HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, in
general topology In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometri ...
, compactification is the process or result of making a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
into a
compact space In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i ...
. A compact space is a space in which every
open cover In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alp ...
of the space contains a finite subcover. The methods of compactification are various, but each is a way of controlling points from "going off to infinity" by in some way adding "points at infinity" or preventing such an "escape".


An example

Consider the
real line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
with its ordinary topology. This space is not compact; in a sense, points can go off to infinity to the left or to the right. It is possible to turn the real line into a compact space by adding a single "point at infinity" which we will denote by ∞. The resulting compactification can be thought of as a circle (which is compact as a closed and bounded subset of the Euclidean plane). Every sequence that ran off to infinity in the real line will then converge to ∞ in this compactification. Intuitively, the process can be pictured as follows: first shrink the real line to the
open interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
(- π,π) on the ''x''-axis; then bend the ends of this interval upwards (in positive ''y''-direction) and move them towards each other, until you get a circle with one point (the topmost one) missing. This point is our new point ∞ "at infinity"; adding it in completes the compact circle. A bit more formally: we represent a point on the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
by its
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
, in
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before that ...
s, going from -π to π for simplicity. Identify each such point ''θ'' on the circle with the corresponding point on the real line
tan Tan or TAN may refer to: Businesses and organisations * Black and Tans, a nickname for British special constables during the Irish War of Independence. By extension "Tans" can now also colloquially refer to English or British people in general, es ...
(''θ''/2). This function is undefined at the point π, since tan(π/2) is undefined; we will identify this point with our point ∞. Since tangents and inverse tangents are both continuous, our identification function is a
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isom ...
between the real line and the unit circle without ∞. What we have constructed is called the ''Alexandroff one-point compactification'' of the real line, discussed in more generality below. It is also possible to compactify the real line by adding ''two'' points, +∞ and -∞; this results in the
extended real line In mathematics, the affinely extended real number system is obtained from the real number system \R by adding two infinity elements: +\infty and -\infty, where the infinities are treated as actual numbers. It is useful in describing the algebra ...
.


Definition

An
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is g ...
of a topological space ''X'' as a dense subset of a compact space is called a compactification of ''X''. It is often useful to embed
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
s in
compact space In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i ...
s, because of the special properties compact spaces have. Embeddings into compact
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the ma ...
s may be of particular interest. Since every compact Hausdorff space is a
Tychonoff space In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space refers to any completely regular space that is ...
, and every subspace of a Tychonoff space is Tychonoff, we conclude that any space possessing a Hausdorff compactification must be a Tychonoff space. In fact, the converse is also true; being a Tychonoff space is both necessary and sufficient for possessing a Hausdorff compactification. The fact that large and interesting classes of non-compact spaces do in fact have compactifications of particular sorts makes compactification a common technique in topology.


Alexandroff one-point compactification

For any noncompact topological space ''X'' the (Alexandroff) one-point compactification α''X'' of ''X'' is obtained by adding one extra point ∞ (often called a ''point at infinity'') and defining the
open set In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are su ...
s of the new space to be the open sets of ''X'' together with the sets of the form ''G'' ∪ , where ''G'' is an open subset of ''X'' such that ''X'' \ ''G'' is closed and compact. The one-point compactification of ''X'' is Hausdorff if and only if ''X'' is Hausdorff, noncompact and
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
.


Stone–Čech compactification

Of particular interest are Hausdorff compactifications, i.e., compactifications in which the compact space is Hausdorff. A topological space has a Hausdorff compactification if and only if it is Tychonoff. In this case, there is a unique (
up to Two mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' with respect to ''R'' ...
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isom ...
) "most general" Hausdorff compactification, the Stone–Čech compactification of ''X'', denoted by β''X''; formally, this exhibits the
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
of Compact Hausdorff spaces and continuous maps as a
reflective subcategory In mathematics, a full subcategory ''A'' of a category ''B'' is said to be reflective in ''B'' when the inclusion functor from ''A'' to ''B'' has a left adjoint. This adjoint is sometimes called a ''reflector'', or ''localization''. Dually, ''A' ...
of the category of Tychonoff spaces and continuous maps. "Most general" or formally "reflective" means that the space β''X'' is characterized by the
universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fr ...
that any
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in val ...
from ''X'' to a compact Hausdorff space ''K'' can be extended to a continuous function from β''X'' to ''K'' in a unique way. More explicitly, β''X'' is a compact Hausdorff space containing ''X'' such that the
induced topology In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced to ...
on ''X'' by β''X'' is the same as the given topology on ''X'', and for any continuous map ''f'':''X'' → ''K'', where ''K'' is a compact Hausdorff space, there is a unique continuous map ''g'':β''X'' → ''K'' for which ''g'' restricted to ''X'' is identically ''f''. The Stone–Čech compactification can be constructed explicitly as follows: let ''C'' be the set of continuous functions from ''X'' to the closed interval ,1 Then each point in ''X'' can be identified with an evaluation function on ''C''. Thus ''X'' can be identified with a subset of ,1sup>''C'', the space of ''all'' functions from ''C'' to ,1 Since the latter is compact by Tychonoff's theorem, the closure of ''X'' as a subset of that space will also be compact. This is the Stone–Čech compactification.


Spacetime compactification

Walter Benz Walter Benz (May 2, 1931 Lahnstein – January 13, 2017 Ratzeburg) was a German mathematician, an expert in geometry. Benz studied at the Johannes Gutenberg University of Mainz and received his doctoral degree in 1954, with Robert Furch as his ...
and Isaak Yaglom have shown how
stereographic projection In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (the ''projection plane'') perpendicular to the diameter thro ...
onto a single-sheet
hyperboloid In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by def ...
can be used to provide a compactification for split complex numbers. In fact, the hyperboloid is part of a
quadric In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension ''D'') in a -dimensional space, and it is de ...
in real projective four-space. The method is similar to that used to provide a base manifold for
group action In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism ...
of the
conformal group of spacetime In mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space. Se ...
.


Projective space

Real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properties Construction A ...
RP''n'' is a compactification of Euclidean space R''n''. For each possible "direction" in which points in R''n'' can "escape", one new point at infinity is added (but each direction is identified with its opposite). The Alexandroff one-point compactification of R we constructed in the example above is in fact homeomorphic to RP1. Note however that the
projective plane In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that d ...
RP2 is ''not'' the one-point compactification of the plane R2 since more than one point is added.
Complex projective space In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
CP''n'' is also a compactification of C''n''; the Alexandroff one-point compactification of the plane C is (homeomorphic to) the complex projective line CP1, which in turn can be identified with a sphere, the
Riemann sphere In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers ...
. Passing to projective space is a common tool in
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
because the added points at infinity lead to simpler formulations of many theorems. For example, any two different lines in RP2 intersect in precisely one point, a statement that is not true in R2. More generally,
Bézout's theorem Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of polynomials in indeterminates. In its original form the theorem states that ''in general'' the number of common zeros equals the product of the deg ...
, which is fundamental in
intersection theory In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem o ...
, holds in projective space but not affine space. This distinct behavior of intersections in affine space and projective space is reflected in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
in the
cohomology ring In mathematics, specifically algebraic topology, the cohomology ring of a topological space ''X'' is a ring formed from the cohomology groups of ''X'' together with the cup product serving as the ring multiplication. Here 'cohomology' is usually un ...
s – the cohomology of affine space is trivial, while the cohomology of projective space is non-trivial and reflects the key features of intersection theory (dimension and degree of a subvariety, with intersection being Poincaré dual to the
cup product In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree ''p'' and ''q'' to form a composite cocycle of degree ''p'' + ''q''. This defines an associative (and distributive) graded commutati ...
). Compactification of
moduli space In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such sp ...
s generally require allowing certain degeneracies – for example, allowing certain singularities or reducible varieties. This is notably used in the Deligne–Mumford compactification of the moduli space of algebraic curves.


Compactification and discrete subgroups of Lie groups

In the study of discrete subgroups of
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the addi ...
s, the quotient space of
coset In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) ...
s is often a candidate for more subtle compactification to preserve structure at a richer level than just topological. For example,
modular curve In number theory and algebraic geometry, a modular curve ''Y''(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular ...
s are compactified by the addition of single points for each
cusp A cusp is the most pointed end of a curve. It often refers to cusp (anatomy), a pointed structure on a tooth. Cusp or CUSP may also refer to: Mathematics * Cusp (singularity), a singular point of a curve * Cusp catastrophe, a branch of bifurc ...
, making them
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ver ...
s (and so, since they are compact,
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane ...
s). Here the cusps are there for a good reason: the curves parametrize a space of lattices, and those lattices can degenerate ('go off to infinity'), often in a number of ways (taking into account some auxiliary structure of ''level''). The cusps stand in for those different 'directions to infinity'. That is all for lattices in the plane. In ''n''-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
the same questions can be posed, for example about SO(n)\SL''n''(R)/SL''n''(Z). This is harder to compactify. There are a variety of compactifications, such as the Borel–Serre compactification, the reductive Borel-Serre compactification, and the Satake compactifications, that can be formed.


Other compactification theories

*The theories of ends of a space and
prime end In mathematics, the prime end compactification is a method to compactify a topological disc (i.e. a simply connected open set in the plane) by adding the boundary circle in an appropriate way. Historical notes The concept of prime ends was intro ...
s. *Some 'boundary' theories such as the collaring of an open manifold, Martin boundary, Shilov boundary and
Furstenberg boundary In potential theory, a discipline within applied mathematics, the Furstenberg boundary is a notion of boundary associated with a group. It is named for Harry Furstenberg, who introduced it in a series of papers beginning in 1963 (in the case of ...
. *The Bohr compactification of a
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two st ...
arises from the consideration of almost periodic functions. *The projective line over a ring for a
topological ring In mathematics, a topological ring is a ring R that is also a topological space such that both the addition and the multiplication are continuous as maps: R \times R \to R where R \times R carries the product topology. That means R is an additive ...
may compactify it. *The
Baily–Borel compactification In mathematics, the Baily–Borel compactification is a compactification of a quotient of a Hermitian symmetric space by an arithmetic group, introduced by . Example *If ''C'' is the quotient of the upper half plane by a congruence subgroup In ...
of a quotient of a Hermitian symmetric space. *The wonderful compactification of a quotient of algebraic groups. *The compactifications that are simultaneously convex subsets in a locally convex space are called convex compactifications, their additional linear structure allowing e.g. for developing a differential calculus and more advanced considerations e.g. in relaxation in variational calculus or optimization theory.


See also

*


References

{{reflist