Formal Power Series Ring
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sums, etc.). A formal power series is a special kind of formal series, of the form \sum_^\infty a_nx^n=a_0+a_1x+ a_2x^2+\cdots, where the a_n, called ''coefficients'', are numbers or, more generally, elements of some ring, and the x^n are formal powers of the symbol x that is called an indeterminate or, commonly, a variable. Hence, power series can be viewed as a generalization of polynomials where the number of terms is allowed to be infinite, and differ from usual power series by the absence of convergence requirements, which implies that a power series may not represent a function of its variable. Formal power series are in one to one correspondence with their sequences of coefficients, but the two concepts must not be confused, since th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Convergence
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E as the function domain if, given any arbitrarily small positive number \varepsilon, a number N can be found such that each of the functions f_N, f_,f_,\ldots differs from f by no more than \varepsilon ''at every point'' x ''in'' E. Described in an informal way, if f_n converges to f uniformly, then how quickly the functions f_n approach f is "uniform" throughout E in the following sense: in order to guarantee that f_n(x) differs from f(x) by less than a chosen distance \varepsilon, we only need to make sure that n is larger than or equal to a certain N, which we can find without knowing the value of x\in E in advance. In other words, there exists a number N=N(\varepsilon) that could depend on \varepsilon but is ''independent of x'', such that choosing n\geq N wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Convergence
In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. Definition More precisely, a series of real numbers \sum_^\infty a_n is said to converge conditionally if \lim_\,\sum_^m a_n exists (as a finite real number, i.e. not \infty or -\infty), but \sum_^\infty \left, a_n\ = \infty. A classic example is the alternating harmonic series given by 1 - + - + - \cdots =\sum\limits_^\infty , which converges to \ln (2), but is not absolutely convergent (see Harmonic series). Bernhard Riemann Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the f ... proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem. Agnew' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Absolute Convergence
In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series \textstyle\sum_^\infty a_n is said to converge absolutely if \textstyle\sum_^\infty \left, a_n\ = L for some real number \textstyle L. Similarly, an improper integral of a function, \textstyle\int_0^\infty f(x)\,dx, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if \textstyle\int_0^\infty , f(x), dx = L. A convergent series that is not absolutely convergent is called conditionally convergent. Absolute convergence is important for the study of infinite series, because its definition guarantees that a series will have some "nice" behaviors of finite sums that not all convergent series possess. For instance, rearrangements do not change the value of the sum, which is not necessarily true for conditionally converge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cauchy Product
In mathematics, more specifically in mathematical analysis, the Cauchy product is the discrete convolution of two infinite series. It is named after the French mathematician Augustin-Louis Cauchy. Definitions The Cauchy product may apply to infinite series or power series. When people apply it to finite sequences or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution). Convergence issues are discussed in the next section. Cauchy product of two infinite series Let \sum_^\infty a_i and \sum_^\infty b_j be two infinite series with complex terms. The Cauchy product of these two infinite series is defined by a discrete convolution as follows: :\left(\sum_^\infty a_i\right) \cdot \left(\sum_^\infty b_j\right) = \sum_^\infty c_k where c_k=\sum_^k a_l b_. Cauchy product of two power series Consider the following two power series :\sum_^\infty a_i x ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Factorial
In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book ''Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless quantity, number without units, in which case it is known as a numerical factor. It may also be a constant (mathematics), constant with units of measurement, in which it is known as a constant multiplier. In general, coefficients may be any mathematical expression, expression (including Variable (mathematics), variables such as , and ). When the combination of variables and constants is not necessarily involved in a product (mathematics), product, it may be called a ''parameter''. For example, the polynomial 2x^2-x+3 has coefficients 2, −1, and 3, and the powers of the variable x in the polynomial ax^2+bx+c have coefficient parameters a, b, and c. A , also known as constant term or simply constant, is a quantity either implicitly attach ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cauchy–Hadamard Theorem
In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, but remained relatively unknown until Hadamard rediscovered it. Hadamard's first publication of this result was in 1888; he also included it as part of his 1892 Ph.D. thesis. Theorem for one complex variable Consider the formal power series in one complex variable ''z'' of the form f(z) = \sum_^ c_ (z-a)^ where a, c_n \in \Complex. Then the radius of convergence R of ''f'' at the point ''a'' is given by \frac = \limsup_ \left( , c_ , ^ \right) where denotes the limit superior, the limit as approaches infinity of the supremum of the sequence values after the ''n''th position. If the sequence values is unbounded so that the is ∞, then the power series does not converge near , while if the is 0 then the radius of convergence i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radius Of Convergence
In mathematics, the radius of convergence of a power series is the radius of the largest Disk (mathematics), disk at the Power series, center of the series in which the series Convergent series, converges. It is either a non-negative real number or \infty. When it is positive, the power series absolute convergence, converges absolutely and compact convergence, uniformly on compact sets inside the open disk of radius equal to the radius of convergence, and it is the Taylor series of the analytic function to which it converges. In case of multiple singularities of a function (singularities are those values of the argument for which the function is not defined), the radius of convergence is the shortest or minimum of all the respective distances (which are all non-negative numbers) calculated from the center of the disk of convergence to the respective singularities of the function. Definition For a power series ''f'' defined as: :f(z) = \sum_^\infty c_n (z-a)^n, where *''a'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convergent Series
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (a_1, a_2, a_3, \ldots) defines a series that is denoted :S=a_1 + a_2 + a_3 + \cdots=\sum_^\infty a_k. The th partial sum is the sum of the first terms of the sequence; that is, :S_n = a_1 +a_2 + \cdots + a_n = \sum_^n a_k. A series is convergent (or converges) if and only if the sequence (S_1, S_2, S_3, \dots) of its partial sums tends to a limit; that means that, when adding one a_k after the other ''in the order given by the indices'', one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if and only if there exists a number \ell such that for every arbitrarily small positive number \varepsilon, there is a (sufficiently large) integer N such that for all n \ge N, :\left , S_n - \ell \right , 1 produce a convergent series: *: ++++++\cdots = . * Alternating the signs of reciprocals of powers o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Taylor Series
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th century. The partial sum formed by the first terms of a Taylor series is a polynomial of degree that is called the th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally more accurate as increases. Taylor's theorem gives quantitative estimates on the error introduced by the use of such approximations. If the Taylor series of a function is convergent, its sum is the limit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |