HOME

TheInfoList



OR:

Metal–organic frameworks (MOFs) are a class of porous polymers consisting of
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
clusters (also known as Secondary Building Units - SBUs) coordinated to organic
ligands In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's ...
to form one-, two- or three-dimensional structures. The organic ligands included are sometimes referred to as "struts" or "linkers", one example being 1,4-benzenedicarboxylic acid (BDC). MOFs are classified as reticular materials. More formally, a metal–organic framework is a potentially porous extended structure made from metal ions and organic linkers. An extended structure is a structure whose sub-units occur in a constant ratio and are arranged in a repeating pattern. MOFs are a subclass of coordination networks, which is a coordination compound extending, through repeating coordination entities, in one dimension, but with cross-links between two or more individual chains, loops, or spiro-links, or a coordination compound extending through repeating coordination entities in two or three dimensions. Coordination networks including MOFs further belong to
coordination polymer Coordination may refer to: * Coordination (linguistics), a compound grammatical construction * Coordination complex, consisting of a central atom or ion and a surrounding array of bound molecules or ions ** A chemical reaction to form a coordinat ...
s, which is a coordination compound with repeating coordination entities extending in one, two, or three dimensions. Most of the MOFs reported in the literature are crystalline compounds, but there are also
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
MOFs, and other disordered phases. In most cases for MOFs, the pores are stable during the elimination of the guest molecules (often solvents) and could be refilled with other compounds. Because of this property, MOFs are of interest for the storage of gases such as
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
and
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
. Other possible applications of MOFs are in gas purification, in
gas separation Gas separation can refer to any of a number of techniques used to separate gases, either to give multiple products or to purify a single product. Swing adsorption techniques Pressure swing adsorption Pressure swing adsorption (PSA) pressurizes ...
, in water remediation, in
catalysis Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
, as conducting solids and as
supercapacitor alt=Supercapacitor, upright=1.5, Schematic illustration of a supercapacitor upright=1.5, A diagram that shows a hierarchical classification of supercapacitors and capacitors of related types A supercapacitor (SC), also called an ultracapacitor, ...
s. The synthesis and properties of MOFs constitute the primary focus of the discipline called (from
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
, "small net"). In contrast to MOFs, covalent organic frameworks (COFs) are made entirely from light elements (H, B, C, N, and O) with extended structures.


History and the first MOF

In 1995, Omar M. Yaghi demonstrated the crystallization of metal-organic structures using carboxylate-based linkers, a breakthrough that paved the way for creating stable and crystalline porous materials. He further advanced the field in 1998 by introducing the concept of secondary building units (SBUs) — metal-carboxylate clusters that serve as rigid building blocks for constructing frameworks with permanent porosity. This innovation allowed for precise structural design and improved mechanical stability, enabling MOFs to retain their porosity under industrial conditions. Yaghi measured gas adsorption isotherms of these materials, proving their potential for gas storage and separation applications. A breakthrough came in 1999 with the development of MOF-5, the first MOF to exhibit ultra-high porosity. MOF-5, constructed from zinc oxide clusters and terephthalate linkers, illustrated unique properties such as high surface area, structural robustness, and versatility, and established MOFs as a platform technology with applications ranging from gas storage and separation to catalysis and sensing. With his significant pioneering work on MOFs, today Yaghi is widely recognized as the founder of reticular chemistry.


Structure

MOFs are composed of two main components: an inorganic metal cluster (often referred to as a secondary-building unit or SBU) and an organic molecule called a linker. For this reason, the materials are often referred to as hybrid organic-inorganic materials. The organic units are typically mono-, di-, tri-, or tetravalent ligands. The choice of metal and linker dictates the structure and hence properties of the MOF. For example, the metal's
coordination Coordination may refer to: * Coordination (linguistics), a compound grammatical construction * Coordination complex, consisting of a central atom or ion and a surrounding array of bound molecules or ions ** A chemical reaction to form a coordinati ...
preference influences the size and shape of pores by dictating how many ligands can bind to the metal, and in which orientation. To describe and organize the structures of MOFs, a system of nomenclature has been developed. Subunits of a MOF, called secondary building units (SBUs), can be described by topologies common to several structures. Each topology, also called a net, is assigned a symbol, consisting of three lower-case letters in bold. MOF-5, for example, has a pcu net. Attached to the SBUs are
bridging ligand In coordination chemistry, a bridging ligand is a ligand that connects two or more atoms, usually metal ions. The ligand may be atomic or polyatomic. Virtually all complex organic compounds can serve as bridging ligands, so the term is usually r ...
s. For MOFs, typical bridging ligands are di- and tricarboxylic acids. These ligands typically have rigid backbones. Examples are benzene-1,4-dicarboxylic acid (BDC or terephthalic acid), biphenyl-4,4-dicarboxylic acid (BPDC), and the tricarboxylic acid trimesic acid.


Synthesis


General synthesis

The study of MOFs has roots in
coordination chemistry A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of chemical bond, bound molecules or ions, that are in turn known as ' ...
and solid-state inorganic chemistry, but it developed into a new field. In addition, MOFs are constructed from bridging organic ligands that remain intact throughout the synthesis. Zeolite synthesis often makes use of a "template". Templates are ions that influence the structure of the growing inorganic framework. Typical templating ions are quaternary ammonium cations, which are removed later. In MOFs, the framework is templated by the SBU (secondary building unit) and the organic ligands. A templating approach that is useful for MOFs intended for gas storage is the use of metal-binding solvents such as ''N'',''N''-diethylformamide and water. In these cases, metal sites are exposed when the solvent is evacuated, allowing hydrogen to bind at these sites. Four developments were particularly important in advancing the chemistry of MOFs. (1) The geometric principle of construction where metal-containing units were kept in rigid shapes. Early MOFs contained single atoms linked to ditopic coordinating linkers. The approach not only led to the identification of a small number of preferred topologies that could be targeted in designed synthesis, but was the central point to achieve a permanent porosity. (2) The use of the isoreticular principle where the size and the nature of a structure changes without changing its topology led to MOFs with ultrahigh
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
and unusually large pore openings. (3) Post- synthetic modification of MOFs increased their functionality by reacting organic units and metal-organic complexes with linkers. (4) Multifunctional MOFs incorporated multiple functionalities in a single framework. Since ligands in MOFs typically bind reversibly, the slow growth of crystals often allows defects to be redissolved, resulting in a material with millimeter-scale crystals and a near-equilibrium defect density. Solvothermal synthesis is useful for growing crystals suitable to structure determination, because crystals grow over the course of hours to days. However, the use of MOFs as storage materials for consumer products demands an immense scale-up of their synthesis. Scale-up of MOFs has not been widely studied, though several groups have demonstrated that microwaves can be used to nucleate MOF crystals rapidly from solution. This technique, termed "microwave-assisted solvothermal synthesis", is widely used in the zeolite literature, and produces micron-scale crystals in a matter of seconds to minutes, in yields similar to the slow growth methods. Some MOFs, such as the mesoporous MIL-100(Fe), can be obtained under mild conditions at room temperature and in green solvents (water, ethanol) through scalable synthesis methods. A solvent-free synthesis of a range of crystalline MOFs has been described. Usually the metal acetate and the organic proligand are mixed and ground up with a ball mill. Cu3(BTC)2 can be quickly synthesised in this way in quantitative yield. In the case of Cu3(BTC)2 the morphology of the solvent free synthesised product was the same as the industrially made Basolite C300. It is thought that localised melting of the components due to the high collision energy in the ball mill may assist the reaction. The formation of acetic acid as a by-product in the reactions in the ball mill may also help in the reaction having a solvent effect in the ball mill. It has been shown that the addition of small quantities of ethanol for the mechanochemical synthesis of Cu3(BTC)2 significantly reduces the amounts of structural defects in the obtained material. A recent advancement in the solvent-free preparation of MOF films and composites is their synthesis by
chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (electro ...
. This process, MOF-CVD, was first demonstrated for ZIF-8 and consists of two steps. In a first step, metal oxide precursor layers are deposited. In the second step, these precursor layers are exposed to sublimed ligand molecules, that induce a phase transformation to the MOF crystal lattice. Formation of water during this reaction plays a crucial role in directing the transformation. This process was successfully scaled up to an integrated cleanroom process, conforming to industrial microfabrication standards. Numerous methods have been reported for the growth of MOFs as oriented thin films. However, these methods are suitable only for the synthesis of a small number of MOF topologies. One such example being the vapor-assisted conversion (VAC) which can be used for the thin film synthesis of several UiO-type MOFs.


High-throughput synthesis

High-throughput (HT) methods are a part of combinatorial chemistry and a tool for increasing efficiency. There are two synthetic strategies within the HT-methods: In the combinatorial approach, all reactions take place in one vessel, which leads to product mixtures. In the parallel synthesis, the reactions take place in different vessels. Furthermore, a distinction is made between thin films and solvent-based methods. Solvothermal synthesis can be carried out conventionally in a teflon reactor in a convection oven or in glass reactors in a microwave oven (high-throughput microwave synthesis). The use of a microwave oven changes, in part dramatically, the reaction parameters. In addition to solvothermal synthesis, there have been advances in using supercritical fluid as a solvent in a continuous flow reactor. Supercritical water was first used in 2012 to synthesize copper and nickel-based MOFs in just seconds. In 2020,
supercritical carbon dioxide Supercritical carbon dioxide (s) is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure. Carbon dioxide usually behaves as a gas in air at standard temperature and pressure (STP), or a ...
was used in a continuous flow reactor along the same time scale as the supercritical water-based method, but the lower critical point of carbon dioxide allowed for the synthesis of the zirconium-based MOF UiO-66.


High-throughput solvothermal synthesis

In high-throughput solvothermal synthesis, a solvothermal reactor with (e.g.) 24 cavities for teflon reactors is used. Such a reactor is sometimes referred to as a multiclav. The reactor block or reactor insert is made of stainless steel and contains 24 reaction chambers, which are arranged in four rows. With the miniaturized teflon reactors, volumes of up to 2 mL can be used. The reactor block is sealed in a stainless steel autoclave; for this purpose, the filled reactors are inserted into the bottom of the reactor, the teflon reactors are sealed with two teflon films and the reactor top side is put on. The autoclave is then closed in a hydraulic press. The sealed solvothermal reactor can then be subjected to a temperature-time program. The reusable teflon film serves to withstand the mechanical stress, while the disposable teflon film seals the reaction vessels. After the reaction, the products can be isolated and washed in parallel in a vacuum filter device. On the filter paper, the products are then present separately in a so-called sample library and can subsequently be characterized by automated X-ray powder diffraction. The informations obtained are then used to plan further syntheses.


Pseudomorphic replication

Pseudomorph In mineralogy, a pseudomorph is a mineral or mineral compound that appears in an atypical form (crystal system), resulting from a substitution process in which the appearance and dimensions remain constant, but the original mineral is replaced b ...
ic mineral replacement events occur whenever a mineral phase comes into contact with a fluid with which it is out of equilibrium. Re-equilibration will tend to take place to reduce the free energy and transform the initial phase into a more thermodynamically stable phase, involving dissolution and reprecipitation subprocesses. Inspired by such geological processes, MOF thin films can be grown through the combination of
atomic layer deposition Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called wiktionary:precu ...
(ALD) of
aluminum oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly ...
onto a suitable substrate (e.g. FTO) and subsequent solvothermal microwave synthesis. The aluminum oxide layer serves both as an architecture-directing agent and as a metal source for the backbone of the MOF structure. The construction of the porous 3D metal-organic framework takes place during the microwave synthesis, when the atomic layer deposited substrate is exposed to a solution of the requisite linker in a DMF/H2O 3:1 mixture (v/v) at elevated temperature. Analogous, Kornienko and coworkers described in 2015 the synthesis of a cobalt-porphyrin MOF (Al2(OH)2TCPP-Co; TCPP-H2=4,4,4,4‴-(porphyrin-5,10,15,20-tetrayl)tetrabenzoate), the first MOF catalyst constructed for the electrocatalytic conversion of aqueous to CO.


Post-synthetic modification

Although the three-dimensional structure and internal environment of the pores can be in theory controlled through proper selection of nodes and organic linking groups, the direct synthesis of such materials with the desired functionalities can be difficult due to the high sensitivity of MOF systems. Thermal and chemical sensitivity, as well as high reactivity of reaction materials, can make forming desired products challenging to achieve. The exchange of guest molecules and counter-ions and the removal of solvents allow for some additional functionality but are still limited to the integral parts of the framework. The post-synthetic exchange of organic linkers and metal ions is an expanding area of the field and opens up possibilities for more complex structures, increased functionality, and greater system control.


Ligand exchange

Post-synthetic modification techniques can be used to exchange an existing organic linking group in a prefabricated MOF with a new linker by ligand exchange or partial ligand exchange. This exchange allows for the pores and, in some cases the overall framework of MOFs, to be tailored for specific purposes. Some of these uses include fine-tuning the material for selective adsorption, gas storage, and catalysis. To perform ligand exchange prefabricated MOF crystals are washed with solvent and then soaked in a solution of the new linker. The exchange often requires heat and occurs on the time scale of a few days. Post-synthetic ligand exchange also enables the incorporation of
functional group In organic chemistry, a functional group is any substituent or moiety (chemistry), moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions r ...
s into MOFs that otherwise would not survive MOF synthesis, due to temperature, pH, or other reaction conditions, or hinder the synthesis itself by competition with donor groups on the loaning ligand.


Metal exchange

Post-synthetic modification techniques can also be used to exchange an existing metal ion in a prefabricated MOF with a new metal ion by metal ion exchange. The complete metal metathesis from an integral part of the framework has been achieved without altering the framework or pore structure of the MOF. Similarly to post-synthetic ligand exchange, post-synthetic metal exchange is performed by washing prefabricated MOF crystals with solvent and then soaking the crystal in a solution of the new metal. Post-synthetic metal exchange allows for a simple route to the formation of MOFs with the same framework yet different metal ions.


Stratified synthesis

In addition to modifying the functionality of the ligands and metals themselves, post-synthetic modification can be used to expand upon the structure of the MOF. Using post-synthetic modification MOFs can be converted from a highly ordered crystalline material toward a heterogeneous porous material. Using post-synthetic techniques, it is possible for the controlled installation of domains within a MOF crystal which exhibit unique structural and functional characteristics. Core-shell MOFs and other layered MOFs have been prepared where layers have unique functionalization but in most cases are crystallographically compatible from layer to layer.


Open coordination sites

In some cases MOF metal nodes have an unsaturated environment, and it is possible to modify this environment using different techniques. If the size of the ligand matches the size of the pore aperture, it is possible to install additional ligands to existing MOF structure. Sometimes metal nodes have a good binding affinity for inorganic species. For instance, it was shown that metal nodes can perform an extension, and create a bond with the uranyl cation. Installation between layers of 2D MOF When working with two dimensional metal organic frameworks, it is possible to coordinate a ligand in-between the layers of the MOF. This modification can occur during synthesis of the MOF, referred to as de novo synthesis, where the components of the MOF and the desired inter-layer ligand are reacted together. This forms not only the MOF but coordinates the ligand to the MOF at the same time. The other way is via post-synthetic modification, most commonly using a solvothermal synthesis method. The ligand is most commonly will coordinate to the MOF at the metal node, carefully selecting the metal node used in the MOF and the binding motif of the chosen ligand to promote coordination. If the two dimensional MOF uses a porphyrin linker in-between the metal nodes, it is also possible for the second linker to coordinate to the MOF via a metal within the porphyrin as well as coordinating to the metal node between the porphyrin linker, providing two coordination sites for the linker. One example of this is in the 2D Zn2(ZnTCPP) MOF composed of zinc nodes and a Tetrakis (4-carboxyphenyl) porphyrin linker, where the photochromic ligand bis(5- pyridyl-2-methyl-3-thienyl)cyclopentene (BPMTC) was able to be incorporated between the Zn2(ZnTCPP) layers. These two dimensional MOFs maintain their crystallinity (confirmed commonly with PXRD) when a second linker is installed and show variable stability outside of suspension. The installation of a variety of different linkers within different two dimensional MOFs can lead to a broad range of applications some of which mentioned below.


Composite materials

Another approach to increasing adsorption in MOFs is to alter the system in such a way that chemisorption becomes possible. This functionality has been introduced by making a composite material, which contains a MOF and a complex of
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
with
activated carbon Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that greatly increase the surface ar ...
. In an effect known as
hydrogen spillover In heterogeneous catalysis, hydrogen molecules can be adsorbed and dissociated by the metal catalyst. Hydrogen spillover is the migration of hydrogen atoms from the metal catalyst onto the nonmetal support or adsorbate. Spillover, generally, is t ...
, H2 can bind to the platinum surface through a dissociative mechanism which cleaves the hydrogen molecule into two hydrogen atoms and enables them to travel down the activated carbon onto the surface of the MOF. This innovation produced a threefold increase in the room-temperature storage capacity of a MOF; however, desorption can take upwards of 12 hours, and reversible desorption is sometimes observed for only two cycles. The relationship between hydrogen spillover and hydrogen storage properties in MOFs is not well understood but may prove relevant to hydrogen storage.


Catalysis

MOFs have potential as heterogeneous catalysts, although applications have not been commercialized. Their high surface area, tunable porosity, diversity in metal and functional groups make them especially attractive for use as catalysts. Zeolites are extraordinarily useful in catalysis. Zeolites are limited by the fixed tetrahedral coordination of the Si/Al connecting points and the two-coordinated oxide linkers. Fewer than 200 zeolites are known. In contrast with this limited scope, MOFs exhibit more diverse coordination geometries, polytopic linkers, and ancillary
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
s (F, OH, H2O among others). It is also difficult to obtain zeolites with pore sizes larger than 1 nm, which limits the catalytic applications of zeolites to relatively small organic molecules (typically no larger than xylenes). Furthermore, mild synthetic conditions typically employed for MOF synthesis allow direct incorporation of delicate functionalities into the framework structures. Such a process would not be possible with zeolites or other microporous crystalline oxide-based materials because of the harsh conditions typically used for their synthesis (e.g.,
calcination Calcination is thermal treatment of a solid chemical compound (e.g. mixed carbonate ores) whereby the compound is raised to high temperature without melting under restricted supply of ambient oxygen (i.e. gaseous O2 fraction of air), generally f ...
at high temperatures to remove organic templates). Metal–organic framework MIL-101 is one of the most used MOFs for catalysis incorporating different transition metals such as Cr. However, the stability of some MOF photocatalysts in aqueous medium and under strongly oxidizing conditions is very low. Zeolites still cannot be obtained in enantiopure form, which precludes their applications in catalytic asymmetric synthesis, e.g., for the pharmaceutical, agrochemical, and fragrance industries. Enantiopure chiral ligands or their metal complexes have been incorporated into MOFs to lead to efficient asymmetric catalysts. Even some MOF materials may bridge the gap between zeolites and
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s when they combine isolated polynuclear sites, dynamic host–guest responses, and a
hydrophobic In chemistry, hydrophobicity is the chemical property of a molecule (called a hydrophobe) that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, thu ...
cavity environment. MOFs might be useful for making semi-conductors. Theoretical calculations show that MOFs are
semiconductors A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping levels ...
or
insulators Insulator may refer to: * Insulator (electricity), a substance that resists electricity ** Pin insulator, a device that isolates a wire from a physical support such as a pin on a utility pole ** Strain insulator, a device that is designed to work ...
with band gaps between 1.0 and 5.5 eV which can be altered by changing the degree of
conjugation Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form *Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change o ...
in the ligands indicating its possibility for being photocatalysts.


Design

Like other heterogeneous catalysts, MOFs may allow for easier post-reaction separation and recyclability than homogeneous catalysts. In some cases, they also give a highly enhanced catalyst stability. Additionally, they typically offer substrate-size selectivity. Nevertheless, while clearly important for reactions in living systems, selectivity on the basis of substrate size is of limited value in abiotic catalysis, as reasonably pure feedstocks are generally available.


Metal ions or metal clusters

Among the earliest reports of MOF-based catalysis was the cyanosilylation of
aldehyde In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
s by a 2D MOF (layered square grids) of formula Cd(4,4-bpy)2(NO3)2. This investigation centered mainly on size- and shape-selective clathration. A second set of examples was based on a two-dimensional, square-grid MOF containing single Pd(II) ions as nodes and 2-hydroxypyrimidinolates as struts. Despite initial coordinative saturation, the
palladium Palladium is a chemical element; it has symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas (formally 2 Pallas), ...
centers in this MOF catalyze alcohol oxidation, olefin hydrogenation, and Suzuki C–C coupling. At a minimum, these reactions necessarily entail redox oscillations of the metal nodes between Pd(II) and Pd(0) intermediates accompanying by drastic changes in coordination number, which would certainly lead to destabilization and potential destruction of the original framework if all the Pd centers are catalytically active. The observation of substrate shape- and size-selectivity implies that the catalytic reactions are heterogeneous and are indeed occurring within the MOF. Nevertheless, at least for hydrogenation, it is difficult to rule out the possibility that catalysis is occurring at the surface of MOF-encapsulated palladium clusters/
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s (i.e., partial decomposition sites) or defect sites, rather than at transiently labile, but otherwise intact, single-atom MOF nodes. "Opportunistic" MOF-based catalysis has been described for the cubic compound, MOF-5. This material comprises coordinatively saturated Zn4O nodes and fully complexed BDC struts (see above for abbreviation); yet it apparently catalyzes the Friedel–Crafts tert-butylation of both
toluene Toluene (), also known as toluol (), is a substituted aromatic hydrocarbon with the chemical formula , often abbreviated as , where Ph stands for the phenyl group. It is a colorless, water Water is an inorganic compound with the c ...
and
biphenyl Biphenyl (also known as diphenyl, phenylbenzene, 1,1′-biphenyl, lemonene or BP) is an organic compound that forms colorless crystals. Particularly in older literature, compounds containing the functional group consisting of biphenyl less one ...
. Furthermore, para
alkylation Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene (or their equivalents). Alkylating agents are reagents for effecting al ...
is strongly favored over ortho alkylation, a behavior thought to reflect the encapsulation of reactants by the MOF.


Functional struts

The porous-framework material [Cu3(btc)2(H2O)3/nowiki>, also known as HKUST-1, contains large cavities having windows of diameter ~6 Å. The coordinated water molecules are easily removed, leaving open Cu(II) sites. Kaskel and co-workers showed that these
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any ...
sites could catalyze the cyanosilylation of
benzaldehyde Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful. It is a colorless liquid with a characteristic almond-li ...
or
acetone Acetone (2-propanone or dimethyl ketone) is an organic compound with the chemical formula, formula . It is the simplest and smallest ketone (). It is a colorless, highly Volatile organic compound, volatile, and flammable liquid with a charact ...
. The anhydrous version of HKUST-1 is an acid catalyst. Compared to Brønsted vs.
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any ...
-catalyzed pathways, the product selectivity are distinctive for three reactions: isomerization of α-pinene oxide, cyclization of citronellal, and rearrangement of α-bromoacetals, indicating that indeed u3(btc)2functions primarily as a
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any ...
catalyst Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
. The product selectivity and yield of catalytic reactions (e.g. cyclopropanation) have also been shown to be impacted by defective sites, such as Cu(I) or incompletely deprotonated carboxylic acid moities of the linkers. MIL-101, a large-cavity MOF having the formula r3F(H2O)2O(BDC)3 is a cyanosilylation catalyst. The coordinated water molecules in MIL-101 are easily removed to expose Cr(III) sites. As one might expect, given the greater Lewis acidity of Cr(III) vs. Cu(II), MIL-101 is much more active than HKUST-1 as a catalyst for the cyanosilylation of
aldehyde In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
s. Additionally, the Kaskel group observed that the catalytic sites of MIL-101, in contrast to those of HKUST-1, are immune to unwanted reduction by
benzaldehyde Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful. It is a colorless liquid with a characteristic almond-li ...
. The Lewis-acid-catalyzed cyanosilylation of
aromatic In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated system, conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected from conjugati ...
aldehyde In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
s has also been carried out by Long and co-workers using a MOF of the formula Mn3 Mn4Cl)3BTT8(CH3OH)10 This material contains a three-dimensional pore structure, with the pore diameter equaling 10 Å. In principle, either of the two types of Mn(II) sites could function as a
catalyst Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
. Noteworthy features of this catalyst are high conversion yields (for small substrates) and good substrate-size-selectivity, consistent with channellocalized catalysis.


Encapsulated catalysts

The MOF encapsulation approach invites comparison to earlier studies of oxidative catalysis by zeolite-encapsulated Fe( porphyrin) as well as Mn( porphyrin) systems. The
zeolite Zeolites are a group of several microporous, crystalline aluminosilicate minerals commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a meta ...
studies generally employed iodosylbenzene (PhIO), rather than TPHP as oxidant. The difference is likely mechanistically significant, thus complicating comparisons. Briefly, PhIO is a single oxygen atom donor, while TBHP is capable of more complex behavior. In addition, for the MOF-based system, it is conceivable that oxidation proceeds via both oxygen transfer from a
manganese Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
oxo intermediate as well as a
manganese Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
-initiated radical chain reaction pathway. Regardless of mechanism, the approach is a promising one for isolating and thereby stabilizing the porphyrins against both oxo-bridged dimer formation and oxidative degradation.


Metal-free organic cavity modifiers

Most examples of MOF-based
catalysis Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
make use of metal ions or atoms as active sites. Among the few exceptions are two
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
- and two
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
-containing MOFs synthesized by Rosseinsky and co-workers. These compounds employ
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the Proteinogenic amino acid, 22 α-amino acids incorporated into p ...
(L- or D-
aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of protein ...
) together with dipyridyls as struts. The
coordination Coordination may refer to: * Coordination (linguistics), a compound grammatical construction * Coordination complex, consisting of a central atom or ion and a surrounding array of bound molecules or ions ** A chemical reaction to form a coordinati ...
chemistry is such that the amine group of the
aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of protein ...
cannot be protonated by added HCl, but one of the
aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of protein ...
carboxylate In organic chemistry, a carboxylate is the conjugate base of a carboxylic acid, (or ). It is an anion, an ion with negative charge. Carboxylate salts are salts that have the general formula , where M is a metal and ''n'' is 1, 2,... ...
s can. Thus, the framework-incorporated
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
can exist in a form that is not accessible for the free
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
. While the
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
-based compounds are marginally
porous Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
, on account of tiny channel dimensions, the
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
versions are clearly porous. The Rosseinsky group showed that the
carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an Substituent, R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl ...
s behave as Brønsted acidic catalysts, facilitating (in the copper cases) the ring-opening methanolysis of a small, cavity-accessible
epoxide In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ...
at up to 65% yield. Superior homogeneous catalysts exist however. Kitagawa and co-workers have reported the synthesis of a catalytic MOF having the formula d(4-BTAPA)2(NO3)2 The MOF is three-dimensional, consisting of an identical catenated pair of networks, yet still featuring pores of molecular dimensions. The nodes consist of single
cadmium Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...
ions, octahedrally ligated by pyridyl nitrogens. From a
catalysis Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
standpoint, however, the most interesting feature of this material is the presence of guest-accessible
amide In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a chemical compound, compound with the general formula , where R, R', and R″ represent any group, typically organyl functional group, groups or hydrogen at ...
functionalities. The amides are capable of base-catalyzing the Knoevenagel condensation of
benzaldehyde Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful. It is a colorless liquid with a characteristic almond-li ...
with
malononitrile Malononitrile is an organic compound nitrile with the formula . It is a colorless or white solid, although aged samples appear yellow or even brown. It is a widely used building block in organic synthesis. Preparation and reactions It can be pre ...
. Reactions with larger
nitrile In organic chemistry, a nitrile is any organic compound that has a functional group. The name of the compound is composed of a base, which includes the carbon of the , suffixed with "nitrile", so for example is called " propionitrile" (or pr ...
s, however, are only marginally accelerated, implying that catalysis takes place chiefly within the material's channels rather than on its exterior. A noteworthy finding is the lack of catalysis by the free strut in homogeneous solution, evidently due to intermolecular H-bonding between bptda molecules. Thus, the MOF architecture elicits catalytic activity not otherwise encountered. In an interesting alternative approach, Férey and coworkers were able to modify the interior of MIL-101 via Cr(III) coordination of one of the two available
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
atoms Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other ...
of each of several
ethylenediamine Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately ...
molecules. The free non-coordinated ends of the ethylenediamines were then used as Brønsted basic catalysts, again for Knoevenagel condensation of
benzaldehyde Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful. It is a colorless liquid with a characteristic almond-li ...
with
nitrile In organic chemistry, a nitrile is any organic compound that has a functional group. The name of the compound is composed of a base, which includes the carbon of the , suffixed with "nitrile", so for example is called " propionitrile" (or pr ...
s. A third approach has been described by Kim Kimoon and coworkers. Using a
pyridine Pyridine is a basic (chemistry), basic heterocyclic compound, heterocyclic organic compound with the chemical formula . It is structurally related to benzene, with one methine group replaced by a nitrogen atom . It is a highly flammable, weak ...
-functionalized derivative of tartaric acid and a Zn(II) source they were able to synthesize a 2D MOF termed POST-1. POST-1 possesses 1D channels whose cross sections are defined by six trinuclear
zinc Zinc is a chemical element; it has symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodic tabl ...
clusters and six struts. While three of the six
pyridine Pyridine is a basic (chemistry), basic heterocyclic compound, heterocyclic organic compound with the chemical formula . It is structurally related to benzene, with one methine group replaced by a nitrogen atom . It is a highly flammable, weak ...
s are coordinated by zinc ions, the remaining three are protonated and directed toward the channel interior. When neutralized, the noncoordinated pyridyl groups are found to catalyze
transesterification Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. Strong acids catalyze the r ...
reactions, presumably by facilitating
deprotonation Deprotonation (or dehydronation) is the removal (transfer) of a proton (or hydron, or hydrogen cation), (H+) from a Brønsted–Lowry acid in an acid–base reaction.Henry Jakubowski, Biochemistry Online Chapter 2A3, https://employees.csbsju.ed ...
of the reactant
alcohol Alcohol may refer to: Common uses * Alcohol (chemistry), a class of compounds * Ethanol, one of several alcohols, commonly known as alcohol in everyday life ** Alcohol (drug), intoxicant found in alcoholic beverages ** Alcoholic beverage, an alco ...
. The absence of significant catalysis when large alcohols are employed strongly suggests that the catalysis occurs within the channels of the MOF.


Achiral catalysis


Metals as catalytic sites

The metals in the MOF structure often act as
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any ...
s. The metals in MOFs often coordinate to labile solvent molecules or counter ions which can be removed after activation of the framework. The Lewis acidic nature of such unsaturated metal centers can activate the coordinated organic substrates for subsequent organic transformations. The use of unsaturated metal centers was demonstrated in the cyanosilylation of aldehydes and imines by Fujita and coworkers in 2004. They reported MOF of composition which was obtained by treating linear bridging ligand 4,4- bipyridine (bpy) with . The Cd(II) centers in this MOF possess a distorted octahedral geometry having four pyridines in the equatorial positions, and two water molecules in the axial positions to form a two-dimensional infinite network. On activation, two water molecules were removed leaving the metal centers unsaturated and Lewis acidic. The Lewis acidic character of metal center was tested on cyanosilylation reactions of
imine In organic chemistry, an imine ( or ) is a functional group or organic compound containing a carbon–nitrogen double bond (). The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bon ...
where the imine gets attached to the Lewis-acidic metal centre resulting in higher electrophilicity of imines. For the cyanosilylation of imines, most of the reactions were complete within 1 h affording aminonitriles in quantitative yield. Kaskel and coworkers carried out similar cyanosilylation reactions with coordinatively unsaturated metals in three-dimensional (3D) MOFs as heterogeneous catalysts. The 3D framework u3(btc)2(H2O)3(btc: benzene-1,3,5-tricarboxylate) ( HKUST-1) used in this study was first reported by Williams ''et al.'' The open framework of u3(btc)2(H2O)3is built from dimeric cupric tetracarboxylate units (paddle-wheels) with aqua molecules coordinating to the axial positions and btc bridging ligands. The resulting framework after removal of two water molecules from axial positions possesses porous channel. This activated MOF catalyzes the trimethylcyanosilylation of
benzaldehyde Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful. It is a colorless liquid with a characteristic almond-li ...
s with a very low conversion (<5% in 24 h) at 293 K. As the reaction temperature was raised to 313 K, a good conversion of 57% with a selectivity of 89% was obtained after 72 h. In comparison, less than 10% conversion was observed for the background reaction (without MOF) under the same conditions. But this strategy suffers from some problems like 1) the decomposition of the framework with increase of the reaction temperature due to the reduction of Cu(II) to Cu(I) by
aldehyde In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
s; 2) strong solvent inhibition effect; electron donating solvents such as THF competed with aldehydes for coordination to the Cu(II) sites, and no cyanosilylation product was observed in these solvents; 3) the framework instability in some organic solvents. Several other groups have also reported the use of metal centres in MOFs as catalysts. Again, electron-deficient nature of some metals and metal clusters makes the resulting MOFs efficient
oxidation Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
catalysts. Mori and coworkers reported MOFs with Cu2 paddle wheel units as heterogeneous catalysts for the oxidation of
alcohol Alcohol may refer to: Common uses * Alcohol (chemistry), a class of compounds * Ethanol, one of several alcohols, commonly known as alcohol in everyday life ** Alcohol (drug), intoxicant found in alcoholic beverages ** Alcoholic beverage, an alco ...
s. The catalytic activity of the resulting MOF was examined by carrying out alcohol oxidation with H2O2 as the oxidant. It also catalyzed the oxidation of primary alcohol, secondary alcohol and benzyl alcohols with high selectivity. Hill ''et al.'' have demonstrated the sulfoxidation of
thioether In organic chemistry, a sulfide (British English sulphide) or thioether is an organosulfur functional group with the connectivity as shown on right. Like many other sulfur-containing compounds, Volatile organic compound, volatile sulfides have ...
s using a MOF based on vanadium-oxo cluster V6O13 building units.


Functional linkers as catalytic sites

Functional linkers can be also utilized as catalytic sites. A 3D MOF (4-BTAPA = 1,3,5-benzene tricarboxylic acid tris -(4-pyridyl)amide DMF = ''N'',''N''-dimethylformamide) constructed by tridentate amide linkers and cadmium salt catalyzes the Knoevenagel condensation reaction. The pyridine groups on the ligand 4-BTAPA act as ligands binding to the octahedral cadmium centers, while the amide groups can provide the functionality for interaction with the incoming substrates. Specifically, the −NH moiety of the amide group can act as
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
acceptor whereas the C=O group can act as electron donor to activate organic substrates for subsequent reactions. Ferey ''et al.'' reported a robust and highly porous MOF r33-O)F(H2O)2(BDC)3(BDC: benzene-1,4-dicarboxylate) where instead of directly using the unsaturated Cr(III) centers as catalytic sites, the authors grafted
ethylenediamine Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately ...
(ED) onto the Cr(III) sites. The uncoordinated ends of ED can act as base catalytic sites. ED-grafted MOF was investigated for Knoevenagel condensation reactions. A significant increase in conversion was observed for ED-grafted MOF compared to untreated framework (98% vs. 36%). Another example of linker modification to generate catalytic site is iodo-functionalized well-known Al-based MOFs (MIL-53 and DUT-5) and Zr-based MOFs (UiO-66 and UiO-67) for the catalytic oxidation of diols.


Entrapment of catalytically active noble metal nanoparticles

The entrapment of catalytically active
noble metal A noble metal is ordinarily regarded as a metallic chemical element, element that is generally resistant to corrosion and is usually found in nature in its native element, raw form. Gold, platinum, and the other platinum group metals (ruthenium ...
s can be accomplished by grafting on functional groups to the unsaturated metal site on MOFs. Ethylenediamine (ED) has been shown to be grafted on the Cr metal sites and can be further modified to encapsulate noble metals such as Pd. The entrapped Pd has similar catalytic activity as Pd/C in the Heck reaction. Ruthenium nanoparticles have catalytic activity in a number of reactions when entrapped in the MOF-5 framework. This Ru-encapsulated MOF catalyzes oxidation of
benzyl alcohol Benzyl alcohol (also known as α-cresol) is an aromatic alcohol with the formula C6H5CH2OH. The benzyl group is often abbreviated "Bn" (not to be confused with "Bz" which is used for benzoyl), thus benzyl alcohol is denoted as BnOH. Benzyl a ...
to
benzaldehyde Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful. It is a colorless liquid with a characteristic almond-li ...
, although degradation of the MOF occurs. The same catalyst was used in the hydrogenation of
benzene Benzene is an Organic compound, organic chemical compound with the Chemical formula#Molecular formula, molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar hexagonal Ring (chemistry), ring with one hyd ...
to
cyclohexane Cyclohexane is a cycloalkane with the molecular formula . Cyclohexane is non-polar. Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexan ...
. In another example, Pd nanoparticles embedded within defective HKUST-1 framework enable the generation of tunable Lewis basic sites. Therefore, this multifunctional Pd/MOF composite is able to perform stepwise benzyl alcohol oxidation and Knoevenagel condensation.


Reaction hosts with size selectivity

MOFs might prove useful for both photochemical and
polymerization In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many fo ...
reactions due to the tuneability of the size and shape of their pores. A 3D MOF (bpdc: biphenyldicarboxylate, bpy: 4,4-bipyridine) was synthesized by Li and coworkers. Using this MOF photochemistry of ''o''-methyl dibenzyl ketone (''o''-MeDBK) was extensively studied. This molecule was found to have a variety of photochemical reaction properties including the production of cyclopentanol. MOFs have been used to study polymerization in the confined space of MOF channels. Polymerization reactions in confined space might have different properties than polymerization in open space.
Styrene Styrene is an organic compound with the chemical formula C6H5CH=CH2. Its structure consists of a vinyl group as substituent on benzene. Styrene is a colorless, oily liquid, although aged samples can appear yellowish. The compound evaporates easi ...
, divinylbenzene, substituted
acetylene Acetylene (Chemical nomenclature, systematic name: ethyne) is a chemical compound with the formula and structure . It is a hydrocarbon and the simplest alkyne. This colorless gas is widely used as a fuel and a chemical building block. It is u ...
s, methyl methacrylate, and vinyl acetate have all been studied by Kitagawa and coworkers as possible activated monomers for radical polymerization. Due to the different linker size the MOF channel size could be tunable on the order of roughly 25 and 100 Å2. The channels were shown to stabilize propagating radicals and suppress termination reactions when used as radical polymerization sites.


Asymmetric catalysis

Several strategies exist for constructing homochiral MOFs. Crystallization of homochiral MOFs via self-resolution from achiral linker ligands is one of the way to accomplish such a goal. However, the resulting bulk samples contain both
enantiomorph In geometry, a figure is chiral (and said to have chirality) if it is not identical to its mirror image, or, more precisely, if it cannot be mapped to its mirror image by Rotation (mathematics), rotations and Translation (geometry), translations a ...
s and are racemic. Aoyama and coworkers successfully obtained homochiral MOFs in the bulk from achiral ligands by carefully controlling nucleation in the
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
growth process. Zheng and coworkers reported the synthesis of homochiral MOFs from achiral ligands by chemically manipulating the statistical fluctuation of the formation of enantiomeric pairs of crystals. Growing MOF crystals under chiral influences is another approach to obtain homochiral MOFs using achiral linker ligands. Rosseinsky and coworkers have introduced a chiral coligand to direct the formation of homochiral MOFs by controlling the
handedness In human biology, handedness is an individual's preferential use of one hand, known as the dominant hand, due to and causing it to be stronger, faster or more Fine motor skill, dextrous. The other hand, comparatively often the weaker, less dext ...
of the
helices A helix (; ) is a shape like a cylindrical coil spring or the thread of a machine screw. It is a type of smoothness (mathematics), smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as ...
during the crystal growth. Morris and coworkers utilized
ionic liquid An ionic liquid (IL) is a salt (chemistry), salt in the liquid state at ambient conditions. In some contexts, the term has been restricted to salts whose melting point is below a specific temperature, such as . While ordinary liquids such as wate ...
with chiral cations as reaction media for synthesizing MOFs, and obtained homochiral MOFs. The most straightforward and rational strategy for synthesizing homochiral MOFs is, however, to use the readily available chiral linker ligands for their construction.


Homochiral MOFs with interesting functionalities and reagent-accessible channels

Homochiral MOFs have been made by Lin and coworkers using 2,2-bis(diphenylphosphino)-1,1-binaphthyl ( BINAP) and 1,1-bi-2,2-naphthol ( BINOL) as chiral ligands. These ligands can coordinate with catalytically active metal sites to enhance the enantioselectivity. A variety of linking groups such as
pyridine Pyridine is a basic (chemistry), basic heterocyclic compound, heterocyclic organic compound with the chemical formula . It is structurally related to benzene, with one methine group replaced by a nitrogen atom . It is a highly flammable, weak ...
, phosphonic acid, and
carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an Substituent, R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl ...
can be selectively introduced to the 3,3, 4,4, and the 6,6 positions of the 1,1'-binaphthyl moiety. Moreover, by changing the length of the linker ligands the porosity and framework structure of the MOF can be selectively tuned.


Postmodification of homochiral MOFs

Lin and coworkers have shown that the postmodification of MOFs can be achieved to produce enantioselective homochiral MOFs for use as catalysts. The resulting 3D homochiral MOF (L=(R)-6,6'-dichloro-2,2'-dihydroxyl-1,1'-binaphthyl-bipyridine) synthesized by Lin was shown to have a similar catalytic efficiency for the diethylzinc addition reaction as compared to the homogeneous analogue when was pretreated by Ti(OiPr)4 to generate the grafted Ti- BINOLate species. The catalytic activity of MOFs can vary depending on the framework structure. Lin and others found that MOFs synthesized from the same materials could have drastically different catalytic activities depending on the framework structure present.


Homochiral MOFs with precatalysts as building blocks

Another approach to construct catalytically active homochiral MOFs is to incorporate chiral metal complexes which are either active catalysts or precatalysts directly into the framework structures. For example, Hupp and coworkers have combined a chiral ligand and bpdc (bpdc: biphenyldicarboxylate) with and obtained twofold interpenetrating 3D networks. The orientation of chiral ligand in the frameworks makes all Mn(III) sites accessible through the channels. The resulting open frameworks showed catalytic activity toward asymmetric olefin epoxidation reactions. No significant decrease of catalyst activity was observed during the reaction and the catalyst could be recycled and reused several times. Lin and coworkers have reported zirconium phosphonate-derived Ru-BINAP systems.
Zirconium Zirconium is a chemical element; it has Symbol (chemistry), symbol Zr and atomic number 40. First identified in 1789, isolated in impure form in 1824, and manufactured at scale by 1925, pure zirconium is a lustrous transition metal with a greyis ...
phosphonate-based chiral porous hybrid materials containing the Ru(BINAP)(diamine)Cl2 precatalysts showed excellent enantioselectivity (up to 99.2% ee) in the asymmetric hydrogenation of aromatic ketones.


Biomimetic design and photocatalysis

Some MOF materials may resemble
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s when they combine isolated polynuclear sites, dynamic host–guest responses, and
hydrophobic In chemistry, hydrophobicity is the chemical property of a molecule (called a hydrophobe) that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, thu ...
cavity environment which are characteristics of an enzyme. Some well-known examples of cooperative catalysis involving two metal ions in biological systems include: the diiron sites in
methane monooxygenase Methane monooxygenase (MMO) is an enzyme capable of oxidizing the C-H bond in methane as well as other alkanes. Methane monooxygenase belongs to the class of oxidoreductase enzymes (). There are two forms of MMO: the well-studied soluble form (s ...
, dicopper in
cytochrome c oxidase The enzyme cytochrome c oxidase or Complex IV (was , now reclassified as a translocasEC 7.1.1.9 is a large transmembrane protein complex found in bacteria, archaea, and the mitochondria of eukaryotes. It is the last enzyme in the Cellular respir ...
, and tricopper oxidases which have analogy with polynuclear clusters found in the 0D coordination polymers, such as binuclear Cu2 paddlewheel units found in MOP-1 and u3(btc)2(btc=benzene-1,3,5-tricarboxylate) in HKUST-1 or trinuclear units such as in MIL-88, and IRMOP-51. Thus, 0D MOFs have accessible biomimetic catalytic centers. In enzymatic systems, protein units show "molecular recognition", high affinity for specific substrates. It seems that molecular recognition effects are limited in zeolites by the rigid zeolite structure. In contrast, dynamic features and guest-shape response make MOFs more similar to enzymes. Indeed, many hybrid frameworks contain organic parts that can rotate as a result of stimuli, such as light and heat. The porous channels in MOF structures can be used as
photocatalysis In chemistry, photocatalysis is the acceleration of a photoreaction in the presence of a photocatalyst, the excited state of which "repeatedly interacts with the reaction partners forming reaction intermediates and regenerates itself after each ...
sites. In photocatalysis, the use of mononuclear complexes is usually limited either because they only undergo single-electron process or from the need for high-energy irradiation. In this case, binuclear systems have a number of attractive features for the development of photocatalysts. For 0D MOF structures, polycationic nodes can act as semiconductor
quantum dots Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic i ...
which can be activated upon photostimuli with the linkers serving as photon antennae. Theoretical calculations show that MOFs are
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s or insulators with band gaps between 1.0 and 5.5 eV which can be altered by changing the degree of conjugation in the ligands. Experimental results show that the
band gap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
of IRMOF-type samples can be tuned by varying the functionality of the linker. An integrated MOF nanozyme was developed for anti-inflammation therapy.


Mechanical properties

Implementing MOFs in industry necessitates a thorough understanding of the mechanical properties since most processing techniques (e.g. extrusion and pelletization) expose the MOFs to substantial mechanical compressive stresses. The mechanical response of porous structures is of interest as these structures can exhibit unusual response to high pressures. While
zeolite Zeolites are a group of several microporous, crystalline aluminosilicate minerals commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a meta ...
s ( microporous,
aluminosilicate Aluminosilicate refers to materials containing anionic Si-O-Al linkages. Commonly, the associate cations are sodium (Na+), potassium (K+) and protons (H+). Such materials occur as minerals, coal combustion products and as synthetic materials, of ...
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2011): Mi ...
s) can give some insights into the mechanical response of MOFs, the presence of organic linkers as opposed to
zeolite Zeolites are a group of several microporous, crystalline aluminosilicate minerals commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a meta ...
s, makes for novel mechanical responses. MOFs are very structurally diverse meaning that it is challenging to classify all of their mechanical properties. Additionally, variability in MOFs from batch to batch and extreme experimental conditions (
diamond anvil cell A diamond anvil cell (DAC) is a high-pressure device used in geology, engineering, and materials science experiments. It permits the compression of a small (sub- millimeter-sized) piece of material to extreme pressures, typically up to around 1 ...
s) mean that experimental determination of mechanical response to loading is limited, however many computational models have been made to determine structure-property relationships. Main MOF systems that have been explored are zeolitic imidazolate frameworks (ZIFs), Carboxylate MOFs, Zirconium-based MOFs, among others. Generally, the MOFs undergo three processes under compressive loading (which is relevant in a processing context): amorphization, hyperfilling, and/or pressure induced phase transitions. During amorphization linkers buckle and the internal porosity within the MOF collapses. During hyperfilling the MOF which is being hydrostatically compressed in a liquid (typically solvent) will expand rather than contract due to a filling of pores with the loading media. Finally, pressure induced phase transitions where the structure of the crystal is altered during the loading are possible. The response of the MOF is predominantly dependent on the linker species and the inorganic nodes.


Zeolitic imidazolate frameworks (ZIFs)

Several different mechanical phenomena have been observed in zeolitic imidazolate frameworks (ZIFs), the most widely studied MOF for mechanical properties due to their many similarities to zeolites. General trends for the ZIF family are the tendency of the
Young's modulus Young's modulus (or the Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Youn ...
and hardness of the ZIFs to decrease as the accessible pore volume increases. The bulk moduli of ZIF-62 series increase with the increasing of benzoimidazolate (bim) concentration. ZIF-62 shows a continuous phase transition from open pore (''op'') to close pore (''cp'') phase when bim concentration is over 0.35 per formular unit. The accessible pore size and volume of ZIF-62-bim0.35 can be precisely tuned by applying adequate pressures. Another study has shown that under hydrostatic loading in solvent the ZIF-8 material expands as opposed to contracting. This is a result of hyperfilling of the internal pores with solvent. A computational study demonstrated that ZIF-4 and ZIF-8 materials undergo a shear softening mechanism with amorphizing (at ~ 0.34 GPa) of the material under hydrostatic loading, while still possessing a bulk modulus on the order of 6.5 GPa. Additionally, the ZIF-4 and ZIF-8 MOFs are subject to many pressure dependent phase transitions.


Carboxylate-based MOFs

Carboxylate MOFs come in many forms and have been widely studied. Herein, HKUST-1, MOF-5, and the MIL series are discussed as representative examples of the carboxylate MOF class.


HKUST-1

HKUST-1 consists of a dimeric Cu-paddlewheel that possesses two pore types. Under pelletization MOFs such as HKUST-1 exhibit a pore collapse. Although most carboxylate MOFs have a negative thermal expansion (they densify during heating), it was found that the hardness and Young's moduli unexpectedly decrease with increasing temperature from disordering of linkers. It was also found computationally that a more mesoporous structure has a lower bulk modulus. However, an increased bulk modulus was observed in systems with a few large mesopores versus many small mesopores even though both pore size distributions had the same total pore volume. The HKUST-1 shows a similar, "hyperfilling" phenomenon to the ZIF structures under hydrostatic loading.


MOF-5

MOF-5 has tetranuclear nodes in an octahedral configuration with an overall cubic structure. MOF-5 has a compressibility and Young's modulus (~14.9 GPa) comparable to wood, which was confirmed with
density functional theory Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
(DFT) and nanoindentation. While it was shown that the MOF-5 can demonstrate the hyperfilling phenomenon within a loading media of solvent, these MOFs are very sensitive to pressure and undergo amorphization/pressure induced pore collapse at a pressure of 3.5 MPa when there is no fluid in the pores.


MIL-53

MIL-53 MOFs possess a "wine rack" structure. These MOFs have been explored for anisotropy in
Young's modulus Young's modulus (or the Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Youn ...
due to the flexibility of loading, and the potential for negative linear compressibility when compressing in one direction, due to the ability of the wine rack opening during loading.


Zirconium-based MOFs

Zirconium-based MOFs such as UiO-66 are a very robust class of MOFs (attributed to strong hexanuclear Zr_6 metallic nodes) with increased resistance to heat, solvents, and other harsh conditions, which makes them of interest in terms of mechanical properties. Determinations of shear modulus and pelletization have shown that the UiO-66 MOFs are very mechanically robust and have high tolerance for pore collapse when compared to ZIFs and carboxylate MOFs. Although the UiO-66 MOF shows increased stability under pelletization, the UiO-66 MOFs amorphized fairly rapidly under ball milling conditions due to destruction of linker coordinating inorganic nodes.


Applications


Hydrogen storage

Molecular A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemistry, ...
hydrogen has the highest
specific energy Specific energy or massic energy is energy per unit mass. It is also sometimes called gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, st ...
of any fuel. However unless the hydrogen gas is compressed, its volumetric energy density is very low, so the transportation and storage of hydrogen require energy-intensive compression and liquefaction processes. Therefore, development of new hydrogen storage methods which decrease the concomitant pressure required for practical volumetric energy density is an active area of research. MOFs attract attention as materials for adsorptive hydrogen storage because of their high
specific surface area Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, (with units of m2/kg or m2/g). Alternatively, it may be defined as SA per solid or bulk volume (units of m2/m3 or m−1). I ...
s and surface to volume ratios, as well as their chemically tunable structures. Compared to an empty
gas cylinder A gas cylinder is a pressure vessel for storage and containment of gases at above atmospheric pressure. Gas storage cylinders may also be called ''bottles''. Inside the cylinder the stored contents may be in a state of compressed gas, vapor ov ...
, a MOF-filled gas cylinder can store more hydrogen at a given pressure because hydrogen molecules
adsorb Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which ...
to the surface of MOFs. Furthermore, MOFs are free of dead-volume, so there is almost no loss of storage capacity as a result of space-blocking by non-accessible volume. Also, because the hydrogen uptake is based primarily on
physisorption Physisorption, also called physical adsorption, is a process in which the electronic structure of the atom or molecule is barely wikt:perturb, perturbed upon adsorption. Overview The fundamental interacting force of physisorption is Van der Waals ...
, many MOFs have a fully reversible uptake-and-release behavior. No large activation barriers are required when liberating the adsorbed hydrogen. The storage capacity of a MOF is limited by the liquid-phase density of hydrogen because the benefits provided by MOFs can be realized only if the hydrogen is in its gaseous state. The extent to which a gas can adsorb to a MOF's surface depends on the temperature and pressure of the gas. In general, adsorption increases with decreasing temperature and increasing pressure (until a maximum is reached, typically 20–30 bar, after which the adsorption capacity decreases). However, MOFs to be used for
hydrogen storage Several methods exist for storing hydrogen. These include mechanical approaches such as using high pressures and low temperatures, or employing chemical compounds that release H2 upon demand. While large amounts of hydrogen are produced by variou ...
in automotive
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
s need to operate efficiently at ambient temperature and pressures between 1 and 100 bar, as these are the values that are deemed safe for automotive applications. The U.S. Department of Energy (DOE) has published a list of yearly technical system targets for on-board hydrogen storage for light-duty fuel cell vehicles which guide researchers in the field (5.5 wt %/40 g L−1 by 2017; 7.5 wt %/70 g L−1 ultimate). Materials with high porosity and high surface area such as MOFs have been designed and synthesized in an effort to meet these targets. These adsorptive materials generally work via physical adsorption rather than chemisorption due to the large HOMO-LUMO gap and low HOMO energy level of molecular hydrogen. A benchmark material to this end is MOF-177 which was found to store hydrogen at 7.5 wt % with a volumetric capacity of 32 g L−1 at 77 K and 70 bar. MOF-177 consists of n4Osup>6+ clusters interconnected by 1,3,5-benzenetribenzoate organic linkers and has a measured BET surface area of 4630 m2 g−1. Another exemplary material is PCN-61 which exhibits a hydrogen uptake of 6.24 wt % and 42.5 g L−1 at 35 bar and 77 K and 2.25 wt % at atmospheric pressure. PCN-61 consists of u2sup>4+ paddle-wheel units connected through 5,5,5-benzene-1,3,5-triyltris(1-ethynyl-2-isophthalate) organic linkers and has a measured BET surface area of 3000 m2 g−1. Despite these promising MOF examples, the classes of synthetic porous materials with the highest performance for practical hydrogen storage are
activated carbon Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that greatly increase the surface ar ...
and covalent organic frameworks (COFs).


Design principles

Practical applications of MOFs for hydrogen storage are met with several challenges. For hydrogen adsorption near room temperature, the hydrogen
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
would need to be increased considerably. Several classes of MOFs have been explored, including
carboxylate In organic chemistry, a carboxylate is the conjugate base of a carboxylic acid, (or ). It is an anion, an ion with negative charge. Carboxylate salts are salts that have the general formula , where M is a metal and ''n'' is 1, 2,... ...
-based MOFs,
heterocyclic A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, proper ...
azolate-based MOFs, metal-cyanide MOFs, and covalent organic frameworks. Carboxylate-based MOFs have by far received the most attention because # they are either commercially available or easily synthesized, # they have high acidity (pKa ~ 4) allowing for facile ''
in situ is a Latin phrase meaning 'in place' or 'on site', derived from ' ('in') and ' ( ablative of ''situs'', ). The term typically refers to the examination or occurrence of a process within its original context, without relocation. The term is use ...
'' deprotonation, # the metal-carboxylate bond formation is reversible, facilitating the formation of well-ordered crystalline MOFs, and # the bridging bidentate coordination ability of carboxylate groups favors the high degree of framework connectivity and strong metal-ligand bonds necessary to maintain MOF architecture under the conditions required to evacuate the solvent from the pores. The most common
transition metals In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
employed in carboxylate-based frameworks are Cu2+ and Zn2+. Lighter main-group metal ions have also been explored. Be12(OH)12(BTB)4, the first successfully synthesized and structurally characterized MOF consisting of a light main group metal ion, shows high hydrogen storage capacity, but it is too toxic to be employed practically. There is considerable effort being put forth in developing MOFs composed of other light main group metal ions, such as magnesium in Mg4(BDC)3. The following is a list of several MOFs that are considered to have the best properties for hydrogen storage as of May 2012 (in order of decreasing hydrogen storage capacity). While each MOF described has its advantages, none of these MOFs reach all of the standards set by the U.S. DOE. Therefore, it is not yet known whether materials with high surface areas, small pores, or di- or trivalent metal clusters produce the most favorable MOFs for hydrogen storage.


Structural impacts on hydrogen storage capacity

To date, hydrogen storage in MOFs at room temperature is a battle between maximizing storage capacity and maintaining reasonable desorption rates, while conserving the integrity of the adsorbent framework (e.g. completely evacuating pores, preserving the MOF structure, etc.) over many cycles. There are two major strategies governing the design of MOFs for hydrogen storage: :1) to increase the theoretical storage capacity of the material, and :2) to bring the operating conditions closer to ambient temperature and pressure. Rowsell and Yaghi have identified several directions to these ends in some of the early papers.


=Surface area

= The general trend in MOFs used for hydrogen storage is that the greater the surface area, the more hydrogen the MOF can store. High surface area materials tend to exhibit increased micropore volume and inherently low bulk density, allowing for more hydrogen adsorption to occur.


=Hydrogen adsorption enthalpy

= High hydrogen adsorption
enthalpy Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
is also important. Theoretical studies have shown that 22–25 kJ/mol interactions are ideal for hydrogen storage at room temperature, as they are strong enough to adsorb H2, but weak enough to allow for quick desorption. The interaction between hydrogen and uncharged organic linkers is not this strong, and so a considerable amount of work has gone in synthesis of MOFs with exposed metal sites, to which hydrogen adsorbs with an enthalpy of 5–10 kJ/mol. Synthetically, this may be achieved by using
ligands In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's ...
whose geometries prevent the metal from being fully coordinated, by removing volatile metal-bound solvent molecules over the course of synthesis, and by post-synthetic impregnation with additional metal cations. and are great examples of increased binding energy due to open metal coordination sites; however, their high metal-hydrogen bond dissociation energies result in a tremendous release of heat upon loading with hydrogen, which is not favorable for
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
s. MOFs, therefore, should avoid orbital interactions that lead to such strong metal-hydrogen bonds and employ simple charge-induced
dipole In physics, a dipole () is an electromagnetic phenomenon which occurs in two ways: * An electric dipole moment, electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple ...
interactions, as demonstrated in Mn3 Mn4Cl)3(BTT)8sub>2. An association energy of 22–25 kJ/mol is typical of charge-induced dipole interactions, and so there is interest in the use of charged linkers and metals. The metal–hydrogen bond strength is diminished in MOFs, probably due to charge diffusion, so 2+ and 3+ metal ions are being studied to strengthen this interaction even further. A problem with this approach is that MOFs with exposed metal surfaces have lower concentrations of linkers; this makes them difficult to synthesize, as they are prone to framework collapse. This may diminish their useful lifetimes as well.


=Sensitivity to airborne moisture

= MOFs are frequently sensitive to moisture in the air. In particular, IRMOF-1 degrades in the presence of small amounts of water at room temperature. Studies on metal analogues have unraveled the ability of metals other than Zn to stand higher water concentrations at high temperatures. To compensate for this, specially constructed storage containers are required, which can be costly. Strong metal-ligand bonds, such as in metal-imidazolate, -triazolate, and -pyrazolate frameworks, are known to decrease a MOF's sensitivity to air, reducing the expense of storage.


=Pore size

= In a microporous material where
physisorption Physisorption, also called physical adsorption, is a process in which the electronic structure of the atom or molecule is barely wikt:perturb, perturbed upon adsorption. Overview The fundamental interacting force of physisorption is Van der Waals ...
and weak
van der Waals forces In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical ele ...
dominate adsorption, the storage density is greatly dependent on the size of the pores. Calculations of idealized homogeneous materials, such as graphitic carbons and
carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''S ...
s, predict that a microporous material with 7 Å-wide pores will exhibit maximum hydrogen uptake at room temperature. At this width, exactly two layers of hydrogen molecules adsorb on opposing surfaces with no space left in between. 10 Å-wide pores are also of ideal size because at this width, exactly three layers of hydrogen can exist with no space in between. (A hydrogen molecule has a bond length of 0.74 Å with a van der Waals radius of 1.17 Å for each atom; therefore, its effective van der Waals length is 3.08 Å.)


=Structural defects

= Structural defects also play an important role in the performance of MOFs. Room-temperature hydrogen uptake via bridged
spillover Spillover may refer to: * Adsorption spillover, a chemical phenomenon involving the movement of atoms adsorbed onto a metal surface * Catalyst support#Spillover * Behavioral spillover, the effect that one behavior has on other behaviors with a s ...
is mainly governed by structural defects, which can have two effects: :1) a partially collapsed framework can block access to pores; thereby reducing hydrogen uptake, and :2) lattice defects can create an intricate array of new pores and channels causing increased hydrogen uptake. Structural defects can also leave metal-containing nodes incompletely coordinated. This enhances the performance of MOFs used for hydrogen storage by increasing the number of accessible metal centers. Finally, structural defects can affect the transport of
phonon A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. In the context of optically trapped objects, the quantized vibration mode can be defined a ...
s, which affects the
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
of the MOF.


Hydrogen adsorption

Adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
is the process of trapping atoms or molecules that are incident on a surface; therefore the adsorption capacity of a material increases with its surface area. In three dimensions, the maximum surface area will be obtained by a structure which is highly porous, such that atoms and molecules can access internal surfaces. This simple qualitative argument suggests that the highly porous metal-organic frameworks (MOFs) should be excellent candidates for hydrogen storage devices. Adsorption can be broadly classified as being one of two types:
physisorption Physisorption, also called physical adsorption, is a process in which the electronic structure of the atom or molecule is barely wikt:perturb, perturbed upon adsorption. Overview The fundamental interacting force of physisorption is Van der Waals ...
or chemisorption. Physisorption is characterized by weak van der Waals interactions, and bond enthalpies typically less than 20 kJ/mol. Chemisorption, alternatively, is defined by stronger
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
and
ionic bond Ionic bonding is a type of chemical bond A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic ...
s, with bond enthalpies between 250 and 500 kJ/mol. In both cases, the
adsorbate Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
atoms or molecules (i.e. the particles which adhere to the surface) are attracted to the adsorbent (solid) surface because of the surface energy that results from unoccupied bonding locations at the surface. The degree of
orbital overlap In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. The general principle for orbital overlap is that, the greater the overlap between ...
then determines if the interactions will be physisorptive or chemisorptive. Adsorption of molecular hydrogen in MOFs is physisorptive. Since molecular hydrogen only has two electrons, dispersion forces are weak, typically 4–7 kJ/mol, and are only sufficient for adsorption at temperatures below 298 K. A complete explanation of the H2 sorption mechanism in MOFs was achieved by statistical averaging in the grand canonical ensemble, exploring a wide range of pressures and temperatures.


Determining hydrogen storage capacity

Two hydrogen-uptake measurement methods are used for the characterization of MOFs as hydrogen storage materials: gravimetric and volumetric. To obtain the total amount of hydrogen in the MOF, both the amount of hydrogen absorbed on its surface and the amount of hydrogen residing in its pores should be considered. To calculate the absolute absorbed amount (''N''abs), the surface excess amount (''N''ex) is added to the product of the bulk density of hydrogen (ρbulk) and the pore volume of the MOF (''V''pore), as shown in the following equation:
buoyancy Buoyancy (), or upthrust, is the force exerted by a fluid opposing the weight of a partially or fully immersed object (which may be also be a parcel of fluid). In a column of fluid, pressure increases with depth as a result of the weight of t ...
, the detected mass of adsorbed hydrogen decreases again when a sufficiently high pressure is applied to the system because the density of the surrounding gaseous hydrogen becomes more and more important at higher pressures. Thus, this "weight loss" has to be corrected using the volume of the MOF's frame and the density of hydrogen.


=Volumetric method

= The changing of amount of hydrogen stored in the MOF is measured by detecting the varied pressure of hydrogen at constant volume. The volume of adsorbed hydrogen in the MOF is then calculated by subtracting the volume of hydrogen in free space from the total volume of dosed hydrogen.


Other methods of hydrogen storage

There are six possible methods that can be used for the reversible storage of hydrogen with a high volumetric and gravimetric density, which are summarized in the following table, (where is the gravimetric density, is the volumetric density, ''T'' is the working temperature, and ''P'' is the working pressure): Of these, high-pressure gas cylinders and liquid hydrogen in cryogenic tanks are the least practical ways to store hydrogen for the purpose of fuel due to the extremely ''high'' pressure required for storing hydrogen gas or the extremely ''low'' temperature required for storing hydrogen liquid. The other methods are all being studied and developed extensively.


Electrocatalysis

The high surface area and atomic metal sites feature of MOFs make them a suitable candidate for electrocatalysts, especially energy-related ones. Until now, MOFs have been used extensively as electrocatalyst for water splitting (hydrogen evolution reaction and oxygen evolution reaction), carbon dioxide reduction, and oxygen reduction reaction. Currently there are two routes: 1. Using MOFs as precursors to prepare electrocatalysts with carbon support. 2. Using MOFs directly as electrocatalysts. However, some results have shown that some MOFs are not stable under electrochemical environment. The electrochemical conversion of MOFs during electrocatalysis may produce the real catalyst materials, and the MOFs are precatalysts under such conditions. Therefore, claiming MOFs as the electrocatalysts requires ''in situ'' techniques coupled with electrocatalysis.


Biological imaging and sensing

A potential application for MOFs is biological imaging and sensing via
photoluminescence Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. phot ...
. A large subset of luminescent MOFs use lanthanides in the metal clusters. Lanthanide photoluminescence has many unique properties that make them ideal for imaging applications, such as characteristically sharp and generally non-overlapping emission bands in the visible and near-infrared (NIR) regions of the spectrum, resistance to photobleaching or "blinking", and long luminescence lifetimes. However, lanthanide emissions are difficult to sensitize directly because they must undergo LaPorte forbidden f-f transitions. Indirect sensitization of lanthanide emission can be accomplished by employing the "antenna effect", where the organic linkers act as antennae and absorb the excitation energy, transfer the energy to the excited state of the lanthanide, and yield lanthanide luminescence upon relaxation. A prime example of the antenna effect is demonstrated by MOF-76, which combines trivalent lanthanide ions and 1,3,5-benzenetricarboxylate (BTC) linkers to form infinite rod SBUs coordinated into a three dimensional lattice. As demonstrated by multiple research groups, the BTC linker can effectively sensitize the lanthanide emission, resulting in a MOF with variable emission wavelengths depending on the lanthanide identity. Additionally, the Yan group has shown that Eu3+- and Tb3+- MOF-76 can be used for selective detection of acetophenone from other volatile monoaromatic hydrocarbons. Upon acetophenone uptake, the MOF shows a very sharp decrease, or
quenching In materials science, quenching is the rapid cooling of a workpiece in water, gas, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, suc ...
, of the luminescence intensity. For use in biological imaging, however, two main obstacles must be overcome: * MOFs must be synthesized on the nanoscale so as not to affect the target's normal interactions or behavior * The absorbance and emission wavelengths must occur in regions with minimal overlap from sample autofluorescence, other absorbing species, and maximum tissue penetration. Regarding the first point, nanoscale MOF (NMOF) synthesis has been mentioned in an earlier section. The latter obstacle addresses the limitation of the antenna effect. Smaller linkers tend to improve MOF stability, but have higher energy absorptions, predominantly in the ultraviolet (UV) and high-energy visible regions. A design strategy for MOFs with redshifted absorption properties has been accomplished by using large, chromophoric linkers. These linkers are often composed of polyaromatic species, leading to large pore sizes and thus decreased stability. To circumvent the use of large linkers, other methods are required to redshift the absorbance of the MOF so lower energy excitation sources can be used. Post-synthetic modification (PSM) is one promising strategy. Luo et al. introduced a new family of lanthanide MOFs with functionalized organic linkers. The MOFs, deemed MOF-1114, MOF-1115, MOF-1130, and MOF-1131, are composed of octahedral SBUs bridged by amino functionalized dicarboxylate linkers. The amino groups on the linkers served as sites for covalent PSM reactions with either salicylaldehyde or 3-hydroxynaphthalene-2-carboxaldehyde. Both of these reactions extend the π-conjugation of the linker, causing a redshift in the absorbance wavelength from 450 nm to 650 nm. The authors also propose that this technique could be adapted to similar MOF systems and, by increasing pore volumes with increasing linker lengths, larger pi-conjugated reactants can be used to further redshift the absorption wavelengths. Biological imaging using MOFs has been realized by several groups, namely Foucault-Collet and co-workers. In 2013, they synthesized a NIR-emitting Yb3+-NMOF using phenylenevinylene dicarboxylate (PVDC) linkers. They observed cellular uptake in both HeLa cells and NIH-3T3 cells using confocal, visible, and NIR spectroscopy. Although low quantum yields persist in water and Hepes buffer solution, the luminescence intensity is still strong enough to image cellular uptake in both the visible and NIR regimes.


Nuclear wasteform materials

With an increased public awareness and concern regarding
radioactive contamination Radioactive contamination, also called radiological pollution, is the deposition of, or presence of Radioactive decay, radioactive substances on surfaces or within solids, liquids, or gases (including the human body), where their presence is uni ...
, there has been an increased interest in the development of new pathways for the capture, containment, and disposal of nuclear waste, which has largely been generated through the operation of nuclear power plants and continued decommissioning of nuclear weapons. One of the largest challenges currently recognized within the nuclear waste sector is the development and synthesis of novel materials capable of long-term containment and selective capture of actinides. Thus, metal-organic frameworks have emerged as a promising material towards this application; their remarkable modularity, high surface area, selective binding affinities, and customizable topology/crystallinity allow for a material with tunable, on-demand properties and high structural stability. These properties allow for the design of a framework that connects material properties with changes in structure at the atomic level, providing insight into the processes that these materials rely upon. For example, metal-organic frameworks tend to have high structural stability, as evidenced by their crystallinity. This has been applied towards nuclear waste by demonstrating that metal-organic frameworks, specifically a zirconium-based framework, resist prolonged exposure to gamma-rays, a deeply penetrating, highly hazardous form of radiation known to be emitted by highly radioactive substances such as 241Am, while retaining crystallinity. There are several known methods by which metal-organic frameworks have been used to sequester radionuclides. Foremost is the incorporation of radionuclides into the metal-organic framework as the metal nodes. This effectively captures the actinides by incorporating them into the rigid crystal structure itself, locking it in place. The incoperation of actinides as metal nodes can be achieved through a variety of methods, including synthesis, metal-node extension, and cation exchange. Actinide-containing metal-organic frameworks can be synthesized directly from actinide salts, allowing for direct incorporation without further or previous modification required. Additionally, the metal-node can be extended, allowing for a combination of actinides and transition metals to serve as the nodes simultaneously. Finally, actinides can be incorporated into the metal node through cation exchange; a previously-synthesized metal-organic framework is exposed to actinide cations, where the radionuclides are allowed to slowly replace the transition metal as the metal nodes, incorporating themselves into the crystal itself. Another known method by which metal-organic frameworks capture radionuclides is through the binding/anchoring of these cations to functionalized organic linkers. These organic linkers commonly utilize nucleophilic moieties known to bind and anchor to cations; such moieties include carboxylic acid groups and crown ethers. This binding/anchoring drastically slows the rate of actinides leaching from the framework. For example, carboxylic acid-functionalized linkers have been used to drastically slow the leaching of 241Am into dimethylformamide from a zirconium-based framework. Another reported method of radionuclide capture by metal-organic frameworks is through the incorporation of guest molecules. In this method, radionuclides are locked in the crystalline pores through first introducing the actinide cations into these pores and subsequent installation of additional or capping linkers. The central concept is that once the actinides are in the crystalline structure, additional linkers hinder the actinide cations and slow the leaching process from the crystal structure. Leeching from these capped frameworks has been reported to be on a similar order of magnitude as other materials used in radionuclide containment, such as perovskites, zeolites, and phosphate ceramics.


Drug delivery systems

The synthesis, characterization, and drug-related studies of low toxicity, biocompatible MOFs has shown that they have potential for medical applications. Many groups have synthesized various low toxicity MOFs and have studied their uses in loading and releasing various therapeutic drugs for potential medical applications. A variety of methods exist for inducing drug release, such as pH-response, magnetic-response, ion-response, temperature-response, and pressure response. In 2010 Smaldone et al., an international research group, synthesized a biocompatible MOF termed CD-MOF-1 from cheap edible natural products. CD-MOF-1 consists of repeating base units of 6 γ-cyclodextrin rings bound together by potassium ions. γ-cyclodextrin (γ-CD) is a symmetrical cyclic oligosaccharide that is mass-produced enzymatically from starch and consists of eight asymmetric α-1,4-linked D-glucopyranosyl residues. The molecular structure of these glucose derivatives, which approximates a truncated cone, bucket, or torus, generates a hydrophilic exterior surface and a nonpolar interior cavity. Cyclodextrins can interact with appropriately sized drug molecules to yield an inclusion complex. Smaldone's group proposed a cheap and simple synthesis of the CD-MOF-1 from natural products. They dissolved sugar (γ-cyclodextrin) and an alkali salt (KOH, KCl, potassium benzoate) in distilled bottled water and allowed 190 proof grain alcohol (Everclear) to vapor diffuse into the solution for a week. The synthesis resulted in a cubic (γ-CD)6 repeating motif with a pore size of approximately 1 nm. Subsequently, in 2017 Hartlieb et al. at Northwestern did further research with CD-MOF-1 involving the encapsulation of ibuprofen. The group studied different methods of loading the MOF with ibuprofen as well as performing related bioavailability studies on the ibuprofen-loaded MOF. They investigated two different methods of loading CD-MOF-1 with ibuprofen; crystallization using the potassium salt of ibuprofen as the alkali cation source for production of the MOF, and absorption and deprotonation of the free-acid of ibuprofen into the MOF. From there the group performed in vitro and in vivo studies to determine the applicability of CD-MOF-1 as a viable delivery method for ibuprofen and other NSAIDs. In vitro studies showed no toxicity or effect on cell viability up to 100 μM. In vivo studies in mice showed the same rapid uptake of ibuprofen as the ibuprofen potassium salt control sample with a peak plasma concentration observed within 20 minutes, and the cocrystal has the added benefit of double the half-life in blood plasma samples. The increase in half-life is due to CD-MOF-1 increasing the solubility of ibuprofen compared to the pure salt form. Since these developments many groups have done further research into drug delivery with water-soluble, biocompatible MOFs involving common over-the-counter drugs. In March 2018 Sara Rojas and her team published their research on drug incorporation and delivery with various biocompatible MOFs other than CD-MOF-1 through simulated cutaneous administration. The group studied the loading and release of ibuprofen (hydrophobic) and aspirin (hydrophilic) in three biocompatible MOFs (MIL-100(Fe), UiO-66(Zr), and MIL-127(Fe)). Under simulated cutaneous conditions (aqueous media at 37 °C) the six different combinations of drug-loaded MOFs fulfilled "the requirements to be used as topical drug delivery systems, such as released payload between 1 and 7 days" and delivering a therapeutic concentration of the drug of choice without causing unwanted side effects. The group discovered that the drug uptake is "governed by the hydrophilic/hydrophobic balance between cargo and matrix" and "the accessibility of the drug through the framework". The "controlled release under cutaneous conditions follows different kinetics profiles depending on: (i) the structure of the framework, with either a fast delivery from the very open structure MIL-100 or a slower drug release from the narrow 1D pore system of MIL-127 or (ii) the hydrophobic/hydrophilic nature of the cargo, with a fast (Aspirin) and slow (Ibuprofen) release from the UiO-66 matrix." Moreover, a simple ball milling technique is used to efficiently encapsulate the model drugs 5-fluorouracil, caffeine, para-aminobenzoic acid, and benzocaine. Both computational and experimental studies confirm the suitability of n4O(dmcapz)3to incorporate high loadings of the studied bioactive molecules. Recent research involving MOFs as a drug delivery method includes more than just the encapsulation of everyday drugs like ibuprofen and aspirin. In early 2018 Chen et al., published detailing their work on the use of MOF, ZIF-8 (zeolitic imidazolate framework-8) in antitumor research "to control the release of an autophagy inhibitor, 3-methyladenine (3-MA), and prevent it from dissipating in a large quantity before reaching the target." The group performed in vitro studies and determined that "the autophagy-related proteins and autophagy flux in HeLa cells treated with 3-MA@ZIF-8 NPs show that the autophagosome formation is significantly blocked, which reveals that the pH-sensitive dissociation increases the efficiency of autophagy inhibition at the equivalent concentration of 3-MA." This shows promise for future research and applicability with MOFs as drug delivery methods in the fight against cancer.


Semiconductors

In 2014 researchers proved that they can create electrically conductive thin films of MOFs (Cu3(BTC)2 (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) infiltrated with the molecule 7,7,8,8-tetracyanoquinododimethane) that could be used in applications including photovoltaics, sensors, and electronic materials and a path toward creating semiconductors. The team demonstrated tunable, air-stable electrical conductivity with values as high as 7 siemens per meter, comparable to bronze. (2,3,6,7,10,11-hexaiminotriphenylene)2 was shown to be a metal-organic
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
analogue that has a natural
band gap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
, making it a semiconductor, and is able to self-assemble. It is an example of conductive metal-organic framework. It represents a family of similar compounds. Because of the symmetry and geometry in 2,3,6,7,10,11-hexaiminotriphenylene (HITP), the overall organometallic complex has an almost
fractal In mathematics, a fractal is a Shape, geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scale ...
nature that allows it to perfectly self-organize. By contrast, graphene must be doped to give it the properties of a semiconductor. Ni3(HITP)2 pellets had a conductivity of 2 S/cm, a record for a metal-organic compound. In 2018 researchers synthesized a two-dimensional semiconducting MOF (Fe3(THT)2(NH4)3, also known as THT, 2,3,6,7,10,11-triphenylenehexathiol) and showed high electric mobility at room temperature. In 2020 the same material was integrated in a photo-detecting device, detecting a broad wavelength range from UV to NIR (400–1575 nm). This was the first time a two-dimensional semiconducting MOF was demonstrated to be used in opto-electronic devices. Cu3(HHTP)2 is a 2D MOF structure, and there are limited examples of materials which are intrinsically conductive, porous, and crystalline. Layered 2D MOFs have porous crystalline structure showing electrical conductivity. These materials are constructed from trigonal linker molecules (phenylene or
triphenylene Triphenylene is an organic compound with the formula (C6H4)3. It's a flat polycyclic aromatic hydrocarbon (PAH) that has a highly symmetric and planar structure consists of four fused benzene rings. Triphenylene has delocalized 18-''π''-electron ...
) and six functional groups of –OH, -NH2, or –SH. The trigonal linker molecules and square-planarly coordinated metal ions such as Cu^, Ni^, Co^, and Pt^ form layers with hexagonal structures which look like graphene in larger scale. Stacking of these layers can build one-dimensional pore systems. Graphene-like 2D MOFs have shown decent conductivities. This makes them a good choice to be tested as electrode material for evolution of hydrogen from water, oxygen reduction reactions, supercapacitors, and sensing of
volatile organic compound Volatile organic compounds (VOCs) are organic compounds that have a high vapor pressure at room temperature. They are common and exist in a variety of settings and products, not limited to Indoor mold, house mold, Upholstery, upholstered furnitur ...
s (VOCs). Among these MOFs, Cu3(HHTP)2 has exhibited the lowest conductivity, but also the strongest reaction in sensing of VOCs.


Biomimetic mineralization

Biomolecules can be incorporated during the MOF crystallization process. Biomolecules including proteins, DNA, and antibodies could be encapsulated within ZIF-8. Enzymes encapsulated in this way were stable and active even after being exposed to harsh conditions (e.g. aggressive solvents and high temperature). ZIF-8, MIL-88A, HKUST-1, and several luminescent MOFs containing lanthanide metals were used for the biomimetic mineralization process. In addition, individual living cells were encapsulated within MOF shells via single-cell nanoencapsulation (SCNE).


Carbon capture


Adsorbent

MOF's small, tunable pore sizes and high void fractions are promising as an adsorbent to capture CO2. MOFs could provide a more efficient alternative to traditional amine solvent-based methods in CO2 capture from coal-fired power plants. MOFs could be employed in each of the main three carbon capture configurations for coal-fired power plants: pre-combustion, post-combustion, and oxy-combustion. The post-combustion configuration is the only one that can be retrofitted to existing plants, drawing the most interest and research. The flue gas would be fed through a MOF in a packed-bed reactor setup. Flue gas is generally 40 to 60 °C with a partial pressure of CO2 at 0.13 – 0.16 bar. CO2 can bind to the MOF surface through either
physisorption Physisorption, also called physical adsorption, is a process in which the electronic structure of the atom or molecule is barely wikt:perturb, perturbed upon adsorption. Overview The fundamental interacting force of physisorption is Van der Waals ...
(via Van der Waals interactions) or chemisorption (via
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
formation). Once the MOF is saturated, the CO2 is extracted from the MOF through either a temperature swing or a pressure swing. This process is known as regeneration. In a temperature swing regeneration, the MOF would be heated until CO2 desorbs. To achieve working capacities comparable to the amine process, the MOF must be heated to around 200 °C. In a pressure swing, the pressure would be decreased until CO2 desorbs. Another relevant MOF property is their low heat capacities. Monoethanolamine (MEA) solutions, the leading capture method, have a heat capacity between 3-4 J/(g⋅K) since they are mostly water. This high heat capacity contributes to the energy penalty in the solvent regeneration step, i.e. when the adsorbed CO2 is removed from the MEA solution. MOF-177, a MOF designed for CO2 capture, has a heat capacity of 0.5 J/(g⋅K) at ambient temperature. MOFs adsorb 90% of the CO2 using a vacuum pressure swing process. The MOF Mg(dobdc) has a 21.7 wt% CO2 loading capacity. Applied to a large scale power plant, the cost of energy would increase by 65%, while a U.S. NETL baseline amine-based system would cause an increase of 81% (goal is 35%). The capture cost would be $57 / ton, while for the amine system the cost is estimated to be $72 / ton. At that rate the capital required to implement such project in a 580 MW power plant would be $354 million.


Catalyst

A MOF loaded with
propylene oxide Propylene oxide is an epoxide with the molecular formula C3H6O. This colourless volatile liquid with an odour similar to ether, is produced on a large scale industrially. Its major application is its use for the production of polyether polyols f ...
can act as a
catalyst Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
, converting into cyclic carbonates (ring-shaped molecules with many applications). They can also remove carbon from
biogas Biogas is a gaseous renewable energy source produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste, Wastewater treatment, wastewater, and food waste. Biogas is produced by anaerobic ...
. This MOF is based on
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium (el ...
s, which provide chemical stability. This is especially important because the gases the MOF will be exposed to are hot, high in humidity, and acidic. Triaminoguanidinium-based POFs and Zn/POFs are new multifunctional materials for
environmental remediation Environmental remediation is the cleanup of hazardous substances dealing with the removal, treatment and containment of pollution or contaminants from Natural environment, environmental media such as soil, groundwater, sediment. Remediation may be ...
and biomedical applications.


Desalination/ion separation

MOF membranes can achieve substantial ion selectivity due to their small repeating structures. This offers the potential for use in
desalination Desalination is a process that removes mineral components from saline water. More generally, desalination is the removal of salts and minerals from a substance. One example is Soil salinity control, soil desalination. This is important for agric ...
and water treatment. As of 2020,
reverse osmosis Reverse osmosis (RO) is a water purification process that uses a partially permeable membrane, semi-permeable membrane to separate water molecules from other substances. RO applies pressure to overcome osmotic pressure that favors even distribu ...
supplied more than two-thirds of global desalination capacity, and the last stage of most water treatment processes. Osmosis does not use
dehydration In physiology, dehydration is a lack of total body water that disrupts metabolic processes. It occurs when free water loss exceeds intake, often resulting from excessive sweating, health conditions, or inadequate consumption of water. Mild deh ...
of ions, or selective ion transport in biological channels and it is not energy efficient. The mining industry uses membrane-based processes to reduce water pollution, and to recover metals. MOFs could be used to extract metals such as lithium from seawater and waste streams. MOF membranes such as ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-scale windows and nanometer-scale cavities displayed ultrafast selective transport of alkali metal ions. The windows acted as ion selectivity filters for alkali metal ions, while the cavities functioned as pores for transport. The ZIF-8 and UiO-66 membranes showed a LiCl/
RbCl Ribulose-1,5-bisphosphate carboxylase/oxygenase, commonly known by the abbreviations RuBisCo, rubisco, RuBPCase, or RuBPco, is an enzyme () involved in the Photosynthesis#Light-independent reactions, light-independent (or "dark") part of photosyn ...
selectivity of ~4.6 and ~1.8, respectively, much higher than the 0.6 to 0.8 selectivity in traditional membranes. A 2020 study suggested that a new MOF called PSP-MIL-53 could be used along with
sunlight Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
to purify water in just half an hour.


Gas separation

MOFs are also predicted to be very effective media to separate gases with low energy cost using computational high throughput screening from their adsorption or gas breakthrough/diffusion properties. One example is NbOFFIVE-1-Ni, also referred to as KAUST-7 which can separate propane and propylene via diffusion at nearly 100% selectivity. The specific molecule selectivity properties provided by Cu-BDC surface mounted metal organic framework (SURMOF-2) growth on alumina layer on top of back gated Graphene Field Effect Transistor (GFET) can provide a sensor that is only sensitive to ethanol but not to methanol or isopropanol.


Water vapor capture and dehumidification

MOFs have been demonstrated that capture water vapor from the air. In 2021 under humid conditions, a polymer-MOF lab prototype yielded 17 liters (4.5 gal) of water per kg per day without added energy. MOFs could also be used to increase energy efficiency in room temperature space cooling applications. When cooling outdoor air, a cooling unit must deal with both the air's
sensible heat Sensible heat is heat exchanged by a body or thermodynamic system in which the exchange of heat changes the temperature of the body or system, and some macroscopic variables of the body or system, but leaves unchanged certain other macroscopic vari ...
and
latent heat Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation. ...
. Typical vapor-compression air-conditioning (VCAC) units manage the latent heat in air through cooling fins held below the
dew point The dew point is the temperature the air needs to be cooled to (at constant pressure) in order to produce a relative humidity of 100%. This temperature depends on the pressure and water content of the air. When the air at a temperature above the ...
temperature of the moist air at the intake. These fins condense the water, dehydrating the air and thus substantially reducing the air's heat content. The cooler's energy usage is highly dependent on the cooling coil's temperature and would be improved greatly if the temperature of this coil could be raised above the
dew point The dew point is the temperature the air needs to be cooled to (at constant pressure) in order to produce a relative humidity of 100%. This temperature depends on the pressure and water content of the air. When the air at a temperature above the ...
. This makes it desirable to handle dehumidification through means other than condensation. One such means is by adsorbing the water from the air into a
desiccant A desiccant is a hygroscopic substance that is used to induce or sustain a state of dryness (desiccation) in its vicinity; it is the opposite of a humectant. Commonly encountered pre-packaged desiccants are solids that absorb water. Desiccant ...
coated onto the heat exchangers, using the waste heat exhausted from the unit to desorb the water from the
sorbent A sorbent is an insoluble material that either absorbs or adsorbs liquids or gases. They are frequently used to remove pollutants and in the cleanup of chemical accidents and oil spills. Besides their uses in industry, sorbents are used in comm ...
and thus regenerate the desiccant for repeated usage. This is accomplished by having two condenser/evaporator units through which the flow of refrigerant can be reversed once the desiccant on the condenser is saturated, thus making the condenser the evaporator and vice versa. MOFs' extremely high surface areas and porosities have made them the subject of much research in water adsorption applications. Chemistry can help tune the optimal relative humidity for adsorption/desorption, and the sharpness of the water uptake.


Ferroelectrics and multiferroics

Some MOFs also exhibit spontaneous electric polarization, which occurs due to the ordering of electric dipoles (polar linkers or guest molecules) below a certain phase transition temperature. If this long-range dipolar order can be controlled by the external electric field, a MOF is called ferroelectric. Some ferroelectric MOFs also exhibit magnetic ordering making them single structural phase multiferroics. This material property is highly interesting for construction of memory devices with high information density. The coupling mechanism of type-I CH3)2NH2Ni(HCOO)3] molecular multiferroic is spontaneous elastic strain mediated indirect coupling.


Future Direction

Over the last three decades, MOFs have been greatly refined and utilized in a wide range of applications. Much of current MOF research is focused on advanced multivariable, electron conductive frameworks and digital reticular chemistry also intregates MOFs with artificial intelligence which makes it a potential material in solving energy and environmental challenges of this century.


See also

*
BET theory Brunauer–Emmett–Teller (BET) theory aims to explain the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for the measurement of the specific surface area of materials. The obs ...
* Conjugated microporous polymer *
Coordination chemistry A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of chemical bond, bound molecules or ions, that are in turn known as ' ...
* Coordination polymers * Covalent organic framework *
Cryogenics In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a universa ...
* Electrocatalyst * Flexible metal-organic framework * Gérard Férey *
Hydrogen economy The hydrogen economy is an umbrella term for the roles hydrogen can play alongside low-carbon electricity to reduce emissions of greenhouse gases. The aim is to reduce emissions where cheaper and more energy-efficient clean solutions are not ava ...
*
Hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
* Hydrogen-bonded organic framework *
Liquid hydrogen Liquid hydrogen () is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecule, molecular H2 form. To exist as a liquid, H2 must be cooled below its critical point (thermodynamics), critical point of 33 Kelvins, ...
* Macromolecular assembly * Metal–inorganic framework * Omar M. Yaghi *
Organometallic chemistry Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and so ...
* Crystal nets (periodic graphs) * Reticular materials * Solid sorbents for carbon capture * Susumu Kitagawa *
United States Department of Energy The United States Department of Energy (DOE) is an executive department of the U.S. federal government that oversees U.S. national energy policy and energy production, the research and development of nuclear power, the military's nuclear w ...
*
X-ray Crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
* Zeolitic imidazolate frameworks


,References

* Designed metal-organic framework composites for metal-ion batteries and metal-ion capacitors/ Gaurav Tatrari, Rong An, Faiz Ullah Shah Coordination Chemistry Reviews, Volume 512, 215876


External links


MOF pore characterizations
*
Hypothetical MOFs Database

MOF physical property calculator
{{DEFAULTSORT:Metal organic framework