RNA Replicator
   HOME

TheInfoList



OR:

The RNA world is a hypothetical stage in the
evolutionary history of life The history of life on Earth traces the processes by which living and extinct organisms evolved, from the earliest emergence of life to the present day. Earth formed about 4.5 billion years ago (abbreviated as ''Ga'', for '' gigaannum'') and ...
on Earth in which
self-replicating Self-replication is any behavior of a dynamical system that yields construction of an identical or similar copy of itself. Cell (biology), Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA repli ...
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
molecules proliferated before the evolution of
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s. The term also refers to the hypothesis that posits the existence of this stage.
Alexander Rich Alexander Rich (15 November 1924 – 27 April 2015) was an American biologist and biophysicist. He was the William Thompson Sedgwick Professor of Biophysics at MIT (since 1958) and Harvard Medical School. Rich earned an A.B. ('' magna cum ...
first proposed the concept of the RNA world in 1962, and
Walter Gilbert Walter Gilbert (born March 21, 1932) is an American biochemist, physicist, molecular biology pioneer, and Nobel laureate. Education and early life Walter Gilbert was born in Boston, Massachusetts, on March 21, 1932, into a Jewish family, the so ...
coined the term in 1986. Among the characteristics of RNA that suggest its original prominence are that: * Like DNA, RNA can store and replicate genetic information. Although RNA is considerably more fragile than DNA, some ancient RNAs may have evolved the ability to methylate other RNAs to protect them. The concurrent formation of all four RNA building blocks further strengthens the hypothesis. * Enzymes made of RNA (
ribozyme Ribozymes (ribonucleic acid enzymes) are RNA molecules that have the ability to Catalysis, catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes. The 1982 discovery of ribozy ...
s) can
catalyze Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
(start or accelerate) chemical reactions that are critical for
life Life, also known as biota, refers to matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes. It is defined descriptively by the capacity for homeostasis, Structure#Biological, organisation, met ...
, so it is conceivable that in an RNA world, ribozymes might have preceded
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s made of protein. * Many coenzymes that have fundamental roles in cellular life, such as
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidation, o ...
,
NADH Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an ade ...
, FADH, and F420, are structurally strikingly similar to RNA and so may be surviving remnants of covalently bound coenzymes in an RNA world. * One of the most critical components of cells, the
ribosome Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
, is composed primarily of RNA. Although alternative chemical paths to life have been proposed, and RNA-based life may not have been the first life to exist, the RNA world hypothesis seems to be the most favored abiogenesis paradigm. However, even proponents agree that there is still not conclusive evidence to completely falsify other paradigms and hypotheses. Regardless of its plausibility in a prebiotic scenario, the RNA world can serve as a model system for studying the origin of life. If the RNA world existed, it was probably followed by an age characterized by the evolution of
ribonucleoprotein Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA). Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins. Structures Nucleoproteins tend to be positively charged, facilitating inter ...
s ( RNP world), which in turn ushered in the era of DNA and longer proteins. DNA has greater stability and durability than RNA, which may explain why it became the predominant
information storage Information is an abstract concept that refers to something which has the power to inform. At the most fundamental level, it pertains to the interpretation (perhaps formally) of that which may be sensed, or their abstractions. Any natur ...
molecule. Protein enzymes may have replaced RNA-based ribozymes as biocatalysts because the greater abundance and diversity of the
monomers A monomer ( ; ''wikt:mono-, mono-'', "one" + ''wikt:-mer, -mer'', "part") is a molecule that can chemical reaction, react together with other monomer molecules to form a larger polymer chain or two- or three-dimensional network in a process called ...
of which they are built makes them more versatile. As some cofactors contain both nucleotide and amino-acid characteristics, it may be that amino acids, peptides, and finally proteins initially were cofactors for ribozymes.


History

One of the challenges in studying
abiogenesis Abiogenesis is the natural process by which life arises from non-living matter, such as simple organic compounds. The prevailing scientific hypothesis is that the transition from non-living to living entities on Earth was not a single even ...
is that the system of reproduction and metabolism utilized by all extant life involves three distinct types of interdependent macromolecules (
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
,
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
, and
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, re ...
), none of which can function and reproduce without the others, the classic chicken-and-egg paradox. This suggests that life could not have arisen in its current form, which has led researchers to hypothesize mechanisms whereby the current system might have arisen from a simpler precursor system. American molecular biologist
Alexander Rich Alexander Rich (15 November 1924 – 27 April 2015) was an American biologist and biophysicist. He was the William Thompson Sedgwick Professor of Biophysics at MIT (since 1958) and Harvard Medical School. Rich earned an A.B. ('' magna cum ...
was the first to posit a coherent hypothesis on the origin of nucleotides as precursors of life. In an article he contributed to a volume issued in honor of Nobel-laureate physiologist
Albert Szent-Györgyi Albert Imre Szent-Györgyi de Rapoltu Mare, Nagyrápolt (; September 16, 1893 â€“ October 22, 1986) was a Hungarian biochemist who won the Nobel Prize in Physiology or Medicine in 1937. He is credited with first isolating vitamin C and disc ...
, he explained that the primitive Earth's environment could have produced RNA molecules (polynucleotide monomers) that eventually acquired enzymatic and self-replicating functions. Other mentions of RNA as a primordial molecule can be found in papers by
Francis Crick Francis Harry Compton Crick (8 June 1916 – 28 July 2004) was an English molecular biologist, biophysicist, and neuroscientist. He, James Watson, Rosalind Franklin, and Maurice Wilkins played crucial roles in deciphering the Nucleic acid doub ...
and Leslie Orgel, as well as in
Carl Woese Carl Richard Woese ( ; July 15, 1928 – December 30, 2012) was an American microbiologist and biophysicist. Woese is famous for defining the Archaea (a new domain of life) in 1977 through a pioneering phylogenetic taxonomy of 16S ribosomal ...
's 1967 book ''The Genetic Code''. Hans Kuhn in 1972 laid out a possible process by which the modern genetic system might have arisen from a nucleotide-based precursor, and this led Harold White in 1976 to observe that many of the cofactors essential for enzymatic function are either nucleotides or could have been derived from nucleotides. He proposed a scenario whereby the critical electrochemistry of enzymatic reactions would have necessitated retention of the specific nucleotide moieties of the original RNA-based enzymes carrying out the reactions, while the remaining structural elements of the enzymes were gradually replaced by protein, until all that remained of the original RNAs were these nucleotide cofactors, "fossils of nucleic acid enzymes".


Properties of RNA

The properties of RNA make the idea of the RNA world hypothesis conceptually plausible, though its general acceptance as an explanation for the origin of life requires further evidence. RNA is known to form efficient catalysts, and its similarity to DNA makes clear its ability to store information. Opinions differ, however, as to whether RNA constituted the first autonomous self-replicating system or was a derivative of a still-earlier system. One version of the hypothesis is that a different type of
nucleic acid Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a pentose, 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nuclei ...
, termed '' pre-RNA'', was the first one to emerge as a self-reproducing molecule, to be replaced by RNA only later. On the other hand, the discovery in 2009 that activated
pyrimidine Pyrimidine (; ) is an aromatic, heterocyclic, organic compound similar to pyridine (). One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring. The oth ...
ribonucleotides In biochemistry, a ribonucleotide is a nucleotide containing ribose as its pentose component. It is considered a molecular precursor of nucleic acids. Nucleotides are the basic building blocks of DNA and RNA. Ribonucleotides themselves are basic mo ...
can be synthesized under plausible prebiotic conditions suggests that it is premature to dismiss the RNA-first scenarios. Suggestions for 'simple' ''pre-RNA'' nucleic acids have included
peptide nucleic acid Peptide nucleic acid (PNA) is an artificially synthesized polymer similar to DNA or RNA. Synthetic peptide nucleic acid oligomers have been used in recent years in molecular biology procedures, diagnostic assays, and antisense therapies. Due to ...
(PNA),
threose nucleic acid Threose nucleic acid (TNA) is an artificial genetic polymer in which the natural five-carbon ribose sugar found in RNA has been replaced by an unnatural four-carbon threose sugar.Schöning, K. U. ''et al.'' Chemical etiology of nucleic acid structu ...
(TNA) or glycol nucleic acid (GNA). Despite their structural simplicity and possession of properties comparable with RNA, the chemically plausible generation of "simpler" nucleic acids under prebiotic conditions has yet to be demonstrated.


RNA as an enzyme

In the 1980s, RNA structures capable of self-processing were discovered, with the RNA moiety of ribonuclease P acting as its catalytic subunit. These catalytic RNAs – referred to as RNA enzymes, or ribozymes – are found in today's DNA-based life and could be examples of
living fossil A living fossil is a Deprecation, deprecated term for an extant taxon that phenotypically resembles related species known only from the fossil record. To be considered a living fossil, the fossil species must be old relative to the time of or ...
s. Ribozymes play vital roles, such as that of the
ribosome Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
. The large subunit of the ribosome includes an
rRNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal ...
responsible for the peptide bond-forming
peptidyl transferase The peptidyl transferase center (, PTC) is an Aminoacyltransferases, aminoacyltransferase ribozyme (RNA enzyme) located in the large subunit of the ribosome. It forms peptide bonds between adjacent amino acids during the Translation (genetics), ...
activity of protein synthesis. Many other ribozyme activities exist; for example, the
hammerhead ribozyme The hammerhead ribozyme is an RNA Sequence motif, motif that catalyzes reversible cleavage and Ligation (molecular biology), ligation reactions at a specific site within an RNA molecule. It is one of several catalytic RNAs (ribozymes) known to occ ...
performs self-cleavage and an
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template. Using the e ...
ribozyme can synthesize a short RNA strand from a primed RNA template. Among the enzymatic properties important for the beginning of life are: ;Self-replication :The ability to self-replicate or synthesize other RNA molecules; relatively short RNA molecules that can synthesize others have been artificially produced in the lab. The shortest was 165 bases long, though it has been estimated that only part of the molecule was crucial for this function. :*One version, 189 bases long, had an error rate of just 1.1% per nucleotide when synthesizing an 11-nucleotide long RNA strand from primed template strands. This 189-base pair ribozyme could polymerize a template of at most 14 nucleotides in length, which is too short for self-replication, but is a potential lead for further investigation. The longest primer extension performed by a ribozyme polymerase was 20 bases. :*In 2016, researchers reported the use of in vitro evolution to improve dramatically the activity and generality of an RNA polymerase ribozyme by selecting variants that can synthesize functional RNA molecules from an RNA template. Each RNA polymerase ribozyme was engineered to remain linked to its new, synthesized RNA strand; this allowed the team to isolate successful polymerases. The isolated RNA polymerases were again used for another round of evolution. After several rounds of evolution, they obtained one RNA polymerase ribozyme called 24-3 that was able to copy almost any other RNA, from small catalysts to long RNA-based enzymes. Particular RNAs were amplified up to 10,000 times, a first RNA version of the
polymerase chain reaction The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA (or a part of it) sufficiently to enable detailed st ...
(PCR). :
Life Life, also known as biota, refers to matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes. It is defined descriptively by the capacity for homeostasis, Structure#Biological, organisation, met ...
is thought to have emerged from inanimate matter more than 3.5 billion years ago when a rudimentary
abiogenesis Abiogenesis is the natural process by which life arises from non-living matter, such as simple organic compounds. The prevailing scientific hypothesis is that the transition from non-living to living entities on Earth was not a single even ...
process gradually evolved into an autocatalytic process capable of template-based replication. It was proposed on the basis of experimentally feasible
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
reactions catalyzed by a
ribozyme Ribozymes (ribonucleic acid enzymes) are RNA molecules that have the ability to Catalysis, catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes. The 1982 discovery of ribozy ...
, that the emergence of life was likely a gradual process involving the evolutionary properties of variation,
heredity Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic infor ...
and
reproduction Reproduction (or procreation or breeding) is the biological process by which new individual organisms – "offspring" – are produced from their "parent" or parents. There are two forms of reproduction: Asexual reproduction, asexual and Sexual ...
, ultimately allowing for
Darwinian evolution ''Darwinism'' is a term used to describe a theory of biological evolution developed by the English naturalist Charles Darwin (1809–1882) and others. The theory states that all species of organisms arise and develop through the natural sele ...
. :Recent efforts have been directed at trying to demonstrate
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
replication under conditions that assume the presence during early evolution of plausible
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
intermediates and plausible environmental conditions that could favor strand replication alternating with strand separation. One such effort was the demonstration of high fidelity RNA copying using 2’,3’-cyclic phosphate ligation to allow polynucleotide synthesis under conditions also compatible with strand separation. In another study, it was shown that in a model oscillating
Hadean The Hadean ( ) is the first and oldest of the four geologic eons of Earth's history, starting with the planet's formation about 4.6  billion years ago (estimated 4567.30 ± 0.16 million years ago set by the age of the oldest solid material ...
environment likely to have been abundant during early evolution, that ribozyme-mediated RNA synthesis and replication can occur. ;Catalysis :The ability to
catalyze Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
simple chemical reactions—which would enhance creation of molecules that are building blocks of RNA molecules (i.e., a strand of RNA that would make creating more strands of RNA easier). Relatively short RNA molecules with such abilities have been artificially formed in the lab. A recent study showed that almost any nucleic acid can evolve into a catalytic sequence under appropriate selection. For instance, an arbitrarily chosen 50-nucleotide DNA fragment encoding for the ''
Bos taurus Cattle (''Bos taurus'') are large, domesticated, bovid ungulates widely kept as livestock. They are prominent modern members of the subfamily Bovinae and the most widespread species of the genus '' Bos''. Mature female cattle are called ...
'' (cattle)
albumin Albumin is a family of globular proteins, the most common of which are the serum albumins. All of the proteins of the albumin family are water- soluble, moderately soluble in concentrated salt solutions, and experience heat denaturation. Alb ...
mRNA was subjected to test-tube evolution to derive a catalytic DNA (a
deoxyribozyme Deoxyribozymes, also called DNA enzymes, DNAzymes, or catalytic DNA, are DNA oligonucleotides that are capable of performing a specific chemical reaction, often but not always catalytic. This is similar to the action of other biological enzymes, s ...
, also called a DNAzyme) with RNA-cleavage activity. After only a few weeks, a DNAzyme with significant catalytic activity had evolved. In general, DNA is much more chemically inert than RNA and hence much more resistant to obtaining catalytic properties. If in vitro evolution works for DNA it will happen much more easily with RNA. In 2022, Nick Lane and coauthors showed in a computational simulation that short RNA sequences could have been capable of catalyzing fixation which supported protocell replication and growth. ;Amino acid-RNA ligation :The ability to conjugate an amino acid to the 3'-end of an RNA in order to use its chemical groups or provide a long-branched
aliphatic In organic chemistry, hydrocarbons ( compounds composed solely of carbon and hydrogen) are divided into two classes: aromatic compounds and aliphatic compounds (; G. ''aleiphar'', fat, oil). Aliphatic compounds can be saturated (in which all ...
sidechain. It has been suggested that amino acids may have initially been involved with RNA molecules as cofactors enhancing or diversifying their enzymatic capabilities, before evolving into more complex peptides. In today's world, this is most commonly seen in the form of
aminoacyl-tRNA Aminoacyl-tRNA (also aa-tRNA or charged tRNA) is tRNA to which its cognate amino acid is chemically bonded (charged). The aa-tRNA, along with particular elongation factors, deliver the amino acid to the ribosome for incorporation into the polyp ...
. ;Peptide bond formation :The ability to catalyse the formation of
peptide bonds In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 (carbon number one) of one alpha-amino acid and N2 (nitrogen number two) of another, along a peptide or protein chai ...
between amino acids to produce short
peptide Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty am ...
s or longer
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s. This is done in modern cells by ribosomes, a complex of several RNA molecules known as
rRNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal ...
together with many proteins. The rRNA molecules are thought responsible for its enzymatic activity, as no amino-acid residues lie within 18 Ã… of the enzyme's
active site In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the ''binding s ...
, and, when the majority of the amino-acid residues in the ribosome were stringently removed, the resulting ribosome retained its full
peptidyl transferase The peptidyl transferase center (, PTC) is an Aminoacyltransferases, aminoacyltransferase ribozyme (RNA enzyme) located in the large subunit of the ribosome. It forms peptide bonds between adjacent amino acids during the Translation (genetics), ...
activity, fully able to catalyze the formation of peptide bonds between amino acids. :* A pseudo 2 fold symmetry of the region surrounding the peptidyl transferase center (PTC) led to the hypothesis of the Proto-Ribosome, that a vestige of an ancient dimeric molecule from the RNA world is functioning within the ribosome. An RNA molecule derived from the 23S ribosomal RNA sequence for this region has been synthesized in the lab in 2022 to test the proto-ribosome hypothesis. It was able to dimerize and to form peptide bonds. :* A much shorter RNA molecule has been synthesized in the laboratory in 1999 with the ability to form
peptide bonds In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 (carbon number one) of one alpha-amino acid and N2 (nitrogen number two) of another, along a peptide or protein chai ...
, and it has been suggested that rRNA has evolved from a similar molecule. :*
tRNA Transfer ribonucleic acid (tRNA), formerly referred to as soluble ribonucleic acid (sRNA), is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes). In a cell, it provides the physical link between the gene ...
is suggested to have also evolved from RNA molecules that began to catalyze amino acid transfer (also see the discussion of amino acid-RNA ligation above). The current core of the ribosome, the PTC, may also have evolved from the concatenation of five proto-tRNAs. :** A RNP world-type hypothesis is that the tRNA acceptor stem and the catalytic domain of the aaRS came earlier than the genetic code and the PTC.


Cofactors

:Protein enzymes catalyze various chemical reactions, but over half of them incorporate cofactors to facilitate and diversify their catalytic activities. Cofactors are essential in biology, as they are based largely on nucleotides rather than amino acids. Ribozymes use nucleotide cofactors to create metabolism, with two basic choices: non-covalent binding or covalent attachment. Both approaches have been demonstrated using directed evolution to reinvent RNA dupes of protein-catalyzed processes. Lorsch and Szostak investigated ribozymes that could phosphorylate themselves and use ATP-γS as a substrate. However, only one of the seven classes of selected ribozymes had detectable ATP affinity, indicating that the ability to bind ATP was compromised. NAD+- dependent redox ribozymes were also evaluated. The select ribozyme had a rate of enhancement of more than 107 fold and was proven to catalyze the reverse reaction - benzaldehyde reduction by NADH. Since the usage of adenosine as a cofactor is prevalent in current metabolism and is likely to have been common in the RNA world, these discoveries are essential for the evolution of metabolism in the RNA world.


RNA in information storage

RNA is a very similar molecule to DNA, with only two significant chemical differences (the backbone of RNA uses ribose instead of deoxyribose and its nucleobases include
uracil Uracil () (nucleoside#List of nucleosides and corresponding nucleobases, symbol U or Ura) is one of the four nucleotide bases in the nucleic acid RNA. The others are adenine (A), cytosine (C), and guanine (G). In RNA, uracil binds to adenine via ...
instead of
thymine Thymine () (symbol T or Thy) is one of the four nucleotide bases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine ...
). The overall structure of RNA and DNA are immensely similar—one strand of DNA and one of RNA can bind to form a double helical structure. This makes the storage of information in RNA possible in a very similar way to the storage of information in DNA. However, RNA is less stable, being more prone to hydrolysis due to the presence of a hydroxyl group at the ribose 2' position.


Comparison of DNA and RNA structure

The major difference between RNA and DNA is the presence of a
hydroxyl In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
group at the 2'-position of the
ribose Ribose is a simple sugar and carbohydrate with molecular formula C5H10O5 and the linear-form composition H−(C=O)−(CHOH)4−H. The naturally occurring form, , is a component of the ribonucleotides from which RNA is built, and so this comp ...
sugar in RNA (illustration, right). This group makes the molecule less stable because, when not constrained in a double helix, the 2' hydroxyl can chemically attack the adjacent
phosphodiester bond In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups () in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage . Discussion of phosphodiesters is d ...
to cleave the phosphodiester backbone. The hydroxyl group also forces the ribose into the C3'-''endo'' sugar conformation unlike the C2'-''endo'' conformation of the
deoxyribose Deoxyribose, or more precisely 2-deoxyribose, is a monosaccharide with idealized formula H−(C=O)−(CH2)−(CHOH)3−H. Its name indicates that it is a deoxy sugar, meaning that it is derived from the sugar ribose by loss of a hydroxy group. D ...
sugar in DNA. This forces an RNA double helix to change from a B-DNA structure to one more closely resembling A-DNA. RNA also uses a different set of bases than DNA—
adenine Adenine (, ) (nucleoside#List of nucleosides and corresponding nucleobases, symbol A or Ade) is a purine nucleotide base that is found in DNA, RNA, and Adenosine triphosphate, ATP. Usually a white crystalline subtance. The shape of adenine is ...
,
guanine Guanine () (symbol G or Gua) is one of the four main nucleotide bases found in the nucleic acids DNA and RNA, the others being adenine, cytosine, and thymine ( uracil in RNA). In DNA, guanine is paired with cytosine. The guanine nucleoside ...
,
cytosine Cytosine () (symbol C or Cyt) is one of the four nucleotide bases found in DNA and RNA, along with adenine, guanine, and thymine ( uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attac ...
and
uracil Uracil () (nucleoside#List of nucleosides and corresponding nucleobases, symbol U or Ura) is one of the four nucleotide bases in the nucleic acid RNA. The others are adenine (A), cytosine (C), and guanine (G). In RNA, uracil binds to adenine via ...
, instead of adenine, guanine, cytosine and
thymine Thymine () (symbol T or Thy) is one of the four nucleotide bases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine ...
. Chemically, uracil is similar to thymine, differing only by a
methyl group In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula (whereas normal methane has the formula ). In formulas, the group is often abbreviated a ...
, and its production requires less energy. In terms of base pairing, this has no effect. Adenine readily binds uracil or thymine. Uracil is, however, one product of damage to cytosine that makes RNA particularly susceptible to mutations that can replace a GC base pair with a GU (
wobble Wobble or wobbles may refer to: * "Wobble" (song), a single by V.I.C. * "Wobble", a song by Flo Rida from his 2015 EP '' My House'' * ''Wobble'' (album), an album by Black Market Karma * Wobbles (equine disorder), a disorder of the nervous syst ...
) or AU
base pair A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
. RNA is thought to have preceded DNA, because of their ordering in the biosynthetic pathways. The deoxyribonucleotides used to make DNA are made from ribonucleotides, the building blocks of RNA, by removing the 2'-hydroxyl group. As a consequence, a cell must have the ability to make RNA before it can make DNA.


Limitations of information storage in RNA

The chemical properties of RNA make large RNA
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s inherently fragile, and they can easily be broken down into their constituent nucleotides through
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
. These limitations do not make use of RNA as an
information storage Information is an abstract concept that refers to something which has the power to inform. At the most fundamental level, it pertains to the interpretation (perhaps formally) of that which may be sensed, or their abstractions. Any natur ...
system impossible, simply energy intensive (to repair or replace damaged RNA molecules) and prone to mutation. While this makes it unsuitable for current 'DNA optimised' life, it may have been acceptable for more primitive life.


RNA as a regulator

Riboswitches have been found to act as regulators of gene expression, particularly in bacteria, but also in plants and
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
. Riboswitches alter their
secondary structure Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. The two most common Protein structure#Secondary structure, secondary structural elements are alpha helix, alpha helices and beta ...
in response to the binding of a
metabolite In biochemistry, a metabolite is an intermediate or end product of metabolism. The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, c ...
. Riboswitch classes have highly conserved
aptamer Aptamers are oligomers of artificial ssDNA, RNA, Xeno nucleic acid, XNA, or peptide that ligand, bind a specific target molecule, or family of target molecules. They exhibit a range of affinities (Dissociation constant, KD in the pM to μM rang ...
domains, even among diverse organisms. When a target metabolite is bound to this aptamer, conformational changes occur, modulating the expression of genes carried by mRNA. These changes occur in an expression platform, located downstream from the aptamer. This change in structure can result in the formation or disruption of a terminator, truncating or permitting transcription respectively. Alternatively, riboswitches may bind or occlude the
Shine–Dalgarno sequence The Shine–Dalgarno (SD) sequence is, sometimes partially, part of a ribosomal binding site in bacterial and archaeal messenger RNA. It is generally located around 8 bases upstream of the start codon AUG. The RNA sequence helps recruit the ribos ...
, affecting translation. It has been suggested that these originated in an RNA-based world. In addition, RNA thermometers regulate gene expression in response to temperature changes.


Support and difficulties

The RNA world hypothesis is supported by RNA's ability to do all three of to store, to transmit, and to duplicate genetic information, as
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
does, and to perform enzymatic reactions, like protein-based enzymes. Because it can carry out the types of tasks now performed by proteins and DNA, RNA is believed to have once been capable of supporting independent life on its own. Some
virus A virus is a submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are ...
es use RNA as their genetic material, rather than DNA. Further, while
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s were not found in experiments based on Miller-Urey experiment, their formation in prebiotically plausible conditions was reported in 2009; a
purine Purine is a heterocyclic aromatic organic compound that consists of two rings (pyrimidine and imidazole) fused together. It is water-soluble. Purine also gives its name to the wider class of molecules, purines, which include substituted puri ...
base, adenine, is merely a
pentamer A pentamer is an entity composed of five subunits. In chemistry, it applies to molecules made of five monomers. In biochemistry, it applies to macromolecules, particularly pentameric proteins, made of five protein sub-units. In microbiology, a ...
of
hydrogen cyanide Hydrogen cyanide (formerly known as prussic acid) is a chemical compound with the chemical formula, formula HCN and structural formula . It is a highly toxic and flammable liquid that boiling, boils slightly above room temperature, at . HCN is ...
, and it happens that this particular base is used as omnipresent energy vehicle in the cell:
adenosine triphosphate Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
is used everywhere in preference to
guanosine triphosphate Guanosine-5'-triphosphate (GTP) is a purine nucleoside triphosphate. It is one of the building blocks needed for the synthesis of RNA during the transcription process. Its structure is similar to that of the guanosine nucleoside, the only di ...
,
cytidine triphosphate Cytidine triphosphate (CTP) is a pyrimidine nucleoside triphosphate. CTP, much like ATP, consists of a ribose sugar, and three phosphate groups. The major difference between the two molecules is the base used, which in CTP is cytosine. CTP is a ...
,
uridine triphosphate Uridine-5′-triphosphate (UTP) is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1′ carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5′ position. Its main role is as substra ...
or even deoxythymidine triphosphate, which could serve just as well but are practically never used except as building blocks for nucleic acid chains. Experiments with basic ribozymes, like Bacteriophage Qβ RNA, have shown that simple self-replicating RNA structures can withstand even strong selective pressures (e.g., opposite-chirality chain terminators). Since there were no known chemical pathways for the abiogenic synthesis of nucleotides from
pyrimidine Pyrimidine (; ) is an aromatic, heterocyclic, organic compound similar to pyridine (). One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring. The oth ...
nucleobases cytosine and uracil under prebiotic conditions, it is thought by some that nucleic acids did not contain these
nucleobase Nucleotide bases (also nucleobases, nitrogenous bases) are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the basic building blocks of nuc ...
s seen in life's nucleic acids. The nucleoside cytosine has a half-life in isolation of 19 days at and 17,000 years in freezing water, which some argue is too short on the
geologic time scale The geologic time scale or geological time scale (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochro ...
for accumulation. Others have questioned whether
ribose Ribose is a simple sugar and carbohydrate with molecular formula C5H10O5 and the linear-form composition H−(C=O)−(CHOH)4−H. The naturally occurring form, , is a component of the ribonucleotides from which RNA is built, and so this comp ...
and other backbone sugars could be stable enough to be found in the original genetic material, and have raised the issue that all ribose molecules would have had to be the same
enantiomer In chemistry, an enantiomer (Help:IPA/English, /ɪˈnænti.əmər, ɛ-, -oʊ-/ Help:Pronunciation respelling key, ''ih-NAN-tee-ə-mər''), also known as an optical isomer, antipode, or optical antipode, is one of a pair of molecular entities whi ...
, as any nucleotide of the wrong
chirality Chirality () is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable fro ...
acts as a chain terminator. Pyrimidine ribonucleosides and their respective nucleotides have been prebiotically synthesised by a sequence of reactions that by-pass free sugars and assemble in a stepwise fashion by including nitrogenous and oxygenous chemistries. In a series of publications, John Sutherland and his team at the School of Chemistry,
University of Manchester The University of Manchester is a public university, public research university in Manchester, England. The main campus is south of Manchester city centre, Manchester City Centre on Wilmslow Road, Oxford Road. The University of Manchester is c ...
, have demonstrated high yielding routes to
cytidine Cytidine (symbol C or Cyd) is a nucleoside molecule that is formed when cytosine is attached to a ribose ring (also known as a ribofuranose) via a β-N1-glycosidic bond. Cytidine is a component of RNA. It is a white water-soluble solid that is ...
and
uridine Uridine (symbol U or Urd) is a glycosylated pyrimidine analog containing uracil attached to a ribose ring (or more specifically, a ribofuranose) via a β-N1- glycosidic bond. The analog is one of the five standard nucleosides which make up nuc ...
ribonucleotides built from small 2- and 3-carbon fragments such as
glycolaldehyde Glycolaldehyde is the organic compound with the formula . It is the smallest possible molecule that contains both an aldehyde group () and a hydroxyl, hydroxyl group (). It is a highly Reactivity (chemistry), reactive molecule that occurs both ...
,
glyceraldehyde Glyceraldehyde (glyceral) is a triose monosaccharide with chemical formula C3 H6 O3. It is the simplest of all common aldoses. It is a sweet, colorless, crystalline solid that is an intermediate compound in carbohydrate metabolism. The word comes ...
or glyceraldehyde-3-phosphate,
cyanamide Cyanamide is an organic compound with the formula C N2 H2. This white solid is widely used in agriculture and the production of pharmaceuticals and other organic compounds. It is also used as an alcohol-deterrent drug. The molecule features a ...
, and
cyanoacetylene Cyanoacetylene is an organic compound with the formula or . It is the simplest cyanopolyyne. Cyanoacetylene has been detected by spectroscopic methods in interstellar clouds, in the coma of comet Hale–Bopp and in the atmosphere of Saturn's m ...
. One of the steps in this sequence allows the isolation of
enantiopure In chemistry, an enantiomer ( /ɪˈnænti.əmər, ɛ-, -oʊ-/ ''ih-NAN-tee-ə-mər''), also known as an optical isomer, antipode, or optical antipode, is one of a pair of molecular entities which are mirror images of each other and non-superpos ...
ribose aminooxazoline if the enantiomeric excess of glyceraldehyde is 60% or greater, of possible interest toward biological homochirality. This can be viewed as a prebiotic purification step, where the said compound spontaneously crystallised out from a mixture of the other pentose aminooxazolines. Aminooxazolines can react with cyanoacetylene in a mild and highly efficient manner, controlled by inorganic phosphate, to give the cytidine ribonucleotides. Photoanomerization with
UV light Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of t ...
allows for inversion about the 1' anomeric centre to give the correct beta stereochemistry; one problem with this chemistry is the selective phosphorylation of alpha-cytidine at the 2' position. However, in 2009, they showed that the same simple building blocks allow access, via phosphate controlled nucleobase elaboration, to 2',3'-cyclic pyrimidine nucleotides directly, which are known to be able to polymerise into RNA. Organic chemist Donna Blackmond described this finding as "strong evidence" in favour of the RNA world. However, John Sutherland said that while his team's work suggests that nucleic acids played an early and central role in the origin of life, it did not necessarily support the RNA world hypothesis in the strict sense, which he described as a "restrictive, hypothetical arrangement". The Sutherland group's 2009 paper also highlighted the possibility for the photo-sanitization of the pyrimidine-2',3'-cyclic phosphates. A potential weakness of these routes is the generation of enantioenriched glyceraldehyde, or its 3-phosphate derivative (glyceraldehyde prefers to exist as its keto
tautomer In chemistry, tautomers () are structural isomers (constitutional isomers) of chemical compounds that readily interconvert. The chemical reaction interconverting the two is called tautomerization. This conversion commonly results from the reloca ...
dihydroxyacetone). On August 8, 2011, a report, based on
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
studies with
meteorite A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s found on
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
, was published suggesting building blocks of RNA (adenine, guanine, and related
organic molecules Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-cont ...
) may have been formed in outer space. In 2017, research using a
numerical model Computer simulation is the running of a mathematical model on a computer, the model being designed to represent the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determin ...
suggested that a RNA world may have emerged in warm ponds on the early Earth, and that meteorites were a plausible and probable source of the RNA building blocks (
ribose Ribose is a simple sugar and carbohydrate with molecular formula C5H10O5 and the linear-form composition H−(C=O)−(CHOH)4−H. The naturally occurring form, , is a component of the ribonucleotides from which RNA is built, and so this comp ...
and nucleic acids) to these environments. On August 29, 2012, astronomers at
Copenhagen University The University of Copenhagen (, KU) is a public research university in Copenhagen, Denmark. Founded in 1479, the University of Copenhagen is the second-oldest university in Scandinavia, after Uppsala University. The University of Copenhagen c ...
reported the detection of a specific sugar molecule,
glycolaldehyde Glycolaldehyde is the organic compound with the formula . It is the smallest possible molecule that contains both an aldehyde group () and a hydroxyl, hydroxyl group (). It is a highly Reactivity (chemistry), reactive molecule that occurs both ...
, in a distant star system. The molecule was found around the protostellar binary ''IRAS 16293-2422'', which is located 400 light years from Earth. Because glycolaldehyde is needed to form RNA, this finding suggests that complex organic molecules may form in stellar systems prior to the formation of planets, eventually arriving on young planets early in their formation.
Nitrile In organic chemistry, a nitrile is any organic compound that has a functional group. The name of the compound is composed of a base, which includes the carbon of the , suffixed with "nitrile", so for example is called " propionitrile" (or pr ...
s, key molecular precursors of the RNA World scenario, are among the most abundant chemical families in the universe and have been found in molecular clouds in the center of the Milky Way, protostars of different masses, meteorites and comets, and also in the atmosphere of Titan, the largest moon of Saturn. A study in 2001 shows that
nicotinic acid Nicotinic acid, or niacin, is an organic compound and a vitamer of vitamin B3, an essential human nutrient. It is produced by plants and animals from the amino acid tryptophan. Nicotinic acid is also a prescription medication. Amounts f ...
and its precursor, quinolinic acid can be "produced in yields as high as 7% in a six-step nonenzymatic sequence from
aspartic acid Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of protei ...
and
dihydroxyacetone phosphate Dihydroxyacetone phosphate (DHAP, also glycerone phosphate in older texts) is the anion with the formula HOCH2C(O)CH2OPO32-. This anion is involved in many metabolic pathways, including the Calvin cycle in plants and glycolysis.Nelson, D. L.; Co ...
(DHAP). The biosynthesis of ribose phosphate could have produced DHAP and other three carbon compounds. Aspartic acid could have been available from prebiotic synthesis or from the ribozyme synthesis of pyrimidines." This supports that NAD could have originated in the RNA world. RNA sequences at lengths of 30 nucleotides, 60 nucleotides, 100 nucleotides, and 140 nucleotides, were capable of catalysis of "the synthesis of three common coenzymes, CoA, NAD, and FAD, from their precursors, 4‘-phosphopantetheine, NMN, and FMN, respectively".


Prebiotic RNA synthesis

Nucleotides are the fundamental molecules that combine in series to form RNA. They consist of a nitrogenous base attached to a sugar-phosphate backbone. RNA is made of long stretches of specific nucleotides arranged so that their sequence of bases carries information. The RNA world hypothesis holds that in the
primordial soup Primordial soup, also known as prebiotic soup and Haldane soup, is the hypothetical set of conditions present on the Earth around 3.7 to 4.0 billion years ago. It is an aspect of the heterotrophic theory (also known as the Oparin–Haldane hypothes ...
(or
sandwich A sandwich is a Dish (food), dish typically consisting variously of meat, cheese, sauces, and vegetables used as a filling between slices of bread, or placed atop a slice of bread; or, more generally, any dish in which bread serves as a ''co ...
), there existed free-floating nucleotides. These nucleotides regularly formed bonds with one another, which often broke because the change in energy was so low. However, certain sequences of base pairs have catalytic properties that lower the energy of their chain being created, enabling them to stay together for longer periods of time. As each chain grew longer, it attracted more matching nucleotides faster, causing chains to now form faster than they were breaking down. These chains have been proposed by some as the first, primitive forms of life. In an RNA world, different sets of RNA strands would have had different replication outputs, which would have increased or decreased their frequency in the population, i.e.,
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the Heredity, heritable traits characteristic of a population over generation ...
. As the fittest sets of RNA molecules expanded their numbers, novel catalytic properties added by mutation, which benefitted their persistence and expansion, could accumulate in the population. Such an
autocatalytic set An autocatalytic set is a collection of entities, each of which can be created catalytically by other entities within the set, such that as a whole, the set is able to catalyze its own production. In this way the set ''as a whole'' is said to be ...
of ribozymes, capable of self-replication in about an hour, has been identified. It was produced by molecular competition ( ''in vitro'' evolution) of candidate enzyme mixtures. Competition between RNA may have favored the emergence of cooperation between different RNA chains, opening the way for the formation of the first
protocell A protocell (or protobiont) is a self-organized, endogenously ordered, spherical collection of lipids proposed as a rudimentary precursor to cells during the origin of life. A central question in evolution is how simple protocells first arose a ...
. Eventually, RNA chains developed with catalytic properties that help
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s bind together (a process called peptide-bonding). These amino acids could then assist with RNA synthesis, giving those RNA chains that could serve as ribozymes the selective advantage. The ability to catalyze one step in protein synthesis,
aminoacylation Aminoacylation is the process of adding an aminoacyl group to a compound. See also * Acylation * tRNA aminoacylation * Transfer RNA-like structures References Organic reactions {{Reaction-stub ...
of RNA, has been demonstrated in a short (five-nucleotide) segment of RNA. In March 2015, NASA scientists reported that, for the first time, complex DNA and RNA organic compounds of
life Life, also known as biota, refers to matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes. It is defined descriptively by the capacity for homeostasis, Structure#Biological, organisation, met ...
, including uracil, cytosine, and thymine, have been formed in the laboratory under conditions found only in outer space, using starting chemicals, like
pyrimidine Pyrimidine (; ) is an aromatic, heterocyclic, organic compound similar to pyridine (). One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring. The oth ...
, found in
meteorite A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s. Pyrimidine, like
polycyclic aromatic hydrocarbons A Polycyclic aromatic hydrocarbon (PAH) is any member of a class of organic compounds that is composed of multiple fused aromatic rings. Most are produced by the incomplete combustion of organic matter— by engine exhaust fumes, tobacco, incin ...
(PAHs), may have been formed in
red giant A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The stellar atmosphere, outer atmosphere is inflated and tenuous, making the radius large and the surface t ...
stars or in
interstellar dust Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can ...
and gas clouds, according to the scientists. In 2018, researchers at
Georgia Institute of Technology The Georgia Institute of Technology (commonly referred to as Georgia Tech, GT, and simply Tech or the Institute) is a public university, public research university and Institute of technology (United States), institute of technology in Atlanta, ...
identified three molecular candidates for the bases that might have formed an earliest version of proto-RNA:
barbituric acid Barbituric acid or malonylurea or 6-hydroxyuracil is an organic compound based on a pyrimidine heterocyclic skeleton. It is an odorless powder soluble in water. Barbituric acid is the parent compound of barbiturate drugs, although barbituric acid i ...
,
melamine Melamine is an organic compound with the formula C3H6N6. This white solid is a trimer (chemistry), trimer of cyanamide, with a 1,3,5-Triazine, 1,3,5-triazine skeleton. Like cyanamide, it contains 66% nitrogen by mass, and its derivatives ha ...
, and 2,4,6-triaminopyrimidine (TAP). These three molecules are simpler versions of the four bases in current RNA, which could have been present in larger amounts and could still be forward-compatible with them but may have been discarded by evolution in exchange for more optimal base pairs. Specifically, TAP can form nucleotides with a large range of sugars. Both TAP and melamine base pair with barbituric acid. All three spontaneously form nucleotides with ribose.


Evolution of DNA

One of the challenges posed by the RNA world hypothesis is to discover the pathway by which an RNA-based system transitioned to one based on DNA. Geoffrey Diemer and Ken Stedman, at Portland State University in Oregon, may have found a solution. While conducting a survey of viruses in a hot acidic lake in Lassen Volcanic National Park, California, they uncovered evidence that a simple
DNA virus A DNA virus is a virus that has a genome made of deoxyribonucleic acid (DNA) that is replicated by a DNA polymerase. They can be divided between those that have two strands of DNA in their genome, called double-stranded DNA (dsDNA) viruses, and t ...
had acquired a gene from a completely unrelated RNA-based virus. Virologist Luis Villareal of the University of California Irvine also suggests that viruses capable of converting an RNA-based gene into DNA and then incorporating it into a more complex DNA-based genome might have been common in the virus world during the RNA to DNA transition some 4 billion years ago. This finding bolsters the argument for the transfer of information from the RNA world to the emerging DNA world before the emergence of the
last universal common ancestor The last universal common ancestor (LUCA) is the hypothesized common ancestral cell from which the three domains of life, the Bacteria, the Archaea, and the Eukarya originated. The cell had a lipid bilayer; it possessed the genetic code a ...
. From the research, the diversity of this virus world is still with us.


Viroids

Additional evidence supporting the concept of an RNA world has resulted from research on
viroid Viroids are small single-stranded, circular RNAs that are infectious pathogens. Unlike viruses, they have no protein coating. All known viroids are inhabitants of angiosperms (flowering plants), and most cause diseases, whose respective eco ...
s, the first representatives of a novel domain of "subviral pathogens". Viroids infect plants, where most are pathogens, and consist of short stretches of highly complementary, circular, single-stranded and non-coding RNA without a protein coat. They are extremely small, ranging from 246 to 467 nucleobases, compared to the smallest known viruses capable of causing an infection, with genomes about 2,000 nucleobases in length. Based on their characteristic properties, in 1989 plant biologist Theodor Diener argued that viroids are more plausible living relics of the RNA world than
introns An intron is any Nucleic acid sequence, nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e., a region inside a gene."The notion of ...
and other RNAs considered candidates at the time. Diener's hypothesis would be expanded by the research group of Ricardo Flores, and gained a broader audience when in 2014, a ''
New York Times ''The New York Times'' (''NYT'') is an American daily newspaper based in New York City. ''The New York Times'' covers domestic, national, and international news, and publishes opinion pieces, investigative reports, and reviews. As one of ...
'' science writer published a popularized version of the proposal. The characteristics of viroids highlighted as consistent with an RNA world were their small size, high guanine and cytosine content, circular structure, structural periodicity, the lack of protein-coding ability and, in some cases, ribozyme-mediated replication. One aspect critics of the hypothesis have focused on is that the exclusive hosts of all known viroids,
angiosperm Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (). The term angiosperm is derived from the Greek words (; 'container, vessel') and (; 'seed'), meaning that the seeds are enclosed within a fruit ...
s, did not evolve until billions of years after the RNA world was replaced, making viroids more likely to have arisen through later evolutionary mechanisms unrelated to the RNA world than to have survived via a cryptic host over that extended period. Whether they are relics of that world or of more recent origin, their function as autonomous naked RNA is seen as analogous to that envisioned for an RNA world.


Origin of sexual reproduction

Eigen ''et al''. and Woese proposed that the genomes of early
protocell A protocell (or protobiont) is a self-organized, endogenously ordered, spherical collection of lipids proposed as a rudimentary precursor to cells during the origin of life. A central question in evolution is how simple protocells first arose a ...
s were composed of single-stranded RNA, and that individual genes corresponded to separate RNA segments, rather than being linked end-to-end as in present-day DNA genomes. A protocell that was haploid (one copy of each RNA gene) would be vulnerable to damage, since a single lesion in any RNA segment would be potentially lethal to the protocell (e.g., by blocking replication or inhibiting the function of an essential gene). Vulnerability to damage could be reduced by maintaining two or more copies of each RNA segment in each protocell, i.e., by maintaining diploidy or polyploidy. Genome redundancy would allow a damaged RNA segment to be replaced by an additional replication of its homolog. However, for such a simple organism, the proportion of available resources tied up in the genetic material would be a large fraction of the total resource budget. Under limited resource conditions, the protocell reproductive rate would likely be inversely related to ploidy number. The protocell's fitness would be reduced by the costs of redundancy. Consequently, coping with damaged RNA genes while minimizing the costs of redundancy would likely have been a fundamental problem for early protocells. A cost-benefit analysis was carried out in which the costs of maintaining redundancy were balanced against the costs of genome damage. This analysis led to the conclusion that, under a wide range of circumstances, the selected strategy would be for each protocell to be haploid, but to periodically fuse with another haploid protocell to form a transient diploid. The retention of the haploid state maximizes the growth rate. The periodic fusions permit mutual reactivation of otherwise lethally damaged protocells. If at least one damage-free copy of each RNA gene is present in the transient diploid, viable progeny can be formed. For two, rather than one, viable daughter cells to be produced would require an extra replication of the intact RNA gene homologous to any RNA gene that had been damaged prior to the division of the fused protocell. The cycle of haploid reproduction, with occasional fusion to a transient diploid state, followed by splitting to the haploid state, can be considered to be the sexual cycle in its most primitive form. In the absence of this sexual cycle, haploid protocells with damage in an essential RNA gene would simply die. This model for the early sexual cycle is hypothetical, but it is very similar to the known sexual behavior of the segmented RNA viruses, which are among the simplest organisms known.
Influenza virus ''Orthomyxoviridae'' () is a family of negative-sense RNA viruses. It includes nine genera: '' Alphainfluenzavirus'', '' Betainfluenzavirus'', '' Gammainfluenzavirus'', '' Deltainfluenzavirus'', '' Isavirus'', '' Mykissvirus'', '' Quaranjavir ...
, whose genome consists of 8 physically separated single-stranded RNA segments, is an example of this type of virus. In segmented RNA viruses, "mating" can occur when a host cell is infected by at least two virus particles. If these viruses each contain an RNA segment with a lethal damage, multiple infection can lead to reactivation providing that at least one undamaged copy of each virus gene is present in the infected cell. This phenomenon is known as "multiplicity reactivation". Multiplicity reactivation has been reported to occur in influenza virus infections after induction of RNA damage by UV-irradiation, and ionizing radiation.


Further developments

Patrick Forterre has been working on a novel hypothesis, called "three viruses, three domains": that viruses were instrumental in the transition from RNA to DNA and the evolution of
Bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
,
Archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
, and
Eukaryota The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
. He believes the
last universal common ancestor The last universal common ancestor (LUCA) is the hypothesized common ancestral cell from which the three domains of life, the Bacteria, the Archaea, and the Eukarya originated. The cell had a lipid bilayer; it possessed the genetic code a ...
was RNA-based and evolved RNA viruses. Some of the viruses evolved into DNA viruses to protect their genes from attack. Through the process of viral infection into hosts the three domains of life evolved. Another interesting proposal is the idea that RNA synthesis might have been driven by temperature gradients, in the process of thermosynthesis. Single nucleotides have been shown to catalyze organic reactions. Steven Benner has argued that chemical conditions on the planet
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
, such as the presence of
boron Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
, molybdenum, and oxygen, may have been better for initially producing RNA molecules than those on
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
. If so, life-suitable molecules, originating on Mars, may have later migrated to Earth via mechanisms of panspermia or similar process.


Alternative hypotheses

The hypothesized existence of an RNA world does not exclude a "Pre-RNA world", where a metabolic system based on a different nucleic acid is proposed to pre-date RNA. A candidate nucleic acid is peptide nucleic acid (Peptide nucleic acid, PNA), which uses simple peptide bonds to link nucleobases. PNA is more stable than RNA, but its ability to be generated under prebiological conditions has yet to be demonstrated experimentally. Threose nucleic acid (TNA (nucleic acid), TNA) or glycol nucleic acid (GNA (nucleic acid), GNA) have also been proposed as a starting point, and like PNA, also lack experimental evidence for their respective abiogenesis. An alternative—or complementary—theory of RNA origin is proposed in the PAH world hypothesis, whereby polycyclic aromatic hydrocarbons (PAHs) mediate the synthesis of RNA molecules. PAHs are the most common and abundant of the known polyatomic molecules in the visible Universe and are a likely constituent of the primordial sea. PAHs and fullerenes (also implicated in the origin of life) have been detected in nebulae. The iron-sulfur world theory proposes that simple metabolic processes developed before genetic materials did, and these energy-producing cycles catalyzed the production of genes. Some of the difficulties of producing the precursors on earth are bypassed by another alternative or complementary theory for their origin, panspermia. It discusses the possibility that the earliest life on this planet was carried here from somewhere else in the galaxy, possibly on meteorites similar to the Murchison meteorite. Sugar, Sugar molecules, including
ribose Ribose is a simple sugar and carbohydrate with molecular formula C5H10O5 and the linear-form composition H−(C=O)−(CHOH)4−H. The naturally occurring form, , is a component of the ribonucleotides from which RNA is built, and so this comp ...
, have been found in
meteorite A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s. Panspermia does not invalidate the concept of an RNA world, but posits that this world or its precursors originated not on Earth but rather another, probably older, planet. The relative chemical complexity of the nucleotide and the unlikelihood of it spontaneously arising, along with the limited number of combinations possible among four base forms, as well as the need for RNA polymers of some length before seeing enzymatic activity, have led some to reject the RNA world hypothesis in favor of a metabolism-first hypothesis, where the chemistry underlying cellular function arose first, along with the ability to replicate and facilitate this metabolism.


RNA-peptide coevolution

Another proposal is that the dual-molecule system we see today, where a nucleotide-based molecule is needed to synthesize protein, and a peptide-based (protein) molecule is needed to make nucleic acid polymers, represents the original form of life. This theory is called RNA-peptide coevolution, or the Peptide-RNA world, and offers a possible explanation for the rapid evolution of high-quality replication in RNA (since proteins are catalysts), with the disadvantage of having to postulate the coincident formation of two complex molecules, an enzyme (from peptides) and a RNA (from nucleotides). In this Peptide-RNA World scenario, RNA would have contained the instructions for life, while peptides (simple protein enzymes) would have accelerated key chemical reactions to carry out those instructions. The study leaves open the question of exactly how those primitive systems managed to replicate themselves — something neither the RNA World hypothesis nor the Peptide-RNA World theory can yet explain, unless polymerases (enzymes that rapidly assemble the RNA molecule) played a role. A research project completed in March 2015 by the Sutherland group found that a network of reactions beginning with hydrogen cyanide and hydrogen sulfide, in streams of water irradiated by UV light, could produce the chemical components of proteins and lipids, alongside those of RNA. The researchers used the term "cyanosulfidic" to describe this network of reactions. In November 2017, a team at the Scripps Research Institute identified reactions involving the compound diamidophosphate which could have linked the chemical components into short peptide and lipid chains as well as short RNA-like chains of nucleotides.


Implications

The RNA world hypothesis, if true, has important implications for the definition of life and the Abiogenesis, origin of life. For most of the time that followed Rosalind Franklin, Franklin, James D. Watson, Watson and Francis Crick, Crick's elucidation of DNA structure in 1953, life was largely defined in terms of DNA and proteins: DNA and proteins seemed the dominant macromolecules in the living cell, with RNA only aiding in creating proteins from the DNA blueprint. The RNA world hypothesis places RNA at center-stage when life originated. The RNA world hypothesis is supported by the observations that ribosomes are ribozymes: the catalytic site is composed of RNA, and proteins hold no major structural role and are of peripheral functional importance. This was confirmed with the deciphering of the 3-dimensional structure of the ribosome in 2001. Specifically, peptide bond formation, the reaction that binds
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s together into
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s, is now known to be catalyzed by an adenine residue in the
rRNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal ...
. RNAs are known to play roles in other cellular catalytic processes, specifically in the targeting of enzymes to specific RNA sequences. In eukaryotes, the processing of pre-mRNA and RNA editing take place at sites determined by the base pairing between the target RNA and RNA constituents of snRNP, small nuclear ribonucleoproteins (snRNPs). Such enzyme targeting is also responsible for gene down regulation through RNA interference (RNAi), where an enzyme-associated guide RNA targets specific mRNA for selective destruction. Likewise, in eukaryotes the maintenance of telomeres involves copying of an RNA template that is a constituent part of the telomerase ribonucleoprotein enzyme. Another cellular organelle, the Vault (organelle), vault, includes a ribonucleoprotein component, although the function of this organelle remains to be elucidated.


See also

* GADV-protein world hypothesis * ''The Major Transitions in Evolution'' *RNA-based evolution *Protocell or Pre-cell, the primordial version of a cell which confined RNA and later, DNA *First universal common ancestor (FUCA)


References


Further reading

* * * * * * * * * * *


External links

* * * * * * * {{Self-replicating organic structures Biological hypotheses Origin of life Prebiotic chemistry RNA 1962 in biology