In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a ring is an
algebraic structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
consisting of a set with two
binary operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, a binary operation ...
s called ''addition'' and ''multiplication'', which obey the same basic laws as
addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
and
multiplication
Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
of integers, except that multiplication in a ring does not need to be
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
. Ring
elements may be numbers such as integers or
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s, but they may also be non-numerical objects such as
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s,
square matrices
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...
,
functions, and
power series
In mathematics, a power series (in one variable) is an infinite series of the form
\sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots
where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a co ...
.
A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
with respect to the addition operator, and the multiplication operator is
associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
, is
distributive over the addition operation, and has a multiplicative
identity element
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
. (Some authors apply the term ''ring'' to a further generalization, often called a ''
rng'', that omits the requirement for a multiplicative identity, and instead call the structure defined above a ''ring with identity''. See '.)
Whether a ring is
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
(that is, its multiplication is a
commutative operation
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
) has profound implications on its properties.
Commutative algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theo ...
, the theory of commutative rings, is a major branch of
ring theory. Its development has been greatly influenced by problems and ideas of
algebraic number theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
and
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
.
Examples of commutative rings include every
field, the integers, the polynomials in one or several variables with coefficients in another ring, the
coordinate ring
In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space.
More formally, an affine algebraic set is the set of the common zeros over an algeb ...
of an
affine algebraic variety
In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space.
More formally, an affine algebraic set is the set of the common zeros over an algeb ...
, and the
ring of integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often de ...
of a number field. Examples of noncommutative rings include the ring of real
square matrices
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...
with ,
group ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the gi ...
s in
representation theory
Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
,
operator algebra
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.
The results obtained in the study o ...
s in
functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
,
rings of differential operators, and
cohomology ring In mathematics, specifically algebraic topology, the cohomology ring of a topological space ''X'' is a ring formed from the cohomology groups of ''X'' together with the cup product serving as the ring multiplication. Here 'cohomology' is usually un ...
s in
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
.
The conceptualization of rings spanned the 1870s to the 1920s, with key contributions by
Dedekind
Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. H ...
,
Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosophy of mathematics, philosopher of mathematics and one of the most influential mathematicians of his time.
Hilbert discovered and developed a broad ...
,
Fraenkel, and
Noether. Rings were first formalized as a generalization of
Dedekind domain
In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily un ...
s that occur in
number theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, and of
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s and rings of invariants that occur in
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
and
invariant theory
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descr ...
. They later proved useful in other branches of mathematics such as
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
and
analysis
Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
.
Rings appear in the following chain of
class inclusions:
Definition
A ring is a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
equipped with two binary operations + (addition) and â‹… (multiplication) satisfying the following three sets of axioms, called the ring axioms:
# is an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
under addition, meaning that:
#* for all in (that is, is
associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
).
#* for all in (that is, is
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
).
#* There is an element in such that for all in (that is, is the
additive identity
In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element in the set, yields . One of the most familiar additive identities is the number 0 from elementary ma ...
).
#* For each in there exists in such that (that is, is the
additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
of ).
# is a
monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being .
Monoids are semigroups with identity ...
under multiplication, meaning that:
#* for all in (that is, is associative).
#* There is an element in such that and for all in (that is, is the
multiplicative identity
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
).
# Multiplication is
distributive with respect to addition, meaning that:
#* for all in (left distributivity).
#* for all in (right distributivity).
In notation, the multiplication symbol is often omitted, in which case is written as .
Variations on terminology
In the terminology of this article, a ring is defined to have a multiplicative identity, while a structure with the same axiomatic definition but without the requirement for a multiplicative identity is instead called a "
" (IPA: ) with a missing "i". For example, the set of
even integer
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers.
The ...
s with the usual + and â‹… is a rng, but not a ring. As explained in ' below, many authors apply the term "ring" without requiring a multiplicative identity.
Although ring addition is
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
, ring multiplication is not required to be commutative: need not necessarily equal . Rings that also satisfy commutativity for multiplication (such as the ring of integers) are called ''
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
s''. Books on commutative algebra or algebraic geometry often adopt the convention that ''ring'' means ''commutative ring'', to simplify terminology.
In a ring, multiplicative inverses are not required to exist. A non
zero
0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
commutative ring in which every nonzero element has a
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
is called a
field.
The additive group of a ring is the underlying set equipped with only the operation of addition. Although the definition requires that the additive group be abelian, this can be inferred from the other ring axioms. The proof makes use of the "", and does not work in a rng. (For a rng, omitting the axiom of commutativity of addition leaves it inferable from the remaining rng assumptions only for elements that are products: .)
There are a few authors who use the term "ring" to refer to structures in which there is no requirement for multiplication to be associative. For these authors, every
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
is a "ring".
Illustration

The most familiar example of a ring is the set of all integers consisting of the
number
A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
s
:
The axioms of a ring were elaborated as a generalization of familiar properties of addition and multiplication of integers.
Some properties
Some basic properties of a ring follow immediately from the axioms:
* The additive identity is unique.
* The additive inverse of each element is unique.
* The multiplicative identity is unique.
* For any element in a ring , one has (zero is an
absorbing element
In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element ...
with respect to multiplication) and .
* If in a ring (or more generally, is a unit element), then has only one element, and is called the
zero ring
In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which fo ...
.
* If a ring contains the zero ring as a subring, then itself is the zero ring.
* The
binomial formula
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, the power expands into a polynomial with terms of the form , where the exponents and a ...
holds for any and satisfying .
Example: Integers modulo 4
Equip the set
with the following operations:
* The sum
in is the remainder when the integer is divided by (as is always smaller than , this remainder is either or ). For example,
and
* The product
in is the remainder when the integer is divided by . For example,
and
Then is a ring: each axiom follows from the corresponding axiom for If is an integer, the remainder of when divided by may be considered as an element of and this element is often denoted by "" or
which is consistent with the notation for . The additive inverse of any
in is
For example,
Example: 2-by-2 matrices
The set of 2-by-2
square matrices
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...
with entries in a
field is
:
With the operations of matrix addition and
matrix multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
,
satisfies the above ring axioms. The element
is the multiplicative identity of the ring. If
and
then
while
this example shows that the ring is noncommutative.
More generally, for any ring , commutative or not, and any nonnegative integer , the square matrices with entries in form a ring; see ''
Matrix ring
In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication. The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'') (alternat ...
''.
History
Dedekind
The study of rings originated from the theory of
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s and the theory of
algebraic integer
In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s.
In 1871,
Richard Dedekind
Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. H ...
defined the concept of the ring of integers of a number field. In this context, he introduced the terms "ideal" (inspired by
Ernst Kummer
Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician. Skilled in applied mathematics, Kummer trained German army officers in ballistics; afterwards, he taught for 10 years in a '' gymnasium'', the German equivalent of h ...
's notion of ideal number) and "module" and studied their properties. Dedekind did not use the term "ring" and did not define the concept of a ring in a general setting.
Hilbert
The term "Zahlring" (number ring) was coined by
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time.
Hilbert discovered and developed a broad range of fundamental idea ...
in 1892 and published in 1897. In 19th century German, the word "Ring" could mean "association", which is still used today in English in a limited sense (for example, spy ring), so if that were the etymology then it would be similar to the way "group" entered mathematics by being a non-technical word for "collection of related things". According to Harvey Cohn, Hilbert used the term for a ring that had the property of "circling directly back" to an element of itself (in the sense of an
equivalence). Specifically, in a ring of algebraic integers, all high powers of an algebraic integer can be written as an integral combination of a fixed set of lower powers, and thus the powers "cycle back". For instance, if then:
:
and so on; in general, is going to be an integral linear combination of , , and .
Fraenkel and Noether
The first axiomatic definition of a ring was given by
Adolf Fraenkel in 1915, but his axioms were stricter than those in the modern definition. For instance, he required every
non-zero-divisor to have a
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
. In 1921,
Emmy Noether
Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which ...
gave a modern axiomatic definition of commutative rings (with and without 1) and developed the foundations of commutative ring theory in her paper ''Idealtheorie in Ringbereichen''.
Multiplicative identity and the term "ring"
Fraenkel applied the term "ring" to structures with axioms that included a multiplicative identity, whereas Noether applied it to structures that did not.
Most or all books on algebra up to around 1960 followed Noether's convention of not requiring a for a "ring". Starting in the 1960s, it became increasingly common to see books including the existence of in the definition of "ring", especially in advanced books by notable authors such as Artin, Bourbaki, Eisenbud, and Lang. There are also books published as late as 2022 that use the term without the requirement for a . Likewise, the
Encyclopedia of Mathematics
The ''Encyclopedia of Mathematics'' (also ''EOM'' and formerly ''Encyclopaedia of Mathematics'') is a large reference work in mathematics.
Overview
The 2002 version contains more than 8,000 entries covering most areas of mathematics at a graduat ...
does not require unit elements in rings. In a research article, the authors often specify which definition of ring they use in the beginning of that article.
Gardner and Wiegandt assert that, when dealing with several objects in the category of rings (as opposed to working with a fixed ring), if one requires all rings to have a , then some consequences include the lack of existence of infinite direct sums of rings, and that proper direct summands of rings are not subrings. They conclude that "in many, maybe most, branches of ring theory the requirement of the existence of a unity element is not sensible, and therefore unacceptable."
Poonen makes the counterargument that the natural notion for rings would be the
direct product
In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abs ...
rather than the direct sum. However, his main argument is that rings without a multiplicative identity are not totally associative, in the sense that they do not contain the product of any finite sequence of ring elements, including the empty sequence.
Authors who follow either convention for the use of the term "ring" may use one of the following terms to refer to objects satisfying the other convention:
* to include a requirement for a multiplicative identity: "unital ring", "unitary ring", "unit ring", "ring with unity", "ring with identity", "ring with a unit", or "ring with 1".
* to omit a requirement for a multiplicative identity: "rng" or "pseudo-ring", although the latter may be confusing because it also has other meanings.
Basic examples
Commutative rings
* The prototypical example is the ring of integers with the two operations of addition and multiplication.
* The rational, real and complex numbers are commutative rings of a type called
fields
Fields may refer to:
Music
*Fields (band), an indie rock band formed in 2006
* Fields (progressive rock band), a progressive rock band formed in 1971
* ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010)
* "Fields", a song by ...
.
* A unital associative
algebra over a commutative ring
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear map, bilinear product (mathematics), product. Thus, an algebra is an algebraic structure consisting of a set (mathematics), set to ...
is itself a ring as well as an
-module. Some examples:
** The algebra of
polynomials
In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative int ...
with coefficients in .
** The algebra
of
formal power series
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial su ...
with coefficients in .
** The set of all
continuous
Continuity or continuous may refer to:
Mathematics
* Continuity (mathematics), the opposing concept to discreteness; common examples include
** Continuous probability distribution or random variable in probability and statistics
** Continuous ...
real-valued
functions defined on the real line forms a commutative -algebra. The operations are
pointwise In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some Function (mathematics), function f. An important class of pointwise concepts are the ''pointwise operations'', that ...
addition and multiplication of functions.
** Let be a set, and let be a ring. Then the set of all functions from to forms a ring, which is commutative if is commutative.
* The ring of
quadratic integers, the integral closure of in a quadratic extension of It is a subring of the ring of all
algebraic integers
In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients a ...
.
* The ring of
profinite integer
In mathematics, a profinite integer is an element of the ring (mathematics), ring (sometimes pronounced as zee-hat or zed-hat)
:\widehat = \varprojlim \mathbb/n\mathbb,
where the inverse limit of the quotient rings \mathbb/n\mathbb runs through al ...
s the (infinite) product of the rings of -adic integers over all prime numbers .
* The
Hecke ring, the ring generated by Hecke operators.
* If is a set, then the
power set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
of becomes a ring if we define addition to be the
symmetric difference
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and ...
of sets and multiplication to be
intersection
In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
. This is an example of a
Boolean ring
In mathematics, a Boolean ring is a ring for which for all in , that is, a ring that consists of only idempotent elements. An example is the ring of integers modulo 2.
Every Boolean ring gives rise to a Boolean algebra, with ring multiplicat ...
.
Noncommutative rings
* For any ring and any natural number , the set of all square -by-
matrices
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the ...
with entries from , forms a ring with matrix addition and matrix multiplication as operations. For , this matrix ring is isomorphic to itself. For (and not the zero ring), this matrix ring is noncommutative.
* If is an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
, then the
endomorphisms
In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a grou ...
of form a ring, the
endomorphism ring
In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in ...
of . The operations in this ring are addition and composition of endomorphisms. More generally, if is a
left module
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since th ...
over a ring , then the set of all -linear maps forms a ring, also called the endomorphism ring and denoted by .
*The
endomorphism ring of an elliptic curve. It is a commutative ring if the elliptic curve is defined over a field of characteristic zero.
* If is a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
and is a ring, the
group ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the gi ...
of over is a
free module
In mathematics, a free module is a module that has a ''basis'', that is, a generating set that is linearly independent. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commu ...
over having as basis. Multiplication is defined by the rules that the elements of commute with the elements of and multiply together as they do in the group .
* The
ring of differential operators (depending on the context). In fact, many rings that appear in analysis are noncommutative. For example, most
Banach algebra
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach sp ...
s are noncommutative.
Non-rings
* The set of
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s with the usual operations is not a ring, since is not even a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
(not all the elements are
invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
with respect to addition – for instance, there is no natural number which can be added to to get as a result). There is a natural way to enlarge it to a ring, by including negative numbers to produce the ring of integers The natural numbers (including ) form an algebraic structure known as a
semiring
In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distribu ...
(which has all of the axioms of a ring excluding that of an additive inverse).
* Let be the set of all continuous functions on the real line that vanish outside a bounded interval that depends on the function, with addition as usual but with multiplication defined as
convolution
In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions f and g that produces a third function f*g, as the integral of the product of the two ...
:
Then is a rng, but not a ring: the
Dirac delta function
In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line ...
has the property of a multiplicative identity, but it is not a function and hence is not an element of .
Basic concepts
Products and powers
For each nonnegative integer , given a sequence of elements of , one can define the product recursively: let and let for .
As a special case, one can define nonnegative integer powers of an element of a ring: and for . Then for all .
Elements in a ring
A left
zero divisor
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right ze ...
of a ring is an element in the ring such that there exists a nonzero element of such that . A right zero divisor is defined similarly.
A
nilpotent element
In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0.
The term, along with its sister idempotent, was introduced by Benjamin Peirce i ...
is an element such that for some . One example of a nilpotent element is a
nilpotent matrix
In linear algebra, a nilpotent matrix is a square matrix ''N'' such that
:N^k = 0\,
for some positive integer k. The smallest such k is called the index of N, sometimes the degree of N.
More generally, a nilpotent transformation is a linear trans ...
. A nilpotent element in a
nonzero ring is necessarily a zero divisor.
An
idempotent
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
is an element such that . One example of an idempotent element is a
projection
Projection or projections may refer to:
Physics
* Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction
* The display of images by a projector
Optics, graphics, and carto ...
in linear algebra.
A
unit
Unit may refer to:
General measurement
* Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law
**International System of Units (SI), modern form of the metric system
**English units, histo ...
is an element having a
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
; in this case the inverse is unique, and is denoted by . The set of units of a ring is a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
under ring multiplication; this group is denoted by or or . For example, if is the ring of all square matrices of size over a field, then consists of the set of all invertible matrices of size , and is called the
general linear group
In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
.
Subring
A subset of is called a
subring
In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
if any one of the following equivalent conditions holds:
* the addition and multiplication of
restrict
In the C programming language, restrict is a keyword, introduced by the C99 standard, that can be used in pointer declarations. By adding this type qualifier, a programmer hints to the compiler that for the lifetime of the pointer, no other ...
to give operations making a ring with the same multiplicative identity as .
* ; and for all in , the elements , , and are in .
* can be equipped with operations making it a ring such that the inclusion map is a ring homomorphism.
For example, the ring of integers is a subring of the
field of real numbers and also a subring of the ring of
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s (in both cases, contains 1, which is the multiplicative identity of the larger rings). On the other hand, the subset of even integers does not contain the identity element and thus does not qualify as a subring of one could call a
subrng, however.
An intersection of subrings is a subring. Given a subset of , the smallest subring of containing is the intersection of all subrings of containing , and it is called ''the subring generated by ''.
For a ring , the smallest subring of is called the ''characteristic subring'' of . It can be generated through addition of copies of and . It is possible that ( times) can be zero. If is the smallest positive integer such that this occurs, then is called the ''
characteristic'' of . In some rings, is never zero for any positive integer , and those rings are said to have ''characteristic zero''.
Given a ring , let denote the set of all elements in such that commutes with every element in : for any in . Then is a subring of , called the
center of . More generally, given a subset of , let be the set of all elements in that commute with every element in . Then is a subring of , called the
centralizer
In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set \operatorname_G(S) of elements of ''G'' that commute with every element of ''S'', or equivalently, the set of ele ...
(or commutant) of . The center is the centralizer of the entire ring . Elements or subsets of the center are said to be ''central'' in ; they (each individually) generate a subring of the center.
Ideal
Let be a ring. A left ideal of is a nonempty subset of such that for any in and in , the elements and are in . If denotes the -span of , that is, the set of finite sums
:
then is a left ideal if . Similarly, a right ideal is a subset such that . A subset is said to be a two-sided ideal or simply ideal if it is both a left ideal and right ideal. A one-sided or two-sided ideal is then an additive subgroup of . If is a subset of , then is a left ideal, called the left ideal generated by ; it is the smallest left ideal containing . Similarly, one can consider the right ideal or the two-sided ideal generated by a subset of .
If is in , then and are left ideals and right ideals, respectively; they are called the
principal left ideals and right ideals generated by . The principal ideal is written as . For example, the set of all positive and negative multiples of along with form an ideal of the integers, and this ideal is generated by the integer . In fact, every ideal of the ring of integers is principal.
Like a group, a ring is said to be
simple
Simple or SIMPLE may refer to:
*Simplicity, the state or quality of being simple
Arts and entertainment
* ''Simple'' (album), by Andy Yorke, 2008, and its title track
* "Simple" (Florida Georgia Line song), 2018
* "Simple", a song by John ...
if it is nonzero and it has no proper nonzero two-sided ideals. A commutative simple ring is precisely a field.
Rings are often studied with special conditions set upon their ideals. For example, a ring in which there is no strictly increasing infinite
chain
A chain is a serial assembly of connected pieces, called links, typically made of metal, with an overall character similar to that of a rope in that it is flexible and curved in compression but linear, rigid, and load-bearing in tension. A ...
of left ideals is called a left
Noetherian ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
. A ring in which there is no strictly decreasing infinite chain of left ideals is called a left
Artinian ring
In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are ...
. It is a somewhat surprising fact that a left Artinian ring is left Noetherian (the
Hopkins–Levitzki theorem). The integers, however, form a Noetherian ring which is not Artinian.
For commutative rings, the ideals generalize the classical notion of divisibility and decomposition of an integer into prime numbers in algebra. A proper ideal of is called a
prime ideal
In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
if for any elements
we have that
implies either
or
Equivalently, is prime if for any ideals , we have that implies either or . This latter formulation illustrates the idea of ideals as generalizations of elements.
Homomorphism
A
homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
from a ring to a ring is a function from to that preserves the ring operations; namely, such that, for all , in the following identities hold:
:
If one is working with , then the third condition is dropped.
A ring homomorphism is said to be an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
if there exists an inverse homomorphism to (that is, a ring homomorphism that is an
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon ...
), or equivalently if it is
bijective
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
.
Examples:
* The function that maps each integer to its remainder modulo (a number in ) is a homomorphism from the ring to the quotient ring ("quotient ring" is defined below).
* If is a unit element in a ring , then
is a ring homomorphism, called an
inner automorphism
In abstract algebra, an inner automorphism is an automorphism of a group, ring, or algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within thos ...
of .
* Let be a commutative ring of prime characteristic . Then is a ring endomorphism of called the
Frobenius homomorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class that includes finite fields. The endomorphism m ...
.
* The
Galois group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...
of a field extension is the set of all automorphisms of whose restrictions to are the identity.
* For any ring , there are a unique ring homomorphism and a unique ring homomorphism .
* An
epimorphism
In category theory, an epimorphism is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms ,
: g_1 \circ f = g_2 \circ f \implies g_1 = g_2.
Epimorphisms are categorical analo ...
(that is, right-cancelable morphism) of rings need not be surjective. For example, the unique map is an epimorphism.
* An algebra homomorphism from a -algebra to the
endomorphism algebra
In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in a ...
of a vector space over is called a
representation of the algebra.
Given a ring homomorphism , the set of all elements mapped to 0 by is called the
kernel of . The kernel is a two-sided ideal of . The image of , on the other hand, is not always an ideal, but it is always a subring of .
To give a ring homomorphism from a commutative ring to a ring with image contained in the center of is the same as to give a structure of an
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
over to (which in particular gives a structure of an -module).
Quotient ring
The notion of
quotient ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
is analogous to the notion of a
quotient group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For ex ...
. Given a ring and a two-sided
ideal of , view as subgroup of ; then the quotient ring is the set of
coset
In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) ...
s of together with the operations
:
for all in . The ring is also called a factor ring.
As with a quotient group, there is a canonical homomorphism , given by . It is surjective and satisfies the following universal property:
* If is a ring homomorphism such that , then there is a unique homomorphism
such that
For any ring homomorphism , invoking the universal property with produces a homomorphism
that gives an isomorphism from to the image of .
Modules
The concept of a ''module over a ring'' generalizes the concept of a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
(over a
field) by generalizing from multiplication of vectors with elements of a field (
scalar multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector ...
) to multiplication with elements of a ring. More precisely, given a ring , an -module is an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
equipped with an
operation (associating an element of to every pair of an element of and an element of ) that satisfies certain
axioms
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
. This operation is commonly denoted by juxtaposition and called multiplication. The axioms of modules are the following: for all , in and all , in ,
: is an abelian group under addition.
:
When the ring is
noncommutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a p ...
these axioms define ''left modules''; ''right modules'' are defined similarly by writing instead of . This is not only a change of notation, as the last axiom of right modules (that is ) becomes , if left multiplication (by ring elements) is used for a right module.
Basic examples of modules are ideals, including the ring itself.
Although similarly defined, the theory of modules is much more complicated than that of vector space, mainly, because, unlike vector spaces, modules are not characterized (up to an isomorphism) by a single invariant (the
dimension of a vector space
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to d ...
). In particular, not all modules have a
basis.
The axioms of modules imply that , where the first minus denotes the
additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
in the ring and the second minus the additive inverse in the module. Using this and denoting repeated addition by a multiplication by a positive integer allows identifying abelian groups with modules over the ring of integers.
Any ring homomorphism induces a structure of a module: if is a ring homomorphism, then is a left module over by the multiplication: . If is commutative or if is contained in the
center of , the ring is called a -
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
. In particular, every ring is an algebra over the integers.
Constructions
Direct product
Let and be rings. Then the
product can be equipped with the following natural ring structure:
:
for all in and in . The ring with the above operations of addition and multiplication and the multiplicative identity is called the
direct product
In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abs ...
of with . The same construction also works for an arbitrary family of rings: if are rings indexed by a set , then
is a ring with componentwise addition and multiplication.
Let be a commutative ring and
be ideals such that
whenever . Then the
Chinese remainder theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
says there is a canonical ring isomorphism:
A "finite" direct product may also be viewed as a direct sum of ideals. Namely, let
be rings,
the inclusions with the images
(in particular
are rings though not subrings). Then
are ideals of and
as a direct sum of abelian groups (because for abelian groups finite products are the same as direct sums). Clearly the direct sum of such ideals also defines a product of rings that is isomorphic to . Equivalently, the above can be done through
central idempotent
In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring (mathematics), ring is an element such that . That is, the element is idempotent under the ring's multiplication. Mathematical induction, Inductively the ...
s. Assume that has the above decomposition. Then we can write
By the conditions on
one has that are central idempotents and , (orthogonal). Again, one can reverse the construction. Namely, if one is given a partition of 1 in orthogonal central idempotents, then let
which are two-sided ideals. If each is not a sum of orthogonal central idempotents, then their direct sum is isomorphic to .
An important application of an infinite direct product is the construction of a
projective limit of rings (see below). Another application is a
restricted product In mathematics, the restricted product is a construction in the theory of topological groups.
Let I be an index set; S a finite subset of I. If G_i is a locally compact group for each i \in I, and K_i \subset G_i is an open compact subgroup for ea ...
of a family of rings (cf.
adele ring
In mathematics, the adele ring of a global field (also adelic ring, ring of adeles or ring of adèles) is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the glob ...
).
Polynomial ring
Given a symbol (called a variable) and a commutative ring , the set of polynomials
:
forms a commutative ring with the usual addition and multiplication, containing as a subring. It is called the
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
over . More generally, the set
).
Let be a ring (not necessarily commutative). The set of all square matrices of size with entries in forms a ring with the entry-wise addition and the usual matrix multiplication. It is called the matrix ring and is denoted by . Given a right -module , the set of all -linear maps from to itself forms a ring with addition that is of function and multiplication that is of composition of functions; it is called the endomorphism ring of and is denoted by .
As in linear algebra, a matrix ring may be canonically interpreted as an endomorphism ring:
is an -linear map, then may be written as a matrix with entries in , resulting in the ring isomorphism:
:
says that if is a simple right -module, then is a division ring. If
(cf. below) is of this form.
A ring and the matrix ring over it are
of right modules of is equivalent to the category of right modules over . In particular, two-sided ideals in correspond in one-to-one to two-sided ideals in .
Let be a sequence of rings such that is a subring of for all . Then the union (or
defined as follows: it is the disjoint union of all 's modulo the equivalence relation if and only if in for sufficiently large .
Examples of colimits:
* A polynomial ring in infinitely many variables: