In

rings
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...

that generalize the set of integers. Using tools of algebraic number theory,

A Book of Abstract Algebra

', second edition, from

mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...

, more specifically algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary ...

, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...

, rings
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...

, fields
Fields may refer to:
Music
* Fields (band), an indie rock band formed in 2006
* Fields (progressive rock band), a progressive rock band formed in 1971
* ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010)
* "Fields", a song b ...

, modules
Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...

, vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...

s, lattices, and algebras over a field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition a ...

. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra
Elementary algebra encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables (quantities without fixed values).
This use of variables entail ...

, the use of variables to represent numbers in computation and reasoning.
Algebraic structures, with their associated homomorphism
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" ...

s, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures.
Universal algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures.
For instance, rather than take particular groups as the object of stu ...

is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety
Variety may refer to:
Arts and entertainment Entertainment formats
* Variety (radio)
* Variety show, in theater and television
Films
* ''Variety'' (1925 film), a German silent film directed by Ewald Andre Dupont
* ''Variety'' (1935 film), ...

of groups''.
History

Before the nineteenth century,algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary ...

meant the study of the solution of polynomial equations. Abstract algebra came into existence during the nineteenth century as more complex problems and solution methods developed. Concrete problems and examples came from number theory, geometry, analysis, and the solutions of algebraic equation
In mathematics, an algebraic equation or polynomial equation is an equation of the form
:P = 0
where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation'' ...

s. Most theories that are now recognized as parts of abstract algebra started as collections of disparate facts from various branches of mathematics, acquired a common theme that served as a core around which various results were grouped, and finally became unified on a basis of a common set of concepts. This unification occurred in the early decades of the 20th century and resulted in the formal axiomatic
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...

definitions of various algebraic structures such as groups, rings, and fields. This historical development is almost the opposite of the treatment found in popular textbooks, such as van der Waerden's Moderne Algebra
''Moderne Algebra'' is a two-volume German textbook on graduate abstract algebra by , originally based on lectures given by Emil Artin in 1926 and by from 1924 to 1928. The English translation of 1949–1950 had the title ''Modern algebra'', th ...

, which start each chapter with a formal definition of a structure and then follow it with concrete examples.
Elementary algebra

The study of polynomial equations oralgebraic equations
In mathematics, an algebraic equation or polynomial equation is an equation of the form
:P = 0
where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation'' ...

has a long history. Circa 1700 BC, the Babylonians were able to solve quadratic equations specified as word problems. This word problem stage is classified as rhetorical algebra
Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fu ...

and was the dominant approach up to the 16th century. Muhammad ibn Mūsā al-Khwārizmī
Muḥammad ibn Mūsā al-Khwārizmī ( ar, محمد بن موسى الخوارزمي, Muḥammad ibn Musā al-Khwārazmi; ), or al-Khwarizmi, was a Persian polymath from Khwarazm, who produced vastly influential works in mathematics, astronom ...

originated the word "algebra" in 830 AD, but his work was entirely rhetorical algebra. Fully symbolic algebra did not appear until François Viète
François Viète, Seigneur de la Bigotière ( la, Franciscus Vieta; 1540 – 23 February 1603), commonly know by his mononym, Vieta, was a French mathematician whose work on new algebra was an important step towards modern algebra, due to i ...

's 1591 New Algebra
New is an adjective referring to something recently made, discovered, or created.
New or NEW may refer to:
Music
* New, singer of K-pop group The Boyz
Albums and EPs
* ''New'' (album), by Paul McCartney, 2013
* ''New'' (EP), by Regurgitator, ...

, and even this had some spelled out words that were given symbols in Descartes's 1637 La Géométrie. The formal study of solving symbolic equations led Leonhard Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...

to accept what were then considered "nonsense" roots such as negative numbers and imaginary numbers, in the late 18th century. However, European mathematicians, for the most part, resisted these concepts until the middle of the 19th century.
George Peacock's 1830 ''Treatise of Algebra'' was the first attempt to place algebra on a strictly symbolic basis. He distinguished a new symbolical algebra, distinct from the old arithmetical algebra. Whereas in arithmetical algebra $a\; -\; b$ is restricted to $a\; \backslash geq\; b$, in symbolical algebra all rules of operations hold with no restrictions. Using this Peacock could show laws such as $(-a)(-b)\; =\; ab$, by letting $a=0,c=0$ in $(a\; -\; b)(c\; -\; d)=ac\; +\; bd\; -\; ad\; -\; bc$. Peacock used what he termed the principle of the permanence of equivalent forms In the history of mathematics, the principle of permanence, or law of the permanence of equivalent forms, was the idea that algebraic operations like addition and multiplication should behave consistently in every number system, especially when d ...

to justify his argument, but his reasoning suffered from the problem of induction. For example, $\backslash sqrt\; \backslash sqrt\; =\; \backslash sqrt$ holds for the nonnegative real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...

s, but not for general complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...

s.
Early group theory

Several areas of mathematics led to the study of groups. Lagrange's 1770 study of the solutions of the quintic led to the Galois group of a polynomial. Gauss's 1801 study of Fermat's little theorem led to thering of integers modulo n
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ...

, the multiplicative group of integers modulo n
In modular arithmetic, the integers coprime (relatively prime) to ''n'' from the set \ of ''n'' non-negative integers form a group under multiplication modulo ''n'', called the multiplicative group of integers modulo ''n''. Equivalently, the ele ...

, and the more general concepts of cyclic group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...

s and abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...

s. Klein's 1872 Erlangen program
In mathematics, the Erlangen program is a method of characterizing geometries based on group theory and projective geometry. It was published by Felix Klein in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is nam ...

studied geometry and led to symmetry groups such as the Euclidean group and the group of projective transformation
In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, ...

s. In 1874 Lie introduced the theory of Lie groups, aiming for "the Galois theory of differential equations". In 1976 Poincaré and Klein introduced the group of Möbius transformations, and its subgroups such as the modular group and Fuchsian group
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations o ...

, based on work on automorphic functions in analysis.
The abstract concept of group emerged slowly over the middle of the nineteenth century. Galois in 1832 was the first to use the term “group”, signifying a collection of permutations closed under composition. Arthur Cayley's 1854 paper ''On the theory of groups'' defined a group as a set with an associative composition operation and the identity 1, today called a monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
Monoids ...

. In 1870 Kronecker defined an abstract binary operation that was closed, commutative, associative, and had the left cancellation property
In mathematics, the notion of cancellative is a generalization of the notion of invertible.
An element ''a'' in a magma has the left cancellation property (or is left-cancellative) if for all ''b'' and ''c'' in ''M'', always implies that .
An ...

$b\backslash neq\; c\; \backslash to\; a\backslash cdot\; b\backslash neq\; a\backslash cdot\; c$, similar to the modern laws for a finite abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...

. Weber's 1882 definition of a group was a closed binary operation that was associative and had left and right cancellation. Walther von Dyck
Walther Franz Anton von Dyck (6 December 1856 – 5 November 1934), born Dyck () and later ennobled, was a German mathematician. He is credited with being the first to define a mathematical group, in the modern sense in . He laid the foundations ...

in 1882 was the first to require inverse elements as part of the definition of a group.
Once this abstract group concept emerged, results were reformulated in this abstract setting. For example, Sylow's theorem was reproven by Frobenius in 1887 directly from the laws of a finite group, although Frobenius remarked that the theorem followed from Cauchy's theorem on permutation groups and the fact that every finite group is a subgroup of a permutation group. Otto Hölder
Ludwig Otto Hölder (December 22, 1859 – August 29, 1937) was a German mathematician born in Stuttgart.
Early life and education
Hölder was the youngest of three sons of professor Otto Hölder (1811–1890), and a grandson of professor Chris ...

was particularly prolific in this area, defining quotient groups in 1889, group automorphisms in 1893, as well as simple groups. He also completed the Jordan–Hölder theorem In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many natur ...

. Dedekind and Miller independently characterized Hamiltonian group In group theory, a Dedekind group is a group ''G'' such that every subgroup of ''G'' is normal.
All abelian groups are Dedekind groups.
A non-abelian Dedekind group is called a Hamiltonian group.
The most familiar (and smallest) example of a Hamilt ...

s and introduced the notion of the commutator of two elements. Burnside, Frobenius, and Molien created the representation theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...

of finite groups at the end of the nineteenth century. J. A. de Séguier's 1904 monograph ''Elements of the Theory of Abstract Groups'' presented many of these results in an abstract, general form, relegating "concrete" groups to an appendix, although it was limited to finite groups. The first monograph on both finite and infinite abstract groups was O. K. Schmidt's 1916 ''Abstract Theory of Groups''.
Early ring theory

Noncommutative ring theory began with extensions of the complex numbers tohypercomplex number
In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers.
The study of hypercomplex numbers in the late 19th century forms the basis of modern group represen ...

s, specifically William Rowan Hamilton
Sir William Rowan Hamilton LL.D, DCL, MRIA, FRAS (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist. He was the Andrews Professor of Astronomy at Trinity College Dublin, and Royal Astronomer of Irela ...

's quaternions in 1843. Many other number systems followed shortly. In 1844, Hamilton presented biquaternion
In abstract algebra, the biquaternions are the numbers , where , and are complex numbers, or variants thereof, and the elements of multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions co ...

s, Cayley introduced octonion
In mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface or blackboard bold \mathbb O. Octonions hav ...

s, and Grassman introduced exterior algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is a ...

s. James Cockle
Sir James Cockle FRS FRAS FCPS (14 January 1819 – 27 January 1895) was an English lawyer and mathematician.
Cockle was born on 14 January 1819. He was the second son of James Cockle, a surgeon, of Great Oakley, Essex. Educated at Charte ...

presented tessarine
In abstract algebra, a bicomplex number is a pair of complex numbers constructed by the Cayley–Dickson process that defines the bicomplex conjugate (w,z)^* = (w, -z), and the product of two bicomplex numbers as
:(u,v)(w,z) = (u w - v z, u z ...

s in 1848 and coquaternion
In abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers.
After introduction in ...

s in 1849. William Kingdon Clifford introduced split-biquaternion
In mathematics, a split-biquaternion is a hypercomplex number of the form
:q = w + xi + yj + zk
where ''w'', ''x'', ''y'', and ''z'' are split-complex numbers and i, j, and k multiply as in the quaternion group. Since each coefficient ''w'', ''x' ...

s in 1873. In addition Cayley introduced group algebras over the real and complex numbers in 1854 and square matrices
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...

in two papers of 1855 and 1858.
Once there were sufficient examples, it remained to classify them. In an 1870 monograph, Benjamin Peirce
Benjamin Peirce (; April 4, 1809 – October 6, 1880) was an American mathematician who taught at Harvard University for approximately 50 years. He made contributions to celestial mechanics, statistics, number theory, algebra, and the philoso ...

classified the more than 150 hypercomplex number systems of dimension below 6, and gave an explicit definition of an associative algebra. He defined nilpotent and idempotent elements and proved that any algebra contains one or the other. He also defined the Peirce decomposition
In ring theory, a Peirce decomposition is a decomposition of an algebra as a sum of eigenspaces of commuting idempotent elements.
The Peirce decomposition for associative algebras was introduced by . A similar but more complicated Peirce decomp ...

. Frobenius in 1878 and Charles Sanders Peirce
Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American philosopher, logician, mathematician and scientist who is sometimes known as "the father of pragmatism".
Educated as a chemist and employed as a scientist for t ...

in 1881 independently proved that the only finite-dimensional division algebras over $\backslash mathbb$ were the real numbers, the complex numbers, and the quaternions. In the 1880s Killing and Cartan showed that semisimple Lie algebras could be decomposed into simple ones, and classified all simple Lie algebras. Inspired by this, in the 1890s Cartan, Frobenius, and Molien proved (independently) that a finite-dimensional associative algebra over $\backslash mathbb$ or $\backslash mathbb$ uniquely decomposes into the direct sums of a nilpotent algebra and a semisimple algebra that is the product of some number of simple algebras, square matrices over division algebras. Cartan was the first to define concepts such as direct sum and simple algebra, and these concepts proved quite influential. In 1907 Wedderburn extended Cartan's results to an arbitrary field, in what are now called the Wedderburn principal theorem
In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some Field (mathematics), field ''K''. The ...

and Artin–Wedderburn theorem.
For commutative rings, several areas together led to commutative ring theory. In two papers in 1828 and 1832, Gauss formulated the Gaussian integer
In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /ma ...

s and showed that they form a unique factorization domain
In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is ...

(UFD) and proved the biquadratic reciprocity law. Jacobi and Eisenstein at around the same time proved a cubic reciprocity
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence ''x''3 ≡ ''p'' (mod ''q'') is solvable; the word "reciprocity" comes from the form of ...

law for the Eisenstein integers. The study of Fermat's last theorem
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been ...

led to the algebraic integer
In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...

s. In 1847, Gabriel Lamé
Gabriel Lamé (22 July 1795 – 1 May 1870) was a French mathematician who contributed to the theory of partial differential equations by the use of curvilinear coordinates, and the mathematical theory of elasticity (for which linear elasticity ...

thought he had proven FLT, but his proof was faulty as he assumed all the cyclotomic field
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers.
Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of ...

s were UFDs, yet as Kummer pointed out, $\backslash mathbb(\backslash zeta\_))$ was not a UFD. In 1846 and 1847 Kummer introduced ideal number In number theory an ideal number is an algebraic integer which represents an ideal in the ring of integers of a number field; the idea was developed by Ernst Kummer, and led to Richard Dedekind's definition of ideals for rings. An ideal in the rin ...

s and proved unique factorization into ideal primes for cyclotomic fields. Dedekind extended this in 1971 to show that every nonzero ideal in the domain of integers of an algebraic number field is a unique product of prime ideals, a precursor of the theory of Dedekind domain
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily ...

s. Overall, Dedekind's work created the subject of algebraic number theory.
In the 1850s, Riemann introduced the fundamental concept of a Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ver ...

. Riemann's methods relied on an assumption he called Dirichlet's principle
In mathematics, and particularly in potential theory, Dirichlet's principle is the assumption that the minimizer of a certain energy functional is a solution to Poisson's equation.
Formal statement
Dirichlet's principle states that, if the functi ...

, which in 1870 was questioned by Weierstrass. Much later, in 1900, Hilbert justified Riemann's approach by developing the direct method in the calculus of variations
In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies ...

. In the 1860s and 1870s, Clebsch, Gordan, Brill, and especially M. Noether studied algebraic function In mathematics, an algebraic function is a function that can be defined
as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations additi ...

s and curves. In particular, Noether studied what conditions were required for a polynomial to be an element of the ideal generated by two algebraic curves in the polynomial ring $\backslash mathbb$, y
The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline ...

/math>, although Noether did not use this modern language. In 1882 Dedekind and Weber, in analogy with Dedekind's earlier work on algebraic number theory, created a theory of algebraic function field
In mathematics, an algebraic function field (often abbreviated as function field) of ''n'' variables over a field ''k'' is a finitely generated field extension ''K''/''k'' which has transcendence degree ''n'' over ''k''. Equivalently, an algebrai ...

s which allowed the first rigorous definition of a Riemann surface and a rigorous proof of the Riemann–Roch theorem
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It rel ...

. Kronecker in the 1880s, Hilbert in 1890, Lasker in 1905, and Macauley in 1913 further investigated the ideals of polynomial rings implicit in E. Noether's work. Lasker proved a special case of the Lasker-Noether theorem
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are relate ...

, namely that every ideal in a polynomial ring is a finite intersection of primary ideal In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y'n'' is also an element of ''Q'', for some ''n'' > 0. Fo ...

s. Macauley proved the uniqueness of this decomposition. Overall, this work led to the development of algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...

.
In 1801 Gauss introduced binary quadratic form
In mathematics, a binary quadratic form is a quadratic homogeneous polynomial in two variables
: q(x,y)=ax^2+bxy+cy^2, \,
where ''a'', ''b'', ''c'' are the coefficients. When the coefficients can be arbitrary complex numbers, most results are ...

s over the integers and defined their equivalence. He further defined the discriminant of these forms, which is an invariant of a binary form In mathematical invariant theory, an invariant of a binary form is a polynomial in the coefficients of a binary form in two variables ''x'' and ''y'' that remains invariant under the special linear group acting on the variables ''x'' and ''y''.
T ...

. Between the 1860s and 1890s invariant theory
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descri ...

developed and became a major field of algebra. Cayley, Sylvester, Gordan and others found the Jacobian and the Hessian for binary quartic forms and cubic forms. In 1868 Gordan proved that the graded algebra of invariants of a binary form over the complex numbers was finitely generated, i.e., has a basis. Hilbert wrote a thesis on invariants in 1885 and in 1890 showed that any form of any degree or number of variables has a basis. He extended this further in 1890 to Hilbert's basis theorem.
Once these theories had been developed, it was still several decades until an abstract ring concept emerged. The first axiomatic definition was given by Abraham Fraenkel
Abraham Fraenkel ( he, אברהם הלוי (אדולף) פרנקל; February 17, 1891 – October 15, 1965) was a German-born Israeli mathematician. He was an early Zionist and the first Dean of Mathematics at the Hebrew University of Jerusalem. ...

in 1914. His definition was mainly the standard axioms: a set with two operations addition, which forms a group (not necessarily commutative), and multiplication, which is associative, distributes over addition, and has an identity element. In addition, he had two axioms on "regular elements" inspired by work on the p-adic numbers
In mathematics, the -adic number system for any prime number extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extensio ...

, which excluded now-common rings such as the ring of integers. These allowed Fraenkel to prove that addition was commutative. Fraenkel's work aimed to transfer Steinitz's 1910 definition of fields over to rings, but it was not connected with the existing work on concrete systems. Masazo Sono's 1917 definition was the first equivalent to the present one.
In 1920, Emmy Noether
Amalie Emmy NoetherEmmy is the '' Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noeth ...

, in collaboration with W. Schmeidler, published a paper about the theory of ideals in which they defined left and right ideals in a ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...

. The following year she published a landmark paper called ''Idealtheorie in Ringbereichen'' (''Ideal theory in rings), analyzing ascending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These con ...

s with regard to (mathematical) ideals. The publication gave rise to the term "Noetherian ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...

", and several other mathematical objects being called ''Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite lengt ...

''. Noted algebraist Irving Kaplansky
Irving Kaplansky (March 22, 1917 – June 25, 2006) was a mathematician, college professor, author, and amateur musician.O'Connor, John J.; Robertson, Edmund F., "Irving Kaplansky", MacTutor History of Mathematics archive, University of St Andr ...

called this work "revolutionary"; results which seemed inextricably connected to properties of polynomial rings were shown to follow from a single axiom. Artin, inspired by Noether’s work, came up with the descending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These con ...

. These definitions marked the birth of abstract ring theory.
Early field theory

In 1801 Gauss introduced the integers mod p, where p is a prime number. Galois extended this in 1830 tofinite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...

s with $p^n$ elements. In 1871 Richard Dedekind introduced, for a set of real or complex numbers that is closed under the four arithmetic operations, the German
German(s) may refer to:
* Germany (of or related to)
** Germania (historical use)
* Germans, citizens of Germany, people of German ancestry, or native speakers of the German language
** For citizens of Germany, see also German nationality law
**Ge ...

word ''Körper'', which means "body" or "corpus" (to suggest an organically closed entity). The English term "field" was introduced by Moore in 1893. In 1881 Leopold Kronecker
Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, ...

defined what he called a ''domain of rationality'', which is a field of rational fraction
In algebra, an algebraic fraction is a fraction whose numerator and denominator are algebraic expressions. Two examples of algebraic fractions are \frac and \frac. Algebraic fractions are subject to the same laws as arithmetic fractions.
A rationa ...

s in modern terms. The first clear definition of an abstract field was due to Heinrich Martin Weber
Heinrich Martin Weber (5 March 1842, Heidelberg, Germany – 17 May 1913, Straßburg, Alsace-Lorraine, German Empire, now Strasbourg, France) was a German mathematician. Weber's main work was in algebra, number theory, and analysis. He is ...

in 1893. It was missing the associative law for multiplication, but covered finite fields and the fields of algebraic number theory and algebraic geometry. In 1910 Steinitz synthesized the knowledge of abstract field theory accumulated so far. He axiomatically defined fields with the modern definition, classified them by their characteristic, and proved many theorems commonly seen today.
Other major areas

* Solving ofsystems of linear equations
In mathematics, a system of linear equations (or linear system) is a collection of one or more linear equations involving the same variables.
For example,
:\begin
3x+2y-z=1\\
2x-2y+4z=-2\\
-x+\fracy-z=0
\end
is a system of three equations in th ...

, which led to linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as:
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as:
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrices ...

Modern algebra

The end of the 19th and the beginning of the 20th century saw a shift in the methodology of mathematics. Abstract algebra emerged around the start of the 20th century, under the name ''modern algebra''. Its study was part of the drive for more intellectual rigor in mathematics. Initially, the assumptions in classicalalgebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary ...

, on which the whole of mathematics (and major parts of the natural sciences
Natural science is one of the branches of science concerned with the description, understanding and prediction of natural phenomena, based on empirical evidence from observation and experimentation. Mechanisms such as peer review and repeatab ...

) depend, took the form of axiomatic system
In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains ...

s. No longer satisfied with establishing properties of concrete objects, mathematicians started to turn their attention to general theory. Formal definitions of certain algebraic structures began to emerge in the 19th century. For example, results about various groups of permutations came to be seen as instances of general theorems that concern a general notion of an ''abstract group''. Questions of structure and classification of various mathematical objects came to forefront.
These processes were occurring throughout all of mathematics, but became especially pronounced in algebra. Formal definition through primitive operations and axioms were proposed for many basic algebraic structures, such as groups
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...

, rings
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...

, and fields
Fields may refer to:
Music
* Fields (band), an indie rock band formed in 2006
* Fields (progressive rock band), a progressive rock band formed in 1971
* ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010)
* "Fields", a song b ...

. Hence such things as group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...

and ring theory
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their r ...

took their places in pure mathematics. The algebraic investigations of general fields by Ernst Steinitz
Ernst Steinitz (13 June 1871 – 29 September 1928) was a German mathematician.
Biography
Steinitz was born in Laurahütte (Siemianowice Śląskie), Silesia, Germany (now in Poland), the son of Sigismund Steinitz, a Jewish coal merchant, and ...

and of commutative and then general rings by David Hilbert, Emil Artin and Emmy Noether
Amalie Emmy NoetherEmmy is the '' Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noeth ...

, building up on the work of Ernst Kummer
Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems.
Mathematicians are concerned ...

, Leopold Kronecker
Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, ...

and Richard Dedekind, who had considered ideals in commutative rings, and of Georg Frobenius
Ferdinand Georg Frobenius (26 October 1849 – 3 August 1917) was a German mathematician, best known for his contributions to the theory of elliptic functions, differential equations, number theory, and to group theory. He is known for the famous ...

and Issai Schur
Issai Schur (10 January 1875 – 10 January 1941) was a Russian mathematician who worked in Germany for most of his life. He studied at the University of Berlin. He obtained his doctorate in 1901, became lecturer in 1903 and, after a stay at th ...

, concerning representation theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...

of groups, came to define abstract algebra. These developments of the last quarter of the 19th century and the first quarter of 20th century were systematically exposed in Bartel van der Waerden's ''Moderne Algebra
''Moderne Algebra'' is a two-volume German textbook on graduate abstract algebra by , originally based on lectures given by Emil Artin in 1926 and by from 1924 to 1928. The English translation of 1949–1950 had the title ''Modern algebra'', th ...

'', the two-volume monograph published in 1930–1931 that forever changed for the mathematical world the meaning of the word ''algebra'' from ''the theory of equations'' to the ''theory of algebraic structures''.
Basic concepts

By abstracting away various amounts of detail, mathematicians have defined various algebraic structures that are used in many areas of mathematics. For instance, almost all systems studied are sets, to which the theorems ofset theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...

apply. Those sets that have a certain binary operation defined on them form magmas
Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural sa ...

, to which the concepts concerning magmas, as well those concerning sets, apply. We can add additional constraints on the algebraic structure, such as associativity (to form semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.
The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', ...

s); identity, and inverses (to form groups
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...

); and other more complex structures. With additional structure, more theorems could be proved, but the generality is reduced. The "hierarchy" of algebraic objects (in terms of generality) creates a hierarchy of the corresponding theories: for instance, the theorems of group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...

may be used when studying rings
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...

(algebraic objects that have two binary operations with certain axioms) since a ring is a group over one of its operations. In general there is a balance between the amount of generality and the richness of the theory: more general structures have usually fewer nontrivial In mathematics, the adjective trivial is often used to refer to a claim or a case which can be readily obtained from context, or an object which possesses a simple structure (e.g., groups, topological spaces). The noun triviality usually refers to a ...

theorems and fewer applications.
Examples of algebraic structures with a single binary operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, an internal binary op ...

are:
* Magma
Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural sa ...

* Quasigroup
In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that " division" is always possible. Quasigroups differ from groups mainly in that they need not be associative and need not have ...

* Monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
Monoids ...

* Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.
The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', ...

* Group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...

Examples involving several operations include:
* Ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...

* Field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...

* Module
Module, modular and modularity may refer to the concept of modularity. They may also refer to:
Computing and engineering
* Modular design, the engineering discipline of designing complex devices using separately designed sub-components
* Mo ...

* Vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...

* Algebra over a field
* Associative algebra
* Lie algebra
* Lattice
Lattice may refer to:
Arts and design
* Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material
* Lattice (music), an organized grid model of pitch ratios
* Lattice (pastry), an orna ...

* Boolean algebra
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas i ...

Branches of abstract algebra

Group theory

A group is a set $G$ together with a "group product", a binary operation $\backslash cdot:\; G\; \backslash times\; G\; \backslash rightarrow\; G$. The group satisfies the following defining axioms: Identity: there exists an element $e$ such that, for each element $a$ in $G$, it holds that $e\; \backslash cdot\; a\; =\; a\; \backslash cdot\; e\; =\; a$. Inverse: for each element $a$ of $G$, there exists an element $b$ so that $a\; \backslash cdot\; b\; =\; b\; \backslash cdot\; a\; =\; e$. Associativity: for each triplet of elements $a,b,c$ in $G$, it holds that $(a\; \backslash cdot\; b)\; \backslash cdot\; c\; =\; a\; \backslash cdot\; (b\; \backslash cdot\; c)$.Ring theory

A ring is a set $R$ together with two binary operations, addition: $+:\; R\; \backslash times\; R\; \backslash rightarrow\; R$ and multiplication: $\backslash cdot:\; R\; \backslash times\; R\; \backslash rightarrow\; R$. Additionally, $R$ satisfies the following defining axioms: Addition: $R$ is a commutative group under addition. Multiplication: $R$ is a monoid under multiplication. Distributive: Multiplication is distributive with respect to addition.Applications

Because of its generality, abstract algebra is used in many fields of mathematics and science. For instance,algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...

uses algebraic objects to study topologies. The Poincaré conjecture
In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.
Originally conjectured ...

, proved in 2003, asserts that the fundamental group of a manifold, which encodes information about connectedness, can be used to determine whether a manifold is a sphere or not. Algebraic number theory studies various number Andrew Wiles
Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specializing in number theory. He is best known for proving Fermat's Last Theorem, for which he was awa ...

proved Fermat's Last Theorem
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been ...

.
In physics, groups are used to represent symmetry operations, and the usage of group theory could simplify differential equations. In gauge theory, the requirement of local symmetry
In physics, a symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation.
A family of particular transformations may be ''continuo ...

can be used to deduce the equations describing a system. The groups that describe those symmetries are Lie groups, and the study of Lie groups and Lie algebras reveals much about the physical system; for instance, the number of force carrier In quantum field theory, a force carrier, also known as messenger particle or intermediate particle, is a type of particle that gives rise to forces between other particles. These particles serve as the quanta of a particular kind of physical fi ...

s in a theory is equal to the dimension of the Lie algebra, and these boson
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...

s interact with the force they mediate if the Lie algebra is nonabelian.
See also

*Coding theory
Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied ...

* Group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...

* List of publications in abstract algebra
References

Bibliography

* * * *Further reading

* * * * * * * * W. Keith Nicholson (2012) ''Introduction to Abstract Algebra'', 4th edition,John Wiley & Sons
John Wiley & Sons, Inc., commonly known as Wiley (), is an American multinational publishing company founded in 1807 that focuses on academic publishing and instructional materials. The company produces books, journals, and encyclopedias, ...

.
* John R. Durbin (1992) ''Modern Algebra : an introduction'', John Wiley & Sons
External links

* Charles C. Pinter (1990)982
Year 982 ( CMLXXXII) was a common year starting on Sunday (link will display the full calendar) of the Julian calendar.
Events
By place Europe
* Summer – Emperor Otto II (the Red) assembles an imperial expeditionary force at Tar ...

A Book of Abstract Algebra

', second edition, from

University of Maryland
The University of Maryland, College Park (University of Maryland, UMD, or simply Maryland) is a public land-grant research university in College Park, Maryland. Founded in 1856, UMD is the flagship institution of the University System of M ...

{{DEFAULTSORT:Abstract Algebra