SBI Ring
In abstract algebra, algebra, an SBI ring is a ring (mathematics), ring ''R'' (with identity) such that every idempotent (ring theory), idempotent of ''R'' modulo (jargon), modulo the Jacobson radical can be lift (mathematics), lifted to ''R''. The abbreviation SBI was introduced by Irving Kaplansky and stands for "suitable for building idempotent elements". Examples * Any ring with Nil ideal, nil radical is SBI. * Any Banach algebra is SBI: more generally, so is any Compact space, compact topological ring. * The ring of rational numbers with parity (mathematics), odd denominator, and more generally, any local ring, is SBI. Citations References * * Ring theory {{abstract-algebra-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathematics), modules, vector spaces, lattice (order), lattices, and algebra over a field, algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variable (mathematics), variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in mathematical education, pedagogy. Algebraic structures, with their associated homomorphisms, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Idempotent (ring Theory)
In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element such that . That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that for any positive integer . For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring. In Boolean algebra, the main objects of study are rings in which all elements are idempotent under both addition and multiplication. Examples Quotients of Z One may consider the ring of integers modulo , where is square-free. By the Chinese remainder theorem, this ring factors into the product of rings of integers modulo , where is prime. Now each of these factors is a field, so it is clear that the factors' only idempotents will be and . That is, each factor h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modulo (jargon)
In mathematics, the term ''modulo'' ("with respect to a modulus of", the Latin ablative of '' modulus'' which itself means "a small measure") is often used to assert that two distinct mathematical objects can be regarded as equivalent—if their difference is accounted for by an additional factor. It was initially introduced into mathematics in the context of modular arithmetic by Carl Friedrich Gauss in 1801. Since then, the term has gained many meanings—some exact and some imprecise (such as equating "modulo" with "except for"). For the most part, the term often occurs in statements of the form: :''A'' is the same as ''B'' modulo ''C'' which is often equivalent to "''A'' is the same as ''B'' up to ''C''", and means :''A'' and ''B'' are the same—except for differences accounted for or explained by ''C''. History ''Modulo'' is a mathematical jargon that was introduced into mathematics in the book '' Disquisitiones Arithmeticae'' by Carl Friedrich Gauss in 1801. Given the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobson Radical
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R- modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left–right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or \operatorname(R); the former notation will be preferred in this article to avoid confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in . The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to non-unital rings. The radical of a module extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring- and module-theoretic results, such as Nakayama's lemma. Definitions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lift (mathematics)
In category theory, a branch of mathematics, given a morphism ''f'': ''X'' → ''Y'' and a morphism ''g'': ''Z'' → ''Y'', a lift or lifting of ''f'' to ''Z'' is a morphism ''h'': ''X'' → ''Z'' such that . We say that ''f'' factors through ''h''. Lifts are ubiquitous; for example, the definition of fibrations (see Homotopy lifting property) and the valuative criteria of separated and proper maps of schemes are formulated in terms of existence and (in the last case) uniqueness of certain lifts. In algebraic topology and homological algebra, tensor product and the Hom functor are adjoint; however, they might not always lift to an exact sequence. This leads to the definition of the Tor functor and the Ext functor. Covering space A basic example in topology is lifting a path in one topological space to a path in a covering space. For example, consider mapping opposite points on a sphere to the same point, a continuous map from the sphere covering the projective plane. A path ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Irving Kaplansky
Irving Kaplansky (March 22, 1917 – June 25, 2006) was a mathematician, college professor, author, and amateur musician.O'Connor, John J.; Robertson, Edmund F., "Irving Kaplansky", MacTutor History of Mathematics archive, University of St Andrews. http://www-history.mcs.st-andrews.ac.uk/Biographies/Kaplansky.html. Biography Kaplansky or "Kap" as his friends and colleagues called him was born in Toronto, Ontario, Canada, to Polish Jews, Polish-Jewish immigrants. His father worked as a tailor, and his mother ran a grocery and, eventually, a chain of bakeries. He went to Harbord Collegiate Institute receiving the Prince of Wales Scholarship as a teenager. He attended the University of Toronto as an undergraduate and finished first in his class for three consecutive years. In his senior year, he competed in the first William Lowell Putnam Mathematical Competition, becoming one of the first five recipients of the Putnam Fellowship, which paid for graduate studies at Harvard Univers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nil Ideal
In mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if all of its elements is nilpotent, i.e for each a \in I exists natural number ''n'' for which a^n = 0. If all elements of a ring is nilpotent (this is possible only for rings without a unit), then the ring is called a nil ring. , p. 194 The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil. Unfortunately the set of nilpotent elements does not always form an ideal for noncommutative rings. Nil ideals are still associated with interesting open questions, especially the unsolved Köthe conjecture. Commutative rings In commutative rings, the nil ideals are better understood than in noncommutative rings, primarily because in commutative rings, products involving nilpotent elements and sums of nilpotent elements are both nilpotent. This is because if ''a'' and ''b'' a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Banach Algebra
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy \, x \, y\, \ \leq \, x\, \, \, y\, \quad \text x, y \in A. This ensures that the multiplication operation is continuous with respect to the metric topology. A Banach algebra is called ''unital'' if it has an identity element for the multiplication whose norm is 1, and ''commutative'' if its multiplication is commutative. Any Banach algebra A (whether it is unital or not) can be embedded isometrically into a unital Banach algebra A_e so as to form a closed ideal of A_e. Often one assumes ''a priori'' that the algebra under consideration is unital because one can develop much of the theory by considering A_e and then a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One suc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Ring
In mathematics, a topological ring is a ring R that is also a topological space such that both the addition and the multiplication are continuous as maps: R \times R \to R where R \times R carries the product topology. That means R is an additive topological group and a multiplicative topological semigroup. Topological rings are fundamentally related to topological fields and arise naturally while studying them, since for example completion of a topological field may be a topological ring which is not a field. General comments The group of units R^\times of a topological ring R is a topological group when endowed with the topology coming from the embedding of R^\times into the product R \times R as \left(x, x^\right). However, if the unit group is endowed with the subspace topology as a subspace of R, it may not be a topological group, because inversion on R^\times need not be continuous with respect to the subspace topology. An example of this situation is the adele ring of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all rational numbers is often referred to as "the rationals", and is closed under addition, subtraction, multiplication, and division by a nonzero rational number. It is a field under these operations and therefore also called the field of rationals or the field of rational numbers. It is usually denoted by boldface , or blackboard bold A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |