corn (more precisely, corn syrup) is used as glucose source for the production of
isoglucose High-fructose corn syrup (HFCS), also known as glucose–fructose, isoglucose, and glucose–fructose syrup, is a sweetener made from corn starch. As in the production of conventional corn syrup, the starch is broken down into glucose by enzym ...
, which is a mixture of glucose and fructose, since fructose has a higher sweetening powerwith same physiological calorific value of 374 kilocalories per 100 g. The annual world production of isoglucose is 8 million tonnes (as of 2011). When made from corn syrup, the final product is
high-fructose corn syrup High-fructose corn syrup (HFCS), also known as glucose–fructose, isoglucose, and glucose–fructose syrup, is a sweetener made from corn starch. As in the production of conventional corn syrup, the starch is broken down into glucose by enzy ...
(HFCS).


Commercial usage

Glucose is mainly used for the production of fructose and of glucose-containing foods. In foods, it is used as a sweetener,
humectant A humectant is a hygroscopic (water-absorbing) substance used to keep things moist. They are used in many products, including food, cosmetics, medicines and pesticides. When used as a food additive, a humectant has the effect of keeping moistu ...
, to increase the
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
and to create a softer
mouthfeel Mouthfeel refers to the physical sensations in the mouth caused by food or drink, making it distinct from taste. It is a fundamental sensory attribute which, along with taste and smell, determines the overall flavor of a food item. Mouthfeel i ...
. Various sources of glucose, such as grape juice (for wine) or malt (for beer), are used for fermentation to ethanol during the production of
alcoholic beverage Drinks containing alcohol (drug), alcohol are typically divided into three classes—beers, wines, and Distilled beverage, spirits—with alcohol content typically between 3% and 50%. Drinks with less than 0.5% are sometimes considered Non-al ...
s. Most soft drinks in the US use HFCS-55 (with a fructose content of 55% in the dry mass), while most other HFCS-sweetened foods in the US use HFCS-42 (with a fructose content of 42% in the dry mass). In Mexico, on the other hand, soft drinks are sweetened by cane sugar, which has a higher sweetening power. In addition, glucose syrup is used, inter alia, in the production of
confectionery Confectionery is the Art (skill), art of making confections, or sweet foods. Confections are items that are rich in sugar and carbohydrates, although exact definitions are difficult. In general, however, confections are divided into two bro ...
such as candies,
toffee Toffee is an English confection made by caramelizing sugar or molasses (creating inverted sugar) along with butter, and occasionally flour. The mixture is heated until its temperature reaches the hard crack stage of . While being prepar ...
and
fondant Fondant is a mixture of sugar and water used as a confection, filling, or icing. Sometimes gelatin and glycerine are used as softeners or stabilizers. There are numerous varieties of fondant, with the most basic being poured fondant. Others inc ...
.Steve T. Beckett: ''Beckett's Industrial Chocolate Manufacture and Use''. John Wiley & Sons, 2017, , p. 82. Typical chemical reactions of glucose when heated under water-free conditions are
caramelization Caramelization (or caramelisation) is a process of browning of sugar used extensively in cooking for the resulting butter-like flavor and brown color. The brown colors are produced by three groups of polymers: (C24H36O18), (C36H50O25), and ...
and, in presence of amino acids, the Maillard reaction. In addition, various organic acids can be biotechnologically produced from glucose, for example by fermentation with '' Clostridium thermoaceticum'' to produce
acetic acid Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main compone ...
, with ''
Penicillium notatum ''Penicillium chrysogenum'' (formerly known as ''Penicillium notatum'') is a species of fungus in the genus ''Penicillium''. It is common in temperate and subtropical regions and can be found on salted food products, but it is mostly found in in ...
'' for the production of araboascorbic acid, with ''
Rhizopus delemar ''Rhizopus'' is a genus of common saprophytic fungi on plants and specialized parasites on animals. They are found in a wide variety of organic substances, including "mature fruits and vegetables", jellies, syrups, leather, bread, peanuts, and t ...
'' for the production of
fumaric acid Fumaric acid or ''trans''-butenedioic acid is an organic compound with the formula HO2CCH=CHCO2H. A white solid, fumaric acid occurs widely in nature. It has a fruit-like taste and has been used as a food additive. Its E number is E297. The sa ...
, with ''
Aspergillus niger ''Aspergillus niger'' is a mold classified within the ''Nigri'' section of the ''Aspergillus'' genus. The ''Aspergillus'' genus consists of common molds found throughout the environment within soil and water, on vegetation, in fecal matter, on de ...
'' for the production of
gluconic acid Gluconic acid is an organic compound with molecular formula C6H12O7 and condensed structural formula HOCH2(CHOH)4CO2H. A white solid, it forms the gluconate anion in neutral aqueous solution. The salts of gluconic acid are known as "gluconates" ...
, with '' Candida brumptii'' to produce
isocitric acid Isocitric acid is a structural isomer of citric acid. Since citric acid and isocitric acid are structural isomers, they share similar physical and chemical properties. Due to these similar properties, it is difficult to separate the isomers. Salts ...
, with ''
Aspergillus terreus ''Aspergillus terreus'', also known as ''Aspergillus terrestris'', is a fungus (mold) found worldwide in soil. Although thought to be strictly asexual until recently, ''A. terreus'' is now known to be capable of sexual reproduction. This saprot ...
'' for the production of
itaconic acid Itaconic acid is an organic compound with the formula . With two carboxyl groups, it is classified as a dicarboxylic acid. It is a non-toxic white solid that is soluble in water and several organic solvents. It plays several roles in biology. ...
, with ''
Pseudomonas fluorescens ''Pseudomonas fluorescens'' is a common Gram-negative, rod-shaped bacterium. It belongs to the ''Pseudomonas'' genus; 16S rRNA analysis as well as phylogenomic analysis has placed ''P. fluorescens'' in the ''P. fluorescens'' group within the genu ...
'' for the production of 2-ketogluconic acid, with ''
Gluconobacter suboxydans ''Gluconobacter'' is a genus of bacteria in the acetic acid bacteria family. They prefer sugar-rich environments, so are sometimes found as a spoilage organism in beer. They are not known to be pathogenic but can cause rot in apples and pears. ...
'' for the production of 5-ketogluconic acid, with ''
Aspergillus oryzae ''Aspergillus oryzae'', also known as , is a mold used in East Asia to saccharify rice, sweet potato, and barley in the making of alcoholic beverages such as '' sake'' and '' shōchū'', and also to ferment soybeans for making soy sauce and '' ...
'' for the production of
kojic acid Kojic acid is an organic compound with the formula . It is a derivative of 4-Pyrone, 4-pyrone that functions in nature as a chelation agent produced by several species of fungus, especially ''Aspergillus oryzae'', which has the Japanese common na ...
, with ''
Lactobacillus delbrueckii ''Lactobacillus delbrueckii'' is a species of bacteria in the family Lactobacillaceae. It is part of the microbiota of the lower reproductive tract of women. History Naming The species carries the name of Max Delbrück Max Ludwig Henn ...
'' for the production of
lactic acid Lactic acid is an organic acid. It has the molecular formula C3H6O3. It is white in the solid state and it is miscible with water. When in the dissolved state, it forms a colorless solution. Production includes both artificial synthesis as wel ...
, with ''
Lactobacillus brevis ''Levilactobacillus brevis'' is a gram-positive, rod shaped species of lactic acid bacteria which is heterofermentative, creating CO2, lactic acid and acetic acid or ethanol during fermentation. ''L. brevis'' is the type species of the genus ''L ...
'' for the production of
malic acid Malic acid is an organic compound with the molecular formula . It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms ( ...
, with ''
Propionibacter shermanii ''Propionibacterium freudenreichii'' is a gram-positive, non-motile bacterium that plays an important role in the creation of Emmental cheese, and to some extent, Jarlsberg cheese, Leerdammer and Maasdam cheese. Its concentration in Swiss-typ ...
'' for the production of
propionic acid Propionic acid (, from the Greek language, Greek words πρῶτος : ''prōtos'', meaning "first", and πίων : ''píōn'', meaning "fat"; also known as propanoic acid) is a naturally occurring carboxylic acid with chemical formula . It is a ...
, with ''
Pseudomonas aeruginosa ''Pseudomonas aeruginosa'' is a common Bacterial capsule, encapsulated, Gram-negative bacteria, Gram-negative, Aerobic organism, aerobic–facultative anaerobe, facultatively anaerobic, Bacillus (shape), rod-shaped bacteria, bacterium that can c ...
'' for the production of
pyruvic acid Pyruvic acid (CH3COCOOH) is the simplest of the keto acids, alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate acid, conjugate base, CH3COCOO−, is an metabolic intermediate, intermediate in several m ...
and with ''
Gluconobacter suboxydans ''Gluconobacter'' is a genus of bacteria in the acetic acid bacteria family. They prefer sugar-rich environments, so are sometimes found as a spoilage organism in beer. They are not known to be pathogenic but can cause rot in apples and pears. ...
'' for the production of
tartaric acid Tartaric acid is a white, crystalline organic acid that occurs naturally in many fruits, most notably in grapes but also in tamarinds, bananas, avocados, and citrus. Its salt (chemistry), salt, potassium bitartrate, commonly known as cream of ta ...
.James A. Kent: ''Riegel's Handbook of Industrial Chemistry''. Springer Science & Business Media, 2013, , p. 938. Potent, bioactive natural products like triptolide that inhibit mammalian transcription via inhibition of the XPB subunit of the general transcription factor TFIIH has been recently reported as a glucose conjugate for targeting hypoxic cancer cells with increased glucose transporter expression. Recently, glucose has been gaining commercial use as a key component of "kits" containing lactic acid and insulin intended to induce hypoglycemia and hyperlactatemia to combat different cancers and infections.


Analysis

When a glucose molecule is to be detected at a certain position in a larger molecule,
nuclear magnetic resonance spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a Spectroscopy, spectroscopic technique based on re-orientation of Atomic nucleus, atomic nuclei with non-zero nuclear sp ...
,
X-ray crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
analysis or
lectin Lectins are carbohydrate-binding proteins that are highly specific for sugar Moiety (chemistry), groups that are part of other molecules, so cause agglutination (biology), agglutination of particular cells or precipitation of glycoconjugates an ...
immunostaining In biochemistry, immunostaining is any use of an antibody-based method to detect a specific protein in a sample. The term "immunostaining" was originally used to refer to the immunohistochemical staining of tissue sections, as first described by ...
is performed with
concanavalin A Concanavalin A (ConA) is a lectin (carbohydrate-binding protein) originally extracted from the jack-bean (''Canavalia ensiformis''). It is a member of the legume lectin family. It binds specifically to certain structures found in various sugars, ...
reporter enzyme conjugate, which binds only glucose or mannose.


Classical qualitative detection reactions

These reactions have only historical significance:


Fehling test

The
Fehling test In organic chemistry, Fehling's solution is a chemical reagent used to differentiate between water-soluble carbohydrate and ketone () functional groups, and as a test for reducing sugars and non-reducing sugars, supplementary to the Tollens' rea ...
is a classic method for the detection of aldoses.H. Fehling: ''Quantitative Bestimmung des Zuckers im Harn''. In: ''
Archiv für physiologische Heilkunde Archiv Produktion is a classical music record label of German origin. It originated in 1948 as a classical label for the Deutsche Grammophon Gesellschaft (DGG), and in 1958 Archiv was established as a subsidiary of DGG, specialising in recording ...
'' (1848), volume 7, p. 64–73 (in German).
Due to mutarotation, glucose is always present to a small extent as an open-chain aldehyde. By adding the Fehling reagents (Fehling (I) solution and Fehling (II) solution), the aldehyde group is oxidized to a
carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an Substituent, R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl ...
, while the Cu2+ tartrate complex is reduced to Cu+ and forms a brick red precipitate (Cu2O).


Tollens test

In the Tollens test, after addition of ammoniacal AgNO3 to the sample solution, glucose reduces Ag+ to elemental
silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
.


Barfoed test

In
Barfoed's test Barfoed's test is a chemical test used for detecting the presence of monosaccharides. It is based on the reduction of copper(II) acetate to copper(I) oxide (Cu2O), which forms a brick-red precipitate. ::RCHO + 2Cu2+ + 2H2O → RCOOH + Cu2O↓ ...
, a solution of dissolved
copper acetate Copper(II) acetate, also referred to as cupric acetate, is the chemical compound with the formula where is acetate (). The hydrated derivative, , which contains one molecule of water for each copper atom, is available commercially. Anhydrous cop ...
,
sodium acetate Sodium acetate, CH3COONa, also abbreviated Sodium, NaOxygen, OAcetyl, Ac, is the sodium Salt (chemistry), salt of acetic acid. This salt is colorless, deliquescent, and hygroscopy, hygroscopic. Applications Biotechnological Sodium acetate is u ...
and acetic acid is added to the solution of the sugar to be tested and subsequently heated in a water bath for a few minutes. Glucose and other monosaccharides rapidly produce a reddish color and reddish brown
copper(I) oxide Copper(I) oxide or cuprous oxide is the inorganic compound with the formula . It is one of the principal oxides of copper, the other being copper(II) oxide or cupric oxide (CuO). The compound can appear either yellow or red, depending on the size ...
(Cu2O).


Nylander's test

As a reducing sugar, glucose reacts in the Nylander's test.


Other tests

Upon heating a dilute
potassium hydroxide Potassium hydroxide is an inorganic compound with the formula K OH, and is commonly called caustic potash. Along with sodium hydroxide (NaOH), KOH is a prototypical strong base. It has many industrial and niche applications, most of which utili ...
solution with glucose to 100 °C, a strong reddish browning and a caramel-like odor develops.Georg Schwedt: ''Zuckersüße Chemie''. John Wiley & Sons, 2012, , p. 102 (in German). Concentrated
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
dissolves dry glucose without blackening at room temperature forming sugar sulfuric acid. In a yeast solution, alcoholic fermentation produces carbon dioxide in the ratio of 2.0454 molecules of glucose to one molecule of CO2. Glucose forms a black mass with
stannous chloride Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula . It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in aci ...
. In an ammoniacal silver solution, glucose (as well as lactose and dextrin) leads to the deposition of silver. In an ammoniacal
lead acetate Lead () is a chemical element; it has symbol Pb (from Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, lea ...
solution, white
lead glycoside Lead () is a chemical element; it has symbol Pb (from Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, lead ...
is formed in the presence of glucose, which becomes less soluble on cooking and turns brown. In an ammoniacal copper solution, yellow
copper oxide Copper oxide is any of several binary compounds composed of the elements copper and oxygen. Two oxides are well known, Cu2O and CuO, corresponding to the minerals cuprite and tenorite, respectively. Paramelaconite () is less well characterized. ...
hydrate is formed with glucose at room temperature, while red copper oxide is formed during boiling (same with dextrin, except for with an ammoniacal copper acetate solution). With Hager's reagent, glucose forms
mercury oxide Mercury oxide can refer to: * Mercury(I) oxide (mercurous oxide), Hg2O * Mercury(II) oxide (mercuric oxide), HgO See also *Montroydite, the mineral form of mercury(II) oxide {{Short pages monitor