Subspace Topology
In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced topology, or the trace topology). Definition Given a topological space (X, \tau) and a subset S of X, the subspace topology on S is defined by :\tau_S = \lbrace S \cap U \mid U \in \tau \rbrace. That is, a subset of S is open in the subspace topology if and only if it is the intersection of S with an open set in (X, \tau). If S is equipped with the subspace topology then it is a topological space in its own right, and is called a subspace of (X, \tau). Subsets of topological spaces are usually assumed to be equipped with the subspace topology unless otherwise stated. Alternatively we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map :\iota: S \hookrightarrow X is continuous. More ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a '' topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; co ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal numbers'', and numbers used for ordering are called ''ordinal numbers''. Natural numbers are sometimes used as labels, known as '' nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers). Some definitions, including the standard ISO 800002, begin the natural numbers with , corresponding to the nonnegative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural numbers form a set. Many other number sets are built by succ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Normal Space
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. Definitions A topological space ''X'' is a normal space if, given any disjoint closed sets ''E'' and ''F'', there are neighbourhoods ''U'' of ''E'' and ''V'' of ''F'' that are also disjoint. More intuitively, this condition says that ''E'' and ''F'' can be separated by neighbourhoods. A T4 space is a T1 space ''X'' that is normal; this is equivalent to ''X'' being normal and Hausdorff. A completely normal space, or , is a topological space ''X'' such that every subspace of ''X'' with subspace topology is a normal space. It turns out that ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separati ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and \infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Baire Space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, analysis, in particular functional analysis. Bourbaki introduced the term "Baire space" in honor of René Baire, who investigated the Baire category theorem in the context of Euclidean space \R^n in his 1899 thesis. Definition The definition that follows is based on the notions of meagre (or first category) set (namely, a set that is a countable union of sets whose closure has empty interior) and nonmeagre (or second category) set (namely, a set that is not meagre). See the corresponding article for details. A topological space X is called a Baire space if it satisfies any of the followin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Completely Metrizable
In mathematics, a completely metrizable space (metrically topologically complete space) is a topological space (''X'', ''T'') for which there exists at least one metric ''d'' on ''X'' such that (''X'', ''d'') is a complete metric space and ''d'' induces the topology ''T''. The term topologically complete space is employed by some authors as a synonym for ''completely metrizable space'', but sometimes also used for other classes of topological spaces, like completely uniformizable spaces or Čechcomplete spaces. Difference between ''complete metric space'' and ''completely metrizable space'' The difference between ''completely metrizable space'' and ''complete metric space'' is in the words ''there exists at least one metric'' in the definition of completely metrizable space, which is not the same as ''there is given a metric'' (the latter would yield the definition of complete metric space). Once we make the choice of the metric on a completely metrizable space (out of all the co ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Topological Property
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space ''X'' possesses that property every space homeomorphic to ''X'' possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets. A common problem in topology is to decide whether two topological spaces are homeomorphic or not. To prove that two spaces are ''not'' homeomorphic, it is sufficient to find a topological property which is not shared by them. Properties of topological properties A property P is: * Hereditary, if for every topological space (X, \mathcal) and X' \subset X, the subspace (X', \mathcal, X') has property P. * Weakly hereditary, if for ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Metric (mathematics)
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3dimensional Euclidean space with its usual notion of distance. Other wellknown examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Metric Space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3dimensional Euclidean space with its usual notion of distance. Other wellknown examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Basis (topology)
In mathematics, a base (or basis) for the topology of a topological space is a family \mathcal of open subsets of such that every open set of the topology is equal to the union of some subfamily of \mathcal. For example, the set of all open intervals in the real number line \R is a basis for the Euclidean topology on \R because every open interval is an open set, and also every open subset of \R can be written as a union of some family of open intervals. Bases are ubiquitous throughout topology. The sets in a base for a topology, which are called , are often easier to describe and use than arbitrary open sets. Many important topological definitions such as continuity and convergence can be checked using only basic open sets instead of arbitrary open sets. Some topologies have a base of open sets with specific useful properties that may make checking such topological definitions easier. Not all families of subsets of a set X form a base for a topology on X. Under some con ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 