Transfer ribonucleic acid (tRNA), formerly referred to as soluble ribonucleic acid (sRNA), is an adaptor
molecule
A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
composed of
RNA
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
, typically 76 to 90
nucleotides
Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
in length (in eukaryotes).
In a
cell, it provides the physical link between the
genetic code
Genetic code is a set of rules used by living cell (biology), cells to Translation (biology), translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished ...
in
messenger RNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein.
mRNA is created during the ...
(mRNA) and the
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
sequence of proteins, carrying the correct sequence of amino acids to be combined by the protein-synthesizing machinery, the
ribosome
Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
. Each three-nucleotide
codon in mRNA is
complemented by a three-nucleotide
anticodon in tRNA. As such, tRNAs are a necessary component of
translation
Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
, the biological synthesis of new
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s in accordance with the genetic code.
Overview
The process of
translation
Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
starts with the information stored in the nucleotide sequence of
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
. This is first transformed into mRNA, then tRNA specifies which three-nucleotide codon from the genetic code corresponds to which amino acid.
Each mRNA codon is recognized by a particular type of tRNA, which docks to it along a three-nucleotide
anticodon, and together they form three
complementary base pair
A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
s.
On the other end of the tRNA is a covalent attachment to the amino acid corresponding to the anticodon sequence, with each type of tRNA attaching to a specific amino acid. Because the genetic code contains multiple codons that specify the same amino acid, there are several tRNA molecules bearing different anticodons which carry the same amino acid.
The covalent attachment to the tRNA
3' end is catalysed by enzymes called
aminoacyl tRNA synthetase
An aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase, is an enzyme that attaches the appropriate amino acid onto its corresponding tRNA. It does so by catalyzing the transesterification of a specific cognate amino acid or its pre ...
s. During protein synthesis, tRNAs with attached amino acids are delivered to the
ribosome
Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
by proteins called
elongation factors, which aid in association of the tRNA with the ribosome, synthesis of the new polypeptide, and translocation (movement) of the ribosome along the mRNA. If the tRNA's anticodon matches the mRNA, another tRNA already
bound to the ribosome transfers the growing polypeptide chain from its 3' end to the amino acid attached to the 3' end of the newly delivered tRNA, a reaction catalyzed by the ribosome. A large number of the individual nucleotides in a tRNA molecule may be
chemically modified, often by
methylation or
deamidation. These unusual bases sometimes affect the tRNA's interaction with
ribosome
Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
s and sometimes occur in the
anticodon to alter base-pairing properties.
The addition of a guanine nucleotide at the -1 position (G-1) to the 5′ end of tRNA-His, catalyzed by
tRNA-His guanylyltransferase (Thg1) and Thg1-like proteins (TLPs) is particularly notable as it proceeds in the 3′ to 5′ direction, which is opposite to the canonical 5′ to 3′ nucleotide addition used by all other known nucleic acid polymerases. This reverse polymerization mechanism is biochemically unique and evolutionarily conserved, highlighting its fundamental importance in tRNA maturation. Homologs of Thg1 are found in all domains of life, where they can also participate in tRNA repair and quality control. The presence of G-1 is a key identity element for tRNA-His, and its absence severely impairs histidylation efficiency and tRNA function.
Structure

The structure of tRNA can be decomposed into its
primary structure
Protein primary structure is the linear sequence of amino acids in a peptide or protein. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthe ...
, its
secondary structure
Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. The two most common Protein structure#Secondary structure, secondary structural elements are alpha helix, alpha helices and beta ...
(usually visualized as the ''cloverleaf structure''), and its
tertiary structure
Protein tertiary structure is the three-dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains and the ...
(all tRNAs have a similar L-shaped 3D structure that allows them to fit into the
P and
A sites of the
ribosome
Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
). The cloverleaf structure becomes the 3D L-shaped structure through coaxial stacking of the helices, which is a common
RNA tertiary structure
Nucleic acid tertiary structure is the Biomolecular structure#Tertiary structure, three-dimensional shape of a nucleic acid polymer. RNA and DNA molecules are capable of diverse functions ranging from molecular recognition to catalysis. Such fun ...
motif. The lengths of each arm, as well as the loop 'diameter', in a tRNA molecule vary from species to species.
The tRNA structure consists of the following:
* The acceptor stem is a 7- to 9-base pair (bp) stem made by the base pairing of the 5′-terminal nucleotide with the 3′-terminal nucleotide (which contains the CCA tail used to attach the amino acid). The acceptor stem may contain non-Watson-Crick base pairs.
* The CCA tail is a
cytosine
Cytosine () (symbol C or Cyt) is one of the four nucleotide bases found in DNA and RNA, along with adenine, guanine, and thymine ( uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attac ...
-cytosine-
adenine
Adenine (, ) (nucleoside#List of nucleosides and corresponding nucleobases, symbol A or Ade) is a purine nucleotide base that is found in DNA, RNA, and Adenosine triphosphate, ATP. Usually a white crystalline subtance. The shape of adenine is ...
sequence at the 3′ end of the tRNA molecule. The amino acid loaded onto the tRNA by
aminoacyl tRNA synthetase
An aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase, is an enzyme that attaches the appropriate amino acid onto its corresponding tRNA. It does so by catalyzing the transesterification of a specific cognate amino acid or its pre ...
s, to form
aminoacyl-tRNA
Aminoacyl-tRNA (also aa-tRNA or charged tRNA) is tRNA to which its cognate amino acid is chemically bonded (charged). The aa-tRNA, along with particular elongation factors, deliver the amino acid to the ribosome for incorporation into the polyp ...
, is covalently bonded to the 3′-hydroxyl group on the CCA tail.
This sequence is important for the recognition of tRNA by enzymes and critical in translation.
In prokaryotes, the CCA sequence is transcribed in some tRNA sequences. In most prokaryotic tRNAs and eukaryotic tRNAs, the CCA sequence is added during processing and therefore does not appear in the tRNA gene.
* The
D loop is a 4- to 6-bp stem ending in a loop that often contains
dihydrouridine.
* The anticodon loop is a 5-bp stem whose loop contains the
anticodon.
* The
TΨC loop is named so because of the characteristic presence of the unusual base Ψ in the loop, where Ψ is
pseudouridine, a modified
uridine. The modified base is often found within the sequence 5'-TΨCGA-3', with the T (
ribothymidine, m5U) and A forming a base pair.
* The variable loop or ''V loop'' sits between the anticodon loop and the ΨU loop and, as its name implies, varies in size from 3 to 21 bases. In some tRNAs, the "loop" is long enough to form a rigid stem, the ''variable arm''.
tRNAs with a V loop more than 10 bases long is classified as "class II" and the rest is called "class I".
Anticodon
An anticodon is a unit of three
nucleotides
Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
corresponding to the three bases of an
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
codon. Each tRNA has a distinct anticodon triplet sequence that can form 3
complementary base pair
A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
s to one or more codons for an amino acid. Some anticodons pair with more than one codon due to
wobble base pairing. Frequently, the first nucleotide of the anticodon is one not found on mRNA:
inosine, which can
hydrogen bond
In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
to more than one base in the corresponding codon position.
In
genetic code
Genetic code is a set of rules used by living cell (biology), cells to Translation (biology), translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished ...
, it is common for a single amino acid to be specified by all four third-position possibilities, or at least by both
pyrimidine
Pyrimidine (; ) is an aromatic, heterocyclic, organic compound similar to pyridine (). One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring. The oth ...
s and
purines; for example, the amino acid
glycine
Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG (G ...
is coded for by the codon sequences GGU, GGC, GGA, and GGG. Other modified nucleotides may also appear at the first anticodon position—sometimes known as the "wobble position"—resulting in subtle changes to the genetic code, as for example in
mitochondria
A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
. The possibility of wobble bases reduces the number of tRNA types required: instead of 61 types with one for each sense codon of the standard genetic code), only 31 tRNAs are required to translate, unambiguously, all 61 sense codons.
Nomenclature
A tRNA is commonly named by its intended amino acid (e.g. ), by its anticodon sequence (e.g. ), or by both (e.g. or ). These two features describe the main function of the tRNA, but do not actually cover the whole diversity of tRNA variation; as a result, numerical suffixes are added to differentiate. tRNAs intended for the same amino acid are called "isotypes"; these with the same anticodon sequence are called "isoacceptors"; and these with both being the same but differing in other places are called "isodecoders".
Aminoacylation
Aminoacylation is the process of adding an aminoacyl group to a compound. It covalently links an
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
to the CCA 3′ end of a tRNA molecule.
Each tRNA is aminoacylated (or ''charged'') with a specific amino acid by an
aminoacyl tRNA synthetase
An aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase, is an enzyme that attaches the appropriate amino acid onto its corresponding tRNA. It does so by catalyzing the transesterification of a specific cognate amino acid or its pre ...
. There is normally a single aminoacyl tRNA synthetase for each amino acid, despite the fact that there can be more than one tRNA, and more than one anticodon for an amino acid. Recognition of the appropriate tRNA by the synthetases is not mediated solely by the anticodon, and the acceptor stem often plays a prominent role.
Reaction:
# amino acid +
ATP → aminoacyl-AMP +
PPi
# aminoacyl-AMP + tRNA → aminoacyl-tRNA +
AMP
Certain organisms can have one or more aminophosphate-tRNA synthetases missing. This leads to charging of the tRNA by a chemically related amino acid, and by use of an enzyme or enzymes, the tRNA is modified to be correctly charged. For example, ''
Helicobacter pylori'' has glutaminyl tRNA synthetase missing. Thus, glutamate tRNA synthetase charges tRNA-glutamine(tRNA-Gln) with
glutamate
Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
. An amidotransferase then converts the acid side chain of the glutamate to the amide, forming the correctly charged gln-tRNA-Gln.
Binding to ribosome
The
ribosome
Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
has three binding sites for tRNA molecules that span the space between the two
ribosomal subunits: the
A (aminoacyl),
P (peptidyl), and
E (exit) sites. In addition, the ribosome has two other sites for tRNA binding that are used during
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
decoding or during the initiation of
protein synthesis. These are the T site (named
elongation factor Tu) and I site (initiation).
By convention, the tRNA binding sites are denoted with the site on the
small ribosomal subunit listed first and the site on the
large ribosomal subunit listed second. For example, the A site is often written A/A, the P site, P/P, and the E site, E/E.
The binding proteins like L27, L2, L14, L15, L16 at the A- and P- sites have been determined by affinity labeling by A. P. Czernilofsky et al. (''Proc. Natl. Acad. Sci, USA'', pp. 230–234, 1974).
Once translation initiation is complete, the first aminoacyl tRNA is located in the P/P site, ready for the elongation cycle described below. During translation elongation, tRNA first binds to the ribosome as part of a complex with elongation factor Tu (
EF-Tu) or its eukaryotic (
eEF-1) or archaeal counterpart. This initial tRNA binding site is called the A/T site. In the A/T site, the A-site half resides in the
small ribosomal subunit where the mRNA decoding site is located. The mRNA decoding site is where the
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
codon is read out during translation. The T-site half resides mainly on the
large ribosomal subunit where EF-Tu or eEF-1 interacts with the ribosome. Once mRNA decoding is complete, the aminoacyl-tRNA is bound in the A/A site and is ready for the next
peptide bond
In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 (carbon number one) of one alpha-amino acid and N2 (nitrogen number two) of another, along a peptide or protein cha ...
to be formed to its attached amino acid. The peptidyl-tRNA, which transfers the growing polypeptide to the aminoacyl-tRNA bound in the A/A site, is bound in the P/P site. Once the peptide bond is formed, the tRNA in the P/P site is acylated, or has a
free 3' end, and the tRNA in the A/A site dissociates the growing polypeptide chain. To allow for the next elongation cycle, the tRNAs then move through hybrid A/P and P/E binding sites, before completing the cycle and residing in the P/P and E/E sites. Once the A/A and P/P tRNAs have moved to the P/P and E/E sites, the mRNA has also moved over by one
codon and the A/T site is vacant, ready for the next round of mRNA decoding. The tRNA bound in the E/E site then leaves the ribosome.
The P/I site is actually the first to bind to aminoacyl tRNA, which is delivered by an initiation factor called
IF2 in bacteria.
However, the existence of the P/I site in eukaryotic or archaeal
ribosome
Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
s has not yet been confirmed. The P-site protein L27 has been determined by affinity labeling by E. Collatz and A. P. Czernilofsky (''FEBS Lett.'', Vol. 63, pp. 283–286, 1976).
tRNA genes
Organisms vary in the number of tRNA
genes
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
in their
genome
A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
. For example, the
nematode
The nematodes ( or ; ; ), roundworms or eelworms constitute the phylum Nematoda. Species in the phylum inhabit a broad range of environments. Most species are free-living, feeding on microorganisms, but many are parasitic. Parasitic worms (h ...
worm ''
C. elegans'', a commonly used model organism in
genetics
Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinians, Augustinian ...
studies, has 29,647 genes in its
nuclear genome, of which 620 code for tRNA. The budding yeast ''
Saccharomyces cerevisiae
''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
'' has 275 tRNA genes in its genome. The number of tRNA genes per genome can vary widely, with bacterial species from groups such as Fusobacteria and Tenericutes having around 30 genes per genome while complex eukaryotic genomes such as the zebrafish (''Danio rerio'') can bear more than 10 thousand tRNA genes.
In the human genome, which, according to January 2013 estimates, has about 20,848 protein coding genes in total, there are 497 nuclear genes encoding cytoplasmic tRNA molecules, and 324 tRNA-derived
pseudogenes—tRNA genes thought to be no longer functional
(although pseudo tRNAs have been shown to be involved in
antibiotic resistance
Antimicrobial resistance (AMR or AR) occurs when microbes evolve mechanisms that protect them from antimicrobials, which are drugs used to treat infections. This resistance affects all classes of microbes, including bacteria (antibiotic resis ...
in bacteria).
As with all eukaryotes, there are 22
mitochondria
A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
l tRNA genes in humans. Mutations in some of these genes have been associated with severe diseases like the
MELAS syndrome. Regions in nuclear
chromosomes, very similar in sequence to mitochondrial tRNA genes, have also been identified (tRNA-lookalikes).
These tRNA-lookalikes are also considered part of the
nuclear mitochondrial DNA (genes transferred from the mitochondria to the nucleus).
The phenomenon of multiple nuclear copies of mitochondrial tRNA (tRNA-lookalikes) has been observed in many higher organisms from human to the opossum
suggesting the possibility that the lookalikes are functional.
Cytoplasmic tRNA genes can be grouped into 49 families according to their anticodon features. These genes are found on all chromosomes, except the 22 and Y chromosome. High clustering on 6p is observed (140 tRNA genes), as well as on chromosome 1.
The
HGNC, in collaboration with the Genomic tRNA Database
GtRNAdb and experts in the field, has approved unique names for human genes that encode tRNAs.
Typically, tRNAs genes from Bacteria are shorter (mean = 77.6 bp) than tRNAs from Archaea (mean = 83.1 bp) and eukaryotes (mean = 84.7 bp).
The mature tRNA follows an opposite pattern with tRNAs from Bacteria being usually longer (median = 77.6 nt) than tRNAs from Archaea (median = 76.8 nt), with eukaryotes exhibiting the shortest mature tRNAs (median = 74.5 nt).
Evolution
Genomic tRNA content is a differentiating feature of genomes among biological domains of life: Archaea present the simplest situation in terms of genomic tRNA content with a uniform number of gene copies, Bacteria have an intermediate situation and Eukarya present the most complex situation.
Eukarya present not only more tRNA gene content than the other two kingdoms but also a high variation in
gene copy number among different isoacceptors, and this complexity seem to be due to duplications of tRNA genes and changes in anticodon specificity .
Evolution of the tRNA gene copy number across different species has been linked to the appearance of specific tRNA modification enzymes (uridine methyltransferases in Bacteria, and adenosine deaminases in Eukarya), which increase the decoding capacity of a given tRNA.
As an example, tRNA
Ala encodes four different tRNA isoacceptors (AGC, UGC, GGC and CGC). In Eukarya, AGC isoacceptors are extremely enriched in gene copy number in comparison to the rest of isoacceptors, and this has been correlated with its A-to-I modification of its wobble base. This same trend has been shown for most amino acids of eukaryal species. Indeed, the effect of these two tRNA modifications is also seen in
codon usage bias. Highly expressed genes seem to be enriched in codons that are exclusively using codons that will be decoded by these modified tRNAs, which suggests a possible role of these codons—and consequently of these tRNA modifications—in translation efficiency.
Many species have lost specific tRNAs during evolution. For instance, both mammals and birds lack the same 14 out of the possible 64 tRNA genes, but other life forms contain these tRNAs. For translating codons for which an exactly pairing tRNA is missing, organisms resort to a strategy called
wobbling, in which imperfectly matched tRNA/mRNA pairs still give rise to translation, although this strategy also increases the propensity for translation errors. The reasons why tRNA genes have been lost during evolution remains under debate but may relate improving resistance to viral infection. Because nucleotide triplets can present more combinations than there are amino acids and associated tRNAs, there is redundancy in the genetic code, and several different 3-nucleotide codons can express the same amino acid. This codon bias is what necessitates codon optimization.
Hypothetical origin
The top half of tRNA (consisting of the T arm and the acceptor stem with 5′-terminal phosphate group and 3′-terminal CCA group) and the bottom half (consisting of the D arm and the anticodon arm) are independent units in structure as well as in function. The top half may have evolved first including the 3′-terminal genomic tag which originally may have marked tRNA-like molecules for replication in early
RNA world. The bottom half may have evolved later as an expansion, e.g. as protein synthesis started in RNA world and turned it into a ribonucleoprotein world (
RNP world). This proposed scenario is called
genomic tag hypothesis. In fact, tRNA and tRNA-like aggregates have an important catalytic influence (i.e., as
ribozymes) on replication still today. These roles may be regarded as '
molecular (or chemical) fossils' of RNA world.
In March 2021, researchers reported evidence suggesting that an early form of transfer RNA could have been a replicator
ribozyme molecule in the very early development of life, or
abiogenesis.
Evolution of type I and type II tRNAs is explained to the last nucleotide by the three 31 nucleotide minihelix tRNA evolution theorem, which also describes the pre-life to life transition on Earth. Three 31 nucleotide minihelices of known sequence were ligated in pre-life to generate a 93 nucleotide tRNA precursor. In pre-life, a 31 nucleotide D loop minihelix (GCGGCGGUAGCCUAGCCUAGCCUACCGCCGC) was ligated to two 31 nucleotide anticodon loop minihelices (GCGGCGGCCGGGCU/???AACCCGGCCGCCGC; / indicates a U-turn conformation in the RNA backbone; ? indicates unknown base identity) to form the 93 nucleotide tRNA precursor. To generate type II tRNAs, a single internal 9 nucleotide deletion occurred within ligated acceptor stems (CCGCCGCGCGGCGG goes to GGCGG). To generate type I tRNAs, an additional, related 9 nucleotide deletion occurred within ligated acceptor stems within the variable loop region (CCGCCGCGCGGCGG goes to CCGCC). These two 9 nucleotide deletions are identical on complementary RNA strands. tRNAomes (all of the tRNAs of an organism) were generated by duplication and mutation.
Very clearly, life evolved from a polymer world that included RNA repeats and RNA inverted repeats (stem-loop-stems). Of particular importance were the 7 nucleotide U-turn loops (CU/???AA). After LUCA (the last universal common (cellular) ancestor), the T loop evolved to interact with the D loop at the tRNA “elbow” (T loop: UU/CAAAU, after LUCA). Polymer world progressed to minihelix world to tRNA world, which has endured for ~4 billion years. Analysis of tRNA sequences reveals a major successful pathway in evolution of life on Earth.
tRNA-derived fragments
tRNA-derived fragments (or tRFs) are short molecules that emerge after cleavage of the mature tRNAs or the precursor transcript.
Both cytoplasmic and mitochondrial tRNAs can produce fragments.
There are at least four structural types of tRFs believed to originate from mature tRNAs, including the relatively long tRNA halves and short 5'-tRFs, 3'-tRFs and i-tRFs.
The precursor tRNA can be cleaved to produce molecules from the 5' leader or 3' trail sequences. Cleavage enzymes include Angiogenin, Dicer, RNase Z and RNase P.
Especially in the case of Angiogenin, the tRFs have a characteristically unusual cyclic phosphate at their 3' end and a hydroxyl group at the 5' end.
tRFs appear to play a role in
RNA interference
RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by ...
, specifically in the suppression of retroviruses and retrotransposons that use tRNA as a primer for replication. Half-tRNAs cleaved by
angiogenin are also known as tiRNAs. The biogenesis of smaller fragments, including those that function as
piRNA
Pirna (; , ) is a town in Saxony, Germany and capital of the administrative district Sächsische Schweiz-Osterzgebirge. The town's population is over 37,000. Pirna is located near Dresden and is an important district town as well as a ''Große ...
s, are less understood.
tRFs have multiple dependencies and roles; such as exhibiting significant changes between sexes, among races and disease status.
Functionally, they can be loaded on Ago and act through RNAi pathways,
participate in the formation of stress granules,
displace mRNAs from RNA-binding proteins
or inhibit translation.
At the system or the organismal level, the four types of tRFs have a diverse spectrum of activities. Functionally, tRFs are associated with viral infection,
cancer,
cell proliferation
and also with epigenetic transgenerational regulation of metabolism.
tRFs are not restricted to humans and have been shown to exist in multiple organisms.
Two online tools are available for those wishing to learn more about tRFs: the framework for the interactive exploration of
mitochondrial and
nuclear
tRNA fragments
MINTbase and the relational database of
Transfer
RNA related
Fragments
tRFdb.
MINTbase also provides a naming scheme for the naming of tRFs calle
tRF-license plates(or MINTcodes) that is genome independent; the scheme compresses an RNA sequence into a shorter string.
Engineered tRNAs
tRNAs with modified anticodons and/or acceptor stems can be used to modify the genetic code. Scientists have successfully repurposed codons (sense and stop) to accept amino acids (natural and novel), for both initiation (see:
start codon) and elongation.
In 1990, tRNA (modified from the tRNA gen
metY was inserted into ''E. coli'', causing it to initiate protein synthesis at the UAG stop codon, as long as it is preceded by a strong
Shine-Dalgarno sequence. At initiation it not only inserts the traditional
formylmethionine, but also formylglutamine, as glutamyl-tRNA synthase also recognizes the new tRNA. The experiment was repeated in 1993, now with an elongator tRNA modified to be recognized by the
methionyl-tRNA formyltransferase. A similar result was obtained in ''
Mycobacterium
''Mycobacterium'' is a genus of over 190 species in the phylum Actinomycetota, assigned its own family, Mycobacteriaceae. This genus includes pathogens known to cause serious diseases in mammals, including tuberculosis (''Mycobacterium tuberculo ...
''. Later experiments showed that the new tRNA was orthogonal to the regular AUG start codon showing no detectable off-target translation initiation events in a genomically recoded ''E. coli'' strain.
tRNA biogenesis
In
eukaryotic
The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
cells, tRNAs are
transcribed by
RNA polymerase III as pre-tRNAs in the nucleus.
RNA polymerase III recognizes two highly conserved downstream promoter sequences: the 5′ intragenic control region (5′-ICR, D-control region, or A box), and the 3′-ICR (T-control region or B box) inside tRNA genes.
The first promoter begins at +8 of mature tRNAs and the second promoter is located 30–60 nucleotides downstream of the first promoter. The transcription terminates after a stretch of four or more
thymidine
Thymidine (nucleoside#List of nucleosides and corresponding nucleobases, symbol dT or dThd), also known as deoxythymidine, deoxyribosylthymine, or thymine deoxyriboside, is a pyrimidine nucleoside, deoxynucleoside. Deoxythymidine is the DNA nuc ...
s.

Pre-tRNAs undergo extensive modifications inside the nucleus. Some pre-tRNAs contain
intron
An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e., a region inside a gene."The notion of the cistron .e., gen ...
s that are spliced, or cut, to form the functional tRNA molecule; in bacteria these self-
splice, whereas in eukaryotes and
archaea
Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
they are removed by tRNA-splicing
endonuclease
In molecular biology, endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain (namely DNA or RNA). Some, such as deoxyribonuclease I, cut DNA relatively nonspecifically (with regard to sequence), while man ...
s. Eukaryotic pre-tRNA contains bulge-helix-bulge (BHB) structure motif that is important for recognition and precise splicing of tRNA intron by endonucleases.
This motif position and structure are evolutionarily conserved. However, some organisms, such as unicellular algae have a non-canonical position of BHB-motif as well as 5′- and 3′-ends of the spliced intron sequence.
The 5′ sequence is removed by
RNase P,
whereas the 3′ end is removed by the
tRNase Z enzyme.
A notable exception is in the
archaeon ''
Nanoarchaeum equitans,'' which does not possess an RNase P enzyme and has a promoter placed such that transcription starts at the 5′ end of the mature tRNA.
The non-templated 3′ CCA tail is added by a
nucleotidyl transferase.
Before tRNAs are
exported into the
cytoplasm
The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
by Los1/
Xpo-t,
tRNAs are
aminoacylated.
The order of the processing events is not conserved.
For example, in
yeast
Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom (biology), kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are est ...
, the splicing is not carried out in the nucleus but at the cytoplasmic side of
mitochondria
A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
l membranes.
History
The existence of tRNA was first hypothesized by
Francis Crick
Francis Harry Compton Crick (8 June 1916 – 28 July 2004) was an English molecular biologist, biophysicist, and neuroscientist. He, James Watson, Rosalind Franklin, and Maurice Wilkins played crucial roles in deciphering the Nucleic acid doub ...
as the "
adaptor hypothesis" based on the assumption that there must exist an adapter molecule capable of mediating the translation of the RNA alphabet into the protein alphabet.
Paul C Zamecnik,
Mahlon Hoagland, and
Mary Louise Stephenson discovered tRNA. Significant research on structure was conducted in the early 1960s by
Alex Rich and
Donald Caspar, two researchers in Boston, the Jacques Fresco group in
Princeton University
Princeton University is a private university, private Ivy League research university in Princeton, New Jersey, United States. Founded in 1746 in Elizabeth, New Jersey, Elizabeth as the College of New Jersey, Princeton is the List of Colonial ...
and a
United Kingdom
The United Kingdom of Great Britain and Northern Ireland, commonly known as the United Kingdom (UK) or Britain, is a country in Northwestern Europe, off the coast of European mainland, the continental mainland. It comprises England, Scotlan ...
group at
King's College London
King's College London (informally King's or KCL) is a public university, public research university in London, England. King's was established by royal charter in 1829 under the patronage of George IV of the United Kingdom, King George IV ...
. In 1965,
Robert W. Holley of
Cornell University
Cornell University is a Private university, private Ivy League research university based in Ithaca, New York, United States. The university was co-founded by American philanthropist Ezra Cornell and historian and educator Andrew Dickson W ...
reported the primary structure and suggested three secondary structures. tRNA was first crystallized in Madison, Wisconsin, by Robert M. Bock.
The cloverleaf structure was ascertained by several other studies in the following years and was finally confirmed using
X-ray crystallography
X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
studies in 1974. Two independent groups,
Kim Sung-Hou working under
Alexander Rich
Alexander Rich (15 November 1924 – 27 April 2015) was an American biologist and biophysicist. He was the William Thompson Sedgwick Professor of Biophysics at MIT (since 1958) and Harvard Medical School. Rich earned an A.B. ('' magna cum ...
and a British group headed by
Aaron Klug, published the same crystallography findings within a year.
Clinical relevance
Interference with aminoacylation may be useful as an approach to treating some diseases: cancerous cells may be relatively vulnerable to disturbed aminoacylation compared to healthy cells. The protein synthesis associated with cancer and viral biology is often very dependent on specific tRNA molecules. For instance, for liver cancer charging tRNA-Lys-CUU with lysine sustains liver cancer cell growth and metastasis, whereas healthy cells have a much lower dependence on this tRNA to support cellular physiology.
Similarly, hepatitis E virus requires a tRNA landscape that substantially differs from that associated with uninfected cells.
Hence, inhibition of aminoacylation of specific tRNA species is considered a promising novel avenue for the rational treatment of a plethora of diseases.
See also
*
Cloverleaf model of tRNA
*
Kim Sung-Hou
*
Kissing stem-loop
*
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
*
non-coding RNA
A non-coding RNA (ncRNA) is a functional RNA molecule that is not Translation (genetics), translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally imp ...
and
intron
An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e., a region inside a gene."The notion of the cistron .e., gen ...
s
*
Slippery sequence
*
tmRNA
*
Transfer RNA-like structures
*
Translation
Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
*
tRNADB
*
Wobble hypothesis
*
Aminoacyl-tRNA
Aminoacyl-tRNA (also aa-tRNA or charged tRNA) is tRNA to which its cognate amino acid is chemically bonded (charged). The aa-tRNA, along with particular elongation factors, deliver the amino acid to the ribosome for incorporation into the polyp ...
References
External links
tRNAdb (updated and completely restructured version of Spritzls tRNA compilation)tRNA surprising role in breast cancer growthtRNA link to heart disease and strokeGtRNAdb: Collection of tRNAs identified from complete genomesHGNC: Gene nomenclature of human tRNAs© RCSB Protein Data Bank
*
*
*
Rfam entry for tRNA
{{DEFAULTSORT:Transfer Rna
RNA
Protein biosynthesis
Non-coding RNA
Articles containing video clips