Nano-particle
   HOME

TheInfoList



OR:

A nanoparticle or ultrafine particle is a particle of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
1 to 100
nanometre 330px, Different lengths as in respect to the Molecule">molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling), is a unit of length ...
s (nm) in
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called
atom cluster Nanoclusters are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semic ...
s instead. Nanoparticles are distinguished from
microparticle Microparticles are particles between 0.1 and 100 μm in size. Commercially available microparticles are available in a wide variety of materials, including ceramics, glass, polymers, and metals. Microparticles encountered in daily life incl ...
s (1-1000 μm), "fine particles" (sized between 100 and 2500 nm), and "coarse particles" (ranging from 2500 to 10,000 nm), because their smaller size drives very different physical or chemical properties, like
colloid A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others exte ...
al properties and ultrafast optical effects or electric properties. Being more subject to the
Brownian motion Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). The traditional mathematical formulation of Brownian motion is that of the Wiener process, which is often called Brownian motion, even in mathematical ...
, they usually do not sediment, like
colloidal particles A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
that conversely are usually understood to range from 1 to 1000 nm. Being much smaller than the wavelengths of
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
(400-700 nm), nanoparticles cannot be seen with ordinary
optical microscope The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of micros ...
s, requiring the use of electron microscopes or microscopes with laser. For the same reason, dispersions of nanoparticles in transparent media can be transparent, whereas suspensions of larger particles usually scatter some or all visible light incident on them. Nanoparticles also easily pass through common
filters Filtration is a physical process that separates solid matter and fluid from a mixture. Filter, filtering, filters or filtration may also refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Fil ...
, such as common ceramic candles, so that separation from liquids requires special
nanofiltration Nanofiltration is a Membrane technology, membrane filtration process that uses nanometer sized pores through which particles smaller than about 1–10 nanometers pass through the membrane. Nanofiltration membranes have pore sizes of about 1–10 n ...
techniques. The properties of nanoparticles often differ markedly from those of larger particles of the same substance. Since the typical diameter of an atom is between 0.15 and 0.6 nm, a large fraction of the nanoparticle's material lies within a few atomic diameters of its surface. Therefore, the properties of that surface layer may dominate over those of the bulk material. This effect is particularly strong for nanoparticles dispersed in a medium of different composition since the interactions between the two materials at their interface also becomes significant. Nanoparticles occur widely in nature and are objects of study in many sciences such as
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
,
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
,
geology Geology (). is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth ...
, and
biology Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
. Being at the transition between bulk materials and
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
ic or
molecular A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemistry, ...
structures, they often exhibit phenomena that are not observed at either scale. They are an important component of
atmospheric pollution Air pollution is the presence of substances in the air that are harmful to humans, other living beings or the environment. Pollutants can be gases like ozone or nitrogen oxides or small particles like soot and dust. It affects both outdoor air ...
, and key ingredients in many industrialized products such as
paint Paint is a material or mixture that, when applied to a solid material and allowed to dry, adds a film-like layer. As art, this is used to create an image or images known as a painting. Paint can be made in many colors and types. Most paints are ...
s,
plastic Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
s,
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
s,
ceramic A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
s, and
magnetic Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, m ...
products. The production of nanoparticles with specific properties is a branch of
nanotechnology Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
. In general, the small size of nanoparticles leads to a lower concentration of
point defect A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the unit cell para ...
s compared to their bulk counterparts, but they do support a variety of
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sli ...
s that can be visualized using high-resolution
electron microscope An electron microscope is a microscope that uses a beam of electrons as a source of illumination. It uses electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing it ...
s. However, nanoparticles exhibit different dislocation mechanics, which, together with their unique surface structures, results in mechanical properties that are different from the bulk material. Non-spherical nanoparticles (e.g., prisms, cubes, rods etc.) exhibit shape-dependent and size-dependent (both chemical and physical) properties (
anisotropy Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ve ...
). Non-spherical nanoparticles of
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
(Au),
silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
(Ag), and
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
(Pt) due to their fascinating optical properties are finding diverse applications. Non-spherical geometries of nanoprisms give rise to high effective cross-sections and deeper colors of the colloidal solutions. The possibility of shifting the
resonance Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
wavelengths by tuning the particle geometry allows using them in the fields of molecular labeling, biomolecular assays, trace metal detection, or nanotechnical applications. Anisotropic nanoparticles display a specific absorption behavior and stochastic particle orientation under unpolarized light, showing a distinct resonance mode for each excitable axis.


Definitions


International Union of Pure and Applied Chemistry (IUPAC)

In its 2012 proposed terminology for biologically related
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s, the
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
defined a nanoparticle as "a particle of any shape with dimensions in the 1 × 10−9 and 1 × 10−7 m range". This definition evolved from one given by IUPAC in 1997. In the same 2012 publication, the IUPAC extends the term to include tubes and fibers with only two dimensions below 100 nm.


International Standards Organization (ISO)

According to the
International Standards Organization The International Organization for Standardization (ISO ; ; ) is an independent, non-governmental, international standard development organization composed of representatives from the national standards organizations of member countries. Me ...
(ISO) technical specification 80004, a nanoparticle is an object with all three external dimensions in the nanoscale, whose longest and shortest axes do not differ significantly, with a significant difference typically being a factor of at least 3.


Common usage

"Nanoscale" is usually understood to be the range from 1 to 100 nm because the novel properties that differentiate particles from the bulk material typically develop at that range of sizes. For some properties, like transparency or
turbidity Turbidity is the cloudiness or haziness of a fluid caused by large numbers of individual particles that are generally invisible to the naked eye, similar to smoke in air. The measurement of turbidity is a key test of both water clarity and wa ...
,
ultrafiltration Ultrafiltration (UF) is a variety of membrane filtration in which forces such as pressure or concentration gradients lead to a separation through a semipermeable membrane. Suspended solids and solutes of high molecular weight are retained in t ...
, stable dispersion, etc., substantial changes characteristic of nanoparticles are observed for particles as large as 500 nm. Therefore, the term is sometimes extended to that size range.


Related concepts

Nanoclusters are agglomerates of nanoparticles with at least one dimension between 1 and 10 nanometers and a narrow size distribution.
Nanopowder A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s are agglomerates of ultrafine particles, nanoparticles, or nanoclusters. Nanometer-sized
single crystal In materials science, a single crystal (or single-crystal solid or monocrystalline solid) is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no Grain boundary, grain bound ...
s, or single-domain ultrafine particles, are often referred to as nanocrystals. The terms
colloid A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others exte ...
and nanoparticle are not interchangeable. A colloid is a mixture which has particles of one phase dispersed or suspended within an other phase. The term applies only if the particles are larger than atomic dimensions but small enough to exhibit
Brownian motion Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). The traditional mathematical formulation of Brownian motion is that of the Wiener process, which is often called Brownian motion, even in mathematical ...
, with the critical size range (or particle diameter) typically ranging from nanometers (10−9 m) to micrometers (10−6 m). Colloids can contain particles too large to be nanoparticles, and nanoparticles can exist in non-colloidal form, for examples as a powder or in a solid matrix.


History


Natural occurrence

Nanoparticles are naturally produced by many
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
, geological,
meteorological Meteorology is the scientific study of the Earth's atmosphere and short-term atmospheric phenomena (i.e. weather), with a focus on weather forecasting. It has applications in the military, aviation, energy production, transport, agriculture ...
, and biological processes. A significant fraction (by number, if not by mass) of
interplanetary dust The interplanetary dust cloud, or zodiacal cloud (as the source of the zodiacal light), consists of cosmic dust (small particles floating in outer space) that pervades the space between planets within planetary systems, such as the Solar System ...
, that is still falling on the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
at the rate of thousands of tons per year, is in the nanoparticle range; and the same is true of atmospheric dust particles. Many
virus A virus is a submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are ...
es have diameters in the nanoparticle range.


Pre-industrial technology

Nanoparticles were used by
artisan An artisan (from , ) is a skilled craft worker who makes or creates material objects partly or entirely by hand. These objects may be functional or strictly decorative, for example furniture, decorative art, sculpture, clothing, food ite ...
s since prehistory, albeit without knowledge of their nature. They were used by glassmakers and
potters A potter is someone who makes pottery. Potter may also refer to: Places United States *Potter, originally a section on the Alaska Railroad, currently a neighborhood of Anchorage, Alaska, US * Potter, Arkansas * Potter, Nebraska * Potters, New Je ...
in
Classical Antiquity Classical antiquity, also known as the classical era, classical period, classical age, or simply antiquity, is the period of cultural History of Europe, European history between the 8th century BC and the 5th century AD comprising the inter ...
, as exemplified by the
Roman Roman or Romans most often refers to: *Rome, the capital city of Italy *Ancient Rome, Roman civilization from 8th century BC to 5th century AD *Roman people, the people of Roman civilization *Epistle to the Romans, shortened to Romans, a letter w ...
Lycurgus cup of
dichroic In optics, a dichroic material is either one which causes visible light to be split up into distinct beams of different wavelengths (colours) (not to be confused with dispersion), or one in which light rays having different polarizations are ab ...
glass (4th century CE) and the
lusterware Lustreware or lusterware (the respective spellings for British English and American English) is a type of pottery or porcelain with a metallic glaze that gives the effect of iridescence. It is produced by metallic oxides in an overglaze finish, ...
pottery of
Mesopotamia Mesopotamia is a historical region of West Asia situated within the Tigris–Euphrates river system, in the northern part of the Fertile Crescent. Today, Mesopotamia is known as present-day Iraq and forms the eastern geographic boundary of ...
(9th century CE). The latter is characterized by
silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
and
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
nanoparticles dispersed in the glassy glaze.


19th century

Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English chemist and physicist who contributed to the study of electrochemistry and electromagnetism. His main discoveries include the principles underlying electromagnetic inducti ...
provided the first description, in scientific terms, of the optical properties of nanometer-scale metals in his classic 1857 paper. In a subsequent paper, the author (Turner) points out that: "It is well known that when thin leaves of gold or silver are mounted upon glass and heated to a temperature that is well below a red heat (~500 °C), a remarkable change of properties takes place, whereby the continuity of the metallic film is destroyed. The result is that white light is now freely transmitted, reflection is correspondingly diminished, while the electrical resistivity is enormously increased."


20th century

During the 1970s and 80s, when the first thorough fundamental studies with nanoparticles were underway in the United States by Granqvist and Buhrman and Japan within an ERATO Project, researchers used the term
ultrafine particle Ultrafine particles (UFPs) are particulate matter of nanoscale size (less than 0.1 μm or 100 nm in diameter). Regulations do not exist for this size class of ambient air pollution particles, which are far smaller than the regulated PM10 and ...
s. However, during the 1990s, when the
National Nanotechnology Initiative The National Nanotechnology Initiative (NNI) is a research and development initiative which provides a framework to coordinate nanoscale research and resources among United States federal government agencies and departments. History In the lat ...
was launched in the United States, the term nanoparticle became more common, for example, see the same senior author's paper 20 years later addressing the same issue, lognormal distribution of sizes.


Morphology and structure

Nanoparticles occur in a great variety of shapes, which have been given many names such as nanospheres,
nanorod In nanotechnology, nanorods are one morphology of nanoscale objects. Each of their dimensions range from 1–100 nm. They may be synthesized from metals or semiconducting materials. Standard aspect ratios (length divided by width) are 3-5. Nan ...
s, nanochains, decahedral nanoparticles, nanostars,
nanoflower A nanoflower, in chemistry, refers to a compound of certain elements that results in formations which in microscopic view resemble flowers or, in some cases, trees that are called nanobouquets or nanotrees. These formations are nanometers long an ...
s, nanoreefs, nanowhiskers, nanofibers, and nanoboxes. The shapes of nanoparticles may be determined by the intrinsic
crystal habit In mineralogy, crystal habit is the characteristic external shape of an individual crystal or aggregate of crystals. The habit of a crystal is dependent on its crystallographic form and growth conditions, which generally creates irregularities d ...
of the material, or by the influence of the environment around their creation, such as the inhibition of
crystal growth Crystal growth is a major stage of a crystallization, crystallization process, and consists of the addition of new atoms, ions, or polymer strings into the characteristic arrangement of the crystalline lattice. The growth typically follows an ini ...
on certain faces by coating additives, the shape of
emulsion An emulsion is a mixture of two or more liquids that are normally Miscibility, immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloi ...
droplets and
micelle A micelle () or micella () ( or micellae, respectively) is an aggregate (or supramolecular assembly) of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloidal suspension (also known as associated colloidal system). ...
s in the precursor preparation, or the shape of pores in a surrounding solid matrix. Some applications of nanoparticles require specific shapes, as well as specific sizes or size ranges. Amorphous particles typically adopt a spherical shape (due to their microstructural
isotropy In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also u ...
).


Variations

Semi-solid and soft nanoparticles have been produced. A prototype nanoparticle of semi-solid nature is the
liposome A liposome is a small artificial vesicle, spherical in shape, having at least one lipid bilayer. Due to their hydrophobicity and/or hydrophilicity, biocompatibility, particle size and many other properties, liposomes can be used as drug deliver ...
. Various types of liposome nanoparticles are currently used clinically as delivery systems for
anticancer drug Chemotherapy (often abbreviated chemo, sometimes CTX and CTx) is the type of cancer treatment that uses one or more anti-cancer drugs ( chemotherapeutic agents or alkylating agents) in a standard regimen. Chemotherapy may be given with a cu ...
s and
vaccine A vaccine is a biological Dosage form, preparation that provides active acquired immunity to a particular infectious disease, infectious or cancer, malignant disease. The safety and effectiveness of vaccines has been widely studied and verifi ...
s. The breakdown of
biopolymer Biopolymers are natural polymers produced by the cells of living organisms. Like other polymers, biopolymers consist of monomeric units that are covalently bonded in chains to form larger molecules. There are three main classes of biopolymers, ...
s into their nanoscale building blocks is considered a potential route to produce nanoparticles with enhanced
biocompatibility Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoin ...
and
biodegradability Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegrada ...
. The most common example is the production of
nanocellulose Nanocellulose is a term referring to a family of cellulosic materials that have at least one of their dimensions in the nanoscale. Examples of nanocellulosic materials are microfibrilated cellulose, cellulose nanofibers or cellulose nanocry ...
from
wood pulp Pulp is a fibrous Lignocellulosic biomass, lignocellulosic material prepared by chemically, semi-chemically, or mechanically isolating the cellulose fiber, cellulosic fibers of wood, fiber crops, Paper recycling, waste paper, or cotton paper, rag ...
. Other examples are nanolignin, nanochitin, or nanostarches. Nanoparticles with one half
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are n ...
and the other half
hydrophobic In chemistry, hydrophobicity is the chemical property of a molecule (called a hydrophobe) that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, thu ...
are termed
Janus particles Janus particles are special types of nanoparticles or microparticles whose surfaces have two or more distinct physical property, physical properties. This unique surface of Janus particles allows two different types of chemistry to occur on the s ...
and are particularly effective for stabilizing
emulsion An emulsion is a mixture of two or more liquids that are normally Miscibility, immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloi ...
s. They can
self-assemble Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the ...
at water/oil
interfaces Interface or interfacing may refer to: Academic journals * ''Interface'' (journal), by the Electrochemical Society * '' Interface, Journal of Applied Linguistics'', now merged with ''ITL International Journal of Applied Linguistics'' * '' Inter ...
and act as pickering stabilizers.
Hydrogel A hydrogel is a Phase (matter), biphasic material, a mixture of Porosity, porous and Permeation, permeable solids and at least 10% of water or other interstitial fluid. The solid phase is a water Solubility, insoluble three dimensional network ...
nanoparticles made of N-
isopropyl In organic chemistry, a propyl group is a three-carbon alkyl substituent with chemical formula for the linear form. This substituent form is obtained by removing one hydrogen atom attached to the terminal carbon of propane. A propyl substituent ...
acrylamide Acrylamide (or acrylic amide) is an organic compound with the chemical formula CH2=CHC(O)NH2. It is a white odorless solid, soluble in water and several organic solvents. From the chemistry perspective, acrylamide is a vinyl-substituted primary ...
hydrogel core shell can be dyed with affinity baits, internally. These affinity baits allow the nanoparticles to isolate and remove undesirable
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s while enhancing the target analytes.


Nucleation and growth


Impact of nucleation

Nucleation In thermodynamics, nucleation is the first step in the formation of either a new Phase (matter), thermodynamic phase or Crystal structure, structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically def ...
lays the foundation for the nanoparticle synthesis. Initial nuclei play a vital role on the size and shape of the nanoparticles that will ultimately form by acting as templating nuclei for the nanoparticle itself. Long-term stability is also determined by the initial nucleation procedures. Homogeneous nucleation occurs when nuclei form uniformly throughout the parent phase and is less common. Heterogeneous nucleation, however, forms on areas such as container surfaces, impurities, and other defects. Crystals can form simultaneously when nucleation occurs rapidly, resulting in a more uniform (monodisperse) product. In contrast, slow nucleation rates often lead to a diverse (polydisperse) population of crystals with varying sizes. itation needed/sup> This phenomenon is exemplified in the formation of CaCO3 crystals. Controlling nucleation allows for the control of size, dispersity, and phase of nanoparticles. The process of nucleation and growth within nanoparticles can be described by nucleation,
Ostwald ripening Ostwald ripening is a phenomenon observed in solid solutions and liquid sols that involves the change of an inhomogeneous structure over time, in that small crystals or sol particles first dissolve and then redeposit onto larger crystals or s ...
or the two-step mechanism-
autocatalysis In chemistry, a chemical reaction is said to be autocatalytic if one of the reaction products is also a catalyst for the same reaction. Many forms of autocatalysis are recognized.Steinfeld J.I., Francisco J.S. and Hase W.L. ''Chemical Kinetics and ...
model.


Nucleation

The original theory from 1927 of nucleation in nanoparticle formation was
Classical Nucleation Theory Classical nucleation theory (CNT) is the most common theoretical model used to quantitatively study the kinetics of nucleation.H. R. Pruppacher and J. D. Klett, ''Microphysics of Clouds and Precipitation'', Kluwer (1997)P.G. Debenedetti, ''Metastab ...
(CNT). It was believed that the changes in particle size could be described by burst nucleation alone. In 1950, Viktor LaMer used CNT as the nucleation basis for his model of nanoparticle growth. There are three portions to the LaMer model: 1. Rapid increase in the concentration of free monomers in solution, 2. fast nucleation of the monomer characterized by explosive growth of particles, 3. Growth of particles controlled by diffusion of the monomer. This model describes that the growth on the nucleus is spontaneous but limited by diffusion of the precursor to the nuclei surface. The LaMer model has not been able to explain the kinetics of nucleation in any modern system.


Ostwald ripening

Ostwald ripening Ostwald ripening is a phenomenon observed in solid solutions and liquid sols that involves the change of an inhomogeneous structure over time, in that small crystals or sol particles first dissolve and then redeposit onto larger crystals or s ...
is a process in which large particles grow at the expense of the smaller particles as a result of dissolution of small particles and deposition of the dissolved molecules on the surfaces of the larger particles. It occurs because smaller particles have a higher surface energy than larger particles. This process is typically undesirable in nanoparticle synthesis as it negatively impacts the functionality of nanoparticles.


Two-step mechanism – autocatalysis model

In 1997, Finke and Watzky proposed a new kinetic model for the nucleation and growth of nanoparticles. This 2-step model suggested that constant slow nucleation (occurring far from supersaturation) is followed by autocatalytic growth where dispersity of nanoparticles is largely determined. This F-W (Finke-Watzky) 2-step model provides a firmer mechanistic basis for the design of nanoparticles with a focus on size, shape, and dispersity control. The model was later expanded to a 3-step and two 4-step models between 2004 and 2008. Here, an additional step was included to account for small particle aggregation, where two smaller particles could aggregate to form a larger particle. Next, a fourth step (another autocatalytic step) was added to account for a small particle agglomerating with a larger particle. Finally in 2014, an alternative fourth step was considered that accounted for a atomistic surface growth on a large particle.


Measuring the rate of nucleation

As of 2014, the classical nucleation theory explained that the nucleation rate will correspond to the driving force. One method for measuring the nucleation rate is through the induction time method. This process uses the stochastic nature of nucleation and determines the rate of nucleation by analysis of the time between constant supersaturation and when crystals are first detected. Another method includes the probability distribution model, analogous to the methods used to study supercooled liquids, where the probability of finding at least one nucleus at a given time is derived. As of 2019, the early stages of nucleation and the rates associated with nucleation were modelled through multiscale computational modeling. This included exploration into an improved kinetic rate equation model and density function studies using the phase-field crystal model.


Properties

The properties of a material in nanoparticle form are unusually different from those of the bulk one even when divided into micrometer-size particles. Many of them arise from spatial confinement of sub-atomic particles (i.e. electrons, protons, photons) and electric fields around these particles. The large surface to volume ratio is also significant factor at this scale.


Controlling properties

The initial nucleation stages of the synthesis process heavily influence the properties of a nanoparticle. Nucleation, for example, is vital to the size of the nanoparticle. A critical radius must be met in the initial stages of solid formation, or the particles will redissolve into the liquid phase. The final shape of a nanoparticle is also controlled by nucleation. Possible final morphologies created by nucleation can include spherical, cubic, needle-like, worm-like, and more particles. Nucleation can be controlled predominately by time and temperature as well as the supersaturation of the liquid phase and the environment of the synthesis overall.


Large surface-area-to-volume ratio

Bulk materials (>100 nm in size) are expected to have constant physical properties (such as
thermal A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
and
electrical conductivity Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity in ...
,
stiffness Stiffness is the extent to which an object resists deformation in response to an applied force. The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is. Calculations The stiffness, k, of a ...
,
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
, and
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
) regardless of their size, for nanoparticles, however, this is different: the volume of the surface layer (a few atomic diameters-wide) becomes a significant fraction of the particle's volume; whereas that fraction is insignificant for particles with a diameter of one
micrometer Micrometer can mean: * Micrometer (device), used for accurate measurements by means of a calibrated screw * Micrometre The micrometre (English in the Commonwealth of Nations, Commonwealth English as used by the International Bureau of Weights ...
or more. In other words, the surface area/volume ratio impacts certain properties of the nanoparticles more prominently than in bulk particles.


Interfacial layer

For nanoparticles dispersed in a medium of different composition, the interfacial layer — formed by ions and molecules from the medium that are within a few atomic diameters of the surface of each particle — can mask or change its chemical and physical properties. Indeed, that layer can be considered an integral part of each nanoparticle.


Solvent affinity

Suspension Suspension or suspended may refer to: Science and engineering * Car suspension * Cell suspension or suspension culture, in biology * Guarded suspension, a software design pattern in concurrent programming suspending a method call and the calling ...
s of nanoparticles are possible since the interaction of the particle surface with the
solvent A solvent (from the Latin language, Latin ''wikt:solvo#Latin, solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a Solution (chemistry), solution. A solvent is usually a liquid but can also be a solid, a gas ...
is strong enough to overcome
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
differences, which otherwise usually result in a material either sinking or floating in a liquid.


Coatings

Nanoparticles often develop or receive
coating A coating is a covering that is applied to the surface of an object, or substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. powder coatings. Paints ...
s of other substances, distinct from both the particle's material and of the surrounding medium. Even when only a single molecule thick, these coatings can radically change the particles' properties, such as and chemical reactivity, catalytic activity, and stability in suspension.


Diffusion across the surface

The high surface area of a material in nanoparticle form allows heat, molecules, and ions to
diffuse Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
into or out of the particles at very large rates. The small particle diameter, on the other hand, allows the whole material to reach homogeneous equilibrium with respect to diffusion in a very short time. Thus many processes that depend on diffusion, such as
sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plas ...
can take place at lower temperatures and over shorter time scales which can be important in
catalysis Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
.


Ferromagnetic and ferroelectric effects

The small size of nanoparticles affects their magnetic and electric properties. The
ferromagnetic material Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromag ...
s in the micrometer range is a good example: widely used in
magnetic recording Magnetic storage or magnetic recording is the storage of data on a magnetized medium. Magnetic storage uses different patterns of magnetisation in a magnetizable material to store data and is a form of non-volatile memory. The information is ...
media, for the stability of their magnetization state, those particles smaller than 10 nm are unstable and can change their state (flip) as the result of thermal energy at ordinary temperatures, thus making them unsuitable for that application.


Mechanical properties

The reduced vacancy concentration in nanocrystals can negatively affect the motion of
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sli ...
s, since dislocation climb requires vacancy migration. In addition, there exists a very high internal pressure due to the
surface stress Surface stress was first defined by Josiah Willard Gibbs (1839–1903) as the amount of the reversible work per unit area needed to elastically stretch a pre-existing surface science, surface. Depending upon the convention used, the area is either ...
present in small nanoparticles with high radii of curvature. This causes a
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an or ...
strain that is inversely proportional to the size of the particle, also well known to impede dislocation motion, in the same way as it does in the
work hardening Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materi ...
of materials. For example,
gold nanoparticle Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is coloured usually either wine red (for spherical particles less than 100  nm) or blue-purple (for larger spherical partic ...
s are significantly harder than the bulk material. Furthermore, the high surface-to-volume ratio in nanoparticles makes dislocations more likely to interact with the particle surface. In particular, this affects the nature of the dislocation source and allows the dislocations to escape the particle before they can multiply, reducing the dislocation density and thus the extent of
plastic deformation In engineering, deformation (the change in size or shape of an object) may be ''elastic'' or ''plastic''. If the deformation is negligible, the object is said to be ''rigid''. Main concepts Occurrence of deformation in engineering application ...
. There are unique challenges associated with the measurement of mechanical properties on the nanoscale, as conventional means such as the
universal testing machine A universal testing machine (UTM), also known as a universal tester, universal tensile machine, materials testing machine, materials test frame, is used to test the tensile strength (pulling) and compressive strength (pushing), flexural stren ...
cannot be employed. As a result, new techniques such as
nanoindentation Nanoindentation, also called instrumented indentation testing, is a variety of indentation hardness tests applied to small volumes. Indentation is perhaps the most commonly applied means of testing the mechanical properties of materials. The nanoi ...
have been developed that complement existing
electron microscope An electron microscope is a microscope that uses a beam of electrons as a source of illumination. It uses electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing it ...
and scanning probe methods.
Atomic force microscopy Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the opti ...
(AFM) can be used to perform
nanoindentation Nanoindentation, also called instrumented indentation testing, is a variety of indentation hardness tests applied to small volumes. Indentation is perhaps the most commonly applied means of testing the mechanical properties of materials. The nanoi ...
to measure
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
,
elastic modulus An elastic modulus (also known as modulus of elasticity (MOE)) is a quantity that describes an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. Definition The elastic modu ...
, and
adhesion Adhesion is the tendency of dissimilar particles or interface (matter), surfaces to cling to one another. (Cohesion (chemistry), Cohesion refers to the tendency of similar or identical particles and surfaces to cling to one another.) The ...
between nanoparticle and substrate. The particle deformation can be measured by the deflection of the cantilever tip over the sample. The resulting force-displacement curves can be used to calculate
elastic modulus An elastic modulus (also known as modulus of elasticity (MOE)) is a quantity that describes an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. Definition The elastic modu ...
. However, it is unclear whether particle size and indentation depth affect the measured elastic modulus of nanoparticles by AFM. Adhesion and
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
forces are important considerations in nanofabrication, lubrication, device design, colloidal stabilization, and drug delivery. The
capillary force Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity. The effect can be see ...
is the main contributor to the adhesive force under ambient conditions. The adhesion and friction force can be obtained from the cantilever deflection if the AFM tip is regarded as a nanoparticle. However, this method is limited by tip material and geometric shape. The colloidal probe technique overcomes these issues by attaching a nanoparticle to the AFM tip, allowing control oversize, shape, and material. While the colloidal probe technique is an effective method for measuring adhesion force, it remains difficult to attach a single nanoparticle smaller than 1 micron onto the AFM force sensor. Another technique is ''in situ'' TEM, which provides real-time, high resolution imaging of nanostructure response to a stimulus. For example, an ''in situ'' force probe holder in TEM was used to compress twinned nanoparticles and characterize
yield strength In materials science and engineering, the yield point is the point on a stress–strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and w ...
. In general, the measurement of the mechanical properties of nanoparticles is influenced by many factors including uniform dispersion of nanoparticles, precise application of load, minimum particle deformation, calibration, and calculation model. Like bulk materials, the properties of nanoparticles are materials dependent. For spherical polymer nanoparticles,
glass transition The glass–liquid transition, or glass transition, is the gradual and Reversible reaction, reversible transition in amorphous solid, amorphous materials (or in amorphous regions within Crystallinity, semicrystalline materials) from a hard and rel ...
temperature and crystallinity may affect deformation and change the elastic modulus when compared to the bulk material. However, size-dependent behavior of elastic moduli could not be generalized across polymers. As for crystalline metal nanoparticles,
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sli ...
s were found to influence the mechanical properties of nanoparticles, contradicting the conventional view that dislocations are absent in crystalline nanoparticles.


Melting point depression

A material may have lower melting point in nanoparticle form than in the bulk form. For example, 2.5 nm gold nanoparticles melt at about 300 °C, whereas bulk gold melts at 1064 °C.


Quantum mechanics effects

Quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
effects become noticeable for nanoscale objects. They include
quantum confinement A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy (kinetic energy in the case of a gravitational potential well) because it is captu ...
in
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
particles,
localized surface plasmon A localized surface plasmon (LSP) is the result of the confinement of a surface plasmon in a nanoparticle of size comparable to or smaller than the wavelength of light used to excite the plasmon. When a small spherical metallic nanoparticle is irr ...
s in some metal particles, and
superparamagnetism Superparamagnetism is a form of magnetism which appears in small ferromagnetic or ferrimagnetic nanoparticles. In sufficiently small nanoparticles, magnetization can randomly flip direction under the influence of temperature. The typical time betw ...
in
magnetic Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, m ...
materials.
Quantum dots Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic i ...
are nanoparticles of semiconducting material that are small enough (typically sub 10 nm or less) to have quantized electronic
energy level A quantum mechanics, quantum mechanical system or particle that is bound state, bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical mechanics, classical pa ...
s. Quantum effects are responsible for the deep-red to black color of
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
or
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
nanopowders and nanoparticle suspensions. Absorption of solar radiation is much higher in materials composed of nanoparticles than in thin films of continuous sheets of material. In both solar PV and
solar thermal Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in Industrial sector, industry, and in the residential and commercial sectors. Solar thermal collectors are classified ...
applications, by controlling the size, shape, and material of the particles, it is possible to control solar absorption. Core-shell nanoparticles can support simultaneously both electric and magnetic resonances, demonstrating entirely new properties when compared with bare metallic nanoparticles if the resonances are properly engineered. The formation of the core-shell structure from two different metals enables an energy exchange between the core and the shell, typically found in upconverting nanoparticles and downconverting nanoparticles, and causes a shift in the emission wavelength spectrum. By introducing a dielectric layer, plasmonic core (metal)-shell (dielectric) nanoparticles enhance light absorption by increasing scattering. Recently, the metal core-dielectric shell nanoparticle has demonstrated a zero backward scattering with enhanced forward scattering on a silicon substrate when surface plasmon is located in front of a solar cell.


Regular packing

Nanoparticles of sufficiently uniform size may spontaneously settle into regular arrangements, forming a
colloidal crystal A colloidal crystal is an ordered array of colloidal particles and fine grained materials analogous to a standard crystal whose repeating subunits are atoms or molecules. A natural example of this phenomenon can be found in the gem opal, where sp ...
. These arrangements may exhibit original physical properties, such as observed in
photonic crystal A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of Crystal structure, natural crystals gives rise to X-ray crystallograp ...
s.


Production

Artificial nanoparticles can be created from any solid or liquid material, including
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
s,
dielectric In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
s, and
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s. They may be internally homogeneous or heterogenous, e.g. with a core–shell structure. There are several methods for creating nanoparticles, including gas condensation, attrition, chemical precipitation,
ion implantation Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the target's physical, chemical, or electrical properties. Ion implantation is used in semiconductor device fabrica ...
,
pyrolysis Pyrolysis is a process involving the Bond cleavage, separation of covalent bonds in organic matter by thermal decomposition within an Chemically inert, inert environment without oxygen. Etymology The word ''pyrolysis'' is coined from the Gree ...
,
hydrothermal synthesis Hydrothermal synthesis includes the various techniques of synthesizing substances from high-temperature aqueous solutions at high pressures; also termed "hydrothermal method". The term "hydrothermal" is of geologic origin. Geochemists and mine ...
, and biosynthesis.


Mechanical

Friable macro- or micro-scale solid particles can be ground in a
ball mill A ball mill is a type of grinder filled with grinding balls, used to grind or blend materials for use in mineral dressing processes, paints, pyrotechnics, ceramics, and selective laser sintering. It works on the principle of impact and attri ...
, a planetary
ball mill A ball mill is a type of grinder filled with grinding balls, used to grind or blend materials for use in mineral dressing processes, paints, pyrotechnics, ceramics, and selective laser sintering. It works on the principle of impact and attri ...
, or other size-reducing mechanism until enough of them are in the nanoscale size range. The resulting powder can be air classified to extract the nanoparticles.


Breakdown of biopolymers

Biopolymers like
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
,
lignin Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidit ...
,
chitin Chitin (carbon, C8hydrogen, H13oxygen, O5nitrogen, N)n ( ) is a long-chain polymer of N-Acetylglucosamine, ''N''-acetylglucosamine, an amide derivative of glucose. Chitin is the second most abundant polysaccharide in nature (behind only cell ...
, or
starch Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diet ...
may be broken down into their individual nanoscale building blocks, obtaining
anisotropic Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ver ...
fiber- or needle-like nanoparticles. The biopolymers are disintegrated mechanically in combination with chemical
oxidation Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
or
enzymatic An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as produc ...
treatment to promote breakup, or
hydrolysed Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysis ...
using
acid An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
.


Pyrolysis

Another method to create nanoparticles is to turn a suitable precursor substance, such as a gas (e.g. methane) or
aerosol An aerosol is a suspension (chemistry), suspension of fine solid particles or liquid Drop (liquid), droplets in air or another gas. Aerosols can be generated from natural or Human impact on the environment, human causes. The term ''aerosol'' co ...
, into solid particles by
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion ...
or
pyrolysis Pyrolysis is a process involving the Bond cleavage, separation of covalent bonds in organic matter by thermal decomposition within an Chemically inert, inert environment without oxygen. Etymology The word ''pyrolysis'' is coined from the Gree ...
. This is a generalization of the burning of
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and Hydrophobe, hydrophobic; their odor is usually fain ...
s or other organic vapors to generate
soot Soot ( ) is a mass of impure carbon particles resulting from the incomplete combustion of hydrocarbons. Soot is considered a hazardous substance with carcinogenic properties. Most broadly, the term includes all the particulate matter produced b ...
. Traditional
pyrolysis Pyrolysis is a process involving the Bond cleavage, separation of covalent bonds in organic matter by thermal decomposition within an Chemically inert, inert environment without oxygen. Etymology The word ''pyrolysis'' is coined from the Gree ...
often results in aggregates and agglomerates rather than single primary particles. This inconvenience can be avoided by
ultrasonic nozzle Ultrasonic nozzles are a type of spray nozzle that use high frequency vibrations produced by piezoelectric transducers acting upon the nozzle tip that create capillary waves in a liquid film. Once the amplitude of the capillary waves reaches a ...
spray pyrolysis, in which the precursor liquid is forced through an orifice at high pressure.


Condensation from plasma

Nanoparticles of pure metals,
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
s,
carbide In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece. Interstitial / Metallic carbides The carbides of th ...
s, and
nitride In chemistry, a nitride is a chemical compound of nitrogen. Nitrides can be inorganic or organic, ionic or covalent. The nitride anion, N3−, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitr ...
s, can be created by vaporizing a solid precursor with a thermal plasma and then condensing the vapor by expansion or quenching in a suitable gas or liquid. The plasma can be produced by dc jet,
electric arc An electric arc (or arc discharge) is an electrical breakdown of a gas that produces a prolonged electrical discharge. The electric current, current through a normally Electrical conductance, nonconductive medium such as air produces a plasma ( ...
, or radio frequency (RF) induction. The thermal plasma can reach temperatures of 10.000 K and can thus also synthesize nanopowders with very high boiling points. Metal wires can be vaporized by the exploding wire method. In RF induction plasma torches, energy coupling to the plasma is accomplished through the electromagnetic field generated by the induction coil. The plasma gas does not come in contact with electrodes, thus eliminating possible sources of contamination and allowing the operation of such plasma torches with a wide range of gases including inert, reducing, oxidizing, and other corrosive atmospheres. The working frequency is typically between 200 kHz and 40 MHz. Laboratory units run at power levels in the order of 30–50 kW, whereas the large-scale industrial units have been tested at power levels up to 1 MW. As the residence time of the injected feed droplets in the plasma is very short, it is important that the droplet sizes are small enough in order to obtain complete evaporation.


Inert gas condensation

Inert-gas
condensation Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle. It can also be defined as the change in the state of water vapor ...
is frequently used to produce metallic nanoparticles. The metal is evaporated in a vacuum chamber containing a reduced atmosphere of an inert gas. Condensation of the supersaturated metal vapor results in creation of nanometer-size particles, which can be entrained in the inert gas stream and deposited on a substrate or studied in situ. Early studies were based on thermal evaporation. Using
magnetron sputtering Sputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is ...
to create the metal vapor allows to achieve higher yields. The method can easily be generalized to alloy nanoparticles by choosing appropriate metallic targets. The use of sequential growth schemes, where the particles travel through a second metallic vapor, results in growth of core-shell (CS) structures.


Radiolysis method

Nanoparticles can also be formed using
radiation chemistry Radiation chemistry is a subdivision of nuclear chemistry which studies the chemical effects of ionizing radiation on matter. This is quite different from radiochemistry, as no radioactivity needs to be present in the material which is being chemica ...
. Radiolysis from
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
s can create strongly active
free radicals In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired electron, unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemical reaction, chemi ...
in solution. This relatively simple technique uses a minimum number of chemicals. These including water, a soluble metallic salt, a radical scavenger (often a secondary alcohol), and a surfactant (organic capping agent). High gamma doses on the order of 104
gray Grey (more frequent in British English) or gray (more frequent in American English) is an intermediate color between black and white. It is a neutral or achromatic color, meaning that it has no chroma. It is the color of a cloud-covered s ...
are required. In this process, reducing radicals will drop metallic ions down to the zero-valence state. A scavenger chemical will preferentially interact with oxidizing radicals to prevent the re-oxidation of the metal. Once in the zero-valence state, metal atoms begin to coalesce into particles. A chemical surfactant surrounds the particle during formation and regulates its growth. In sufficient concentrations, the surfactant molecules stay attached to the particle. This prevents it from dissociating or forming clusters with other particles. Formation of nanoparticles using the radiolysis method allows for tailoring of particle size and shape by adjusting precursor concentrations and gamma dose.


Wet chemistry

Nanoparticles of certain materials can be created by "wet" chemical processes, in which
solution Solution may refer to: * Solution (chemistry), a mixture where one substance is dissolved in another * Solution (equation), in mathematics ** Numerical solution, in numerical analysis, approximate solutions within specified error bounds * Solu ...
s of suitable compounds are mixed or otherwise treated to form an insoluble
precipitate In an aqueous solution, precipitation is the "sedimentation of a solid material (a precipitate) from a liquid solution". The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemic ...
of the desired material. The size of the particles of the latter is adjusted by choosing the concentration of the reagents and the temperature of the solutions, and through the addition of suitable inert agents that affect the viscosity and diffusion rate of the liquid. With different parameters, the same general process may yield other nanoscale structures of the same material, such as
aerogel Aerogels are a class of manufacturing, synthetic porous ultralight material derived from a gel, in which the liquid component for the gel has been replaced with a gas, without significant collapse of the gel structure. The result is a solid wit ...
s and other porous networks. The nanoparticles formed by this method are then separated from the solvent and soluble byproducts of the reaction by a combination of
evaporation Evaporation is a type of vaporization that occurs on the Interface (chemistry), surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evapora ...
,
sedimentation Sedimentation is the deposition of sediments. It takes place when particles in suspension settle out of the fluid in which they are entrained and come to rest against a barrier. This is due to their motion through the fluid in response to th ...
,
centrifugation Centrifugation is a mechanical process which involves the use of the centrifugal force to separate particles from a solution according to their size, shape, density, medium viscosity and rotor speed. The denser components of the mixture migrate ...
, washing, and
filtration Filtration is a physical separation process that separates solid matter and fluid from a mixture using a ''filter medium'' that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filte ...
. Alternatively, if the particles are meant to be deposited on the surface of some solid substrate, the starting solutions can be by coated on that surface by dipping or spin-coating, and the reaction can be carried out in place. Electroless deposition provides a unique opportunity for growing nanoparticles onto surface without the need for costly spin coating, electrodeposition, or physical vapor deposition. Electroless deposition processes can form colloid suspensions catalytic metal or metal oxide deposition. The suspension of nanoparticles that result from this process is an example of
colloid A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others exte ...
. Typical instances of this method are the production of metal
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
or
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It ...
nanoparticles by
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
of metal
alkoxide In chemistry, an alkoxide is the conjugate base of an alcohol and therefore consists of an organic group bonded to a negatively charged oxygen atom. They are written as , where R is the organyl substituent. Alkoxides are strong bases and, whe ...
s and
chloride The term chloride refers to a compound or molecule that contains either a chlorine anion (), which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond (). The pr ...
s. Besides being cheap and convenient, the wet chemical approach allows fine control of the particle's chemical composition. Even small quantities of dopants, such as organic dyes and rare earth metals, can be introduced in the reagent solutions end up uniformly dispersed in the final product.


Ion implantation

Ion implantation Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the target's physical, chemical, or electrical properties. Ion implantation is used in semiconductor device fabrica ...
may be used to treat the surfaces of dielectric materials such as sapphire and silica to make composites with near-surface dispersions of metal or oxide nanoparticles.


Functionalization

Many properties of nanoparticles, notably stability, solubility, and chemical or biological activity, can be radically altered by
coating A coating is a covering that is applied to the surface of an object, or substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. powder coatings. Paints ...
them with various substances — a process called functionalization. Functionalized nanomaterial-based catalysts can be used for catalysis of many known organic reactions. For example, suspensions of
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
particles can be stabilized by functionalization with
gallic acid Gallic acid (also known as 3,4,5-trihydroxybenzoic acid) is a trihydroxybenzoic acid with the formula C6 H2( OH)3CO2H. It is classified as a phenolic acid. It is found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plant ...
groups. For biological applications, the surface coating should be polar to give high aqueous solubility and prevent nanoparticle aggregation. In serum or on the cell surface, highly charged coatings promote non-specific binding, whereas
polyethylene glycol Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular wei ...
linked to terminal hydroxyl or methoxy groups repel non-specific interactions. By the immobilization of thiol groups on the surface of nanoparticles or by coating them with
thiomer Thiolated polymers designated thiomers are functional polymers used in biotechnology product development with the intention to prolong mucosal drug residence time and to enhance absorption of drugs. The name thiomer was coined by Andreas Bernkop-S ...
s high (muco)adhesive and cellular uptake enhancing properties can be introduced. Nanoparticles can be linked to biological molecules that can act as address tags, directing them to specific sites within the body specific organelles within the cell, or causing them to follow specifically the movement of individual protein or RNA molecules in living cells. Common address tags are
monoclonal antibodies A monoclonal antibody (mAb, more rarely called moAb) is an antibody produced from a Lineage (evolution), cell lineage made by cloning a unique white blood cell. All subsequent antibodies derived this way trace back to a unique parent cell. Mon ...
,
aptamer Aptamers are oligomers of artificial ssDNA, RNA, Xeno nucleic acid, XNA, or peptide that ligand, bind a specific target molecule, or family of target molecules. They exhibit a range of affinities (Dissociation constant, KD in the pM to μM rang ...
s,
streptavidin Streptavidin is a 52 Atomic mass unit, kDa protein (tetramer) purified from the bacterium ''Streptomyces avidinii''. Streptavidin Homotetramer, homo-tetramers have an extraordinarily high affinity for biotin (also known as vitamin B7 or vitamin ...
, or
peptide Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty am ...
s. These targeting agents should ideally be covalently linked to the nanoparticle and should be present in a controlled number per nanoparticle. Multivalent nanoparticles, bearing multiple targeting groups, can cluster receptors, which can activate cellular signaling pathways, and give stronger anchoring. Monovalent nanoparticles, bearing a single binding site, avoid clustering and so are preferable for tracking the behavior of individual proteins. It has been shown that catalytic activity and sintering rates of a functionalized nanoparticle catalyst is correlated to nanoparticles' number density Coatings that mimic those of red blood cells can help nanoparticles evade the immune system.


Uniformity requirements

The chemical processing and synthesis of high-performance technological components for the private, industrial, and military sectors requires the use of high-purity
ceramics A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porce ...
(
oxide ceramics An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation state of ...
, such as
aluminium oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several Aluminium oxide (compounds), aluminium oxides, and specifically identified as alum ...
or
copper(II) oxide Copper(II) oxide or cupric oxide is an inorganic compound with the formula CuO. A black solid, it is one of the two stable oxides of copper, the other being Cu2O or copper(I) oxide (cuprous oxide). As a mineral, it is known as tenorite, or so ...
),
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s,
glass-ceramic Glass-ceramics are polycrystalline materials produced through controlled crystallization of base glass, producing a fine uniform dispersion of crystals throughout the bulk material. Crystallization is accomplished by subjecting suitable glasses t ...
s, and
composite material A composite or composite material (also composition material) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a ...
s, as metal carbides (
SiC The Latin adverb ''sic'' (; ''thus'', ''so'', and ''in this manner'') inserted after a quotation indicates that the quoted matter has been transcribed or translated as found in the source text, including erroneous, archaic, or unusual spelling ...
),
nitride In chemistry, a nitride is a chemical compound of nitrogen. Nitrides can be inorganic or organic, ionic or covalent. The nitride anion, N3−, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitr ...
s (
Aluminum nitride Aluminium nitride ( Al N) is a solid nitride of aluminium. It has a high thermal conductivity of up to 321 W/(m·K) and is an electrical insulator. Its wurtzite phase (w-AlN) has a band gap of ~6 eV at room temperature and has a potent ...
s,
Silicon nitride Silicon nitride is a chemical compound of the elements silicon and nitrogen. (''Trisilicon tetranitride'') is the most thermodynamically stable and commercially important of the silicon nitrides, and the term ″''Silicon nitride''″ commonly re ...
),
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
s ( Al, Cu), non-metals (
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
,
carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''S ...
s), and layered ( Al + aluminium carbonate, Cu + C). In condensed bodies formed from fine powders, the irregular particle sizes and shapes in a typical powder often lead to non-uniform packing morphologies that result in packing density variations in the powder compact. Uncontrolled
agglomeration Agglomeration may refer to: * Urban agglomeration, in standard English * Megalopolis, in Chinese English, as defined in China's ''Standard for basic terminology of urban planning'' (GB/T 50280—98). Also known as "city cluster". * Economies of agg ...
of powders due to
attractive Attraction may refer to: * Interpersonal attraction, the attraction between people which leads to friendships, platonic and romantic relationships. ** Physical attractiveness, attraction on the basis of beauty ** Sexual attraction * Object or eve ...
van der Waals forces In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical ele ...
can also give rise to microstructural heterogeneity. Differential stresses that develop as a result of non-uniform drying shrinkage are directly related to the rate at which the
solvent A solvent (from the Latin language, Latin ''wikt:solvo#Latin, solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a Solution (chemistry), solution. A solvent is usually a liquid but can also be a solid, a gas ...
can be removed, and thus highly dependent upon the distribution of
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
. Such stresses have been associated with a plastic-to-brittle transition in consolidated bodies, and can yield to
crack propagation Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics t ...
in the unfired body if not relieved. In addition, any fluctuations in packing density in the compact as it is prepared for the kiln are often amplified during the
sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plas ...
process, yielding inhomogeneous densification. Some pores and other structural defects associated with density variations have been shown to play a detrimental role in the sintering process by growing and thus limiting end-point densities. Differential stresses arising from inhomogeneous densification have also been shown to result in the propagation of internal cracks, thus becoming the strength-controlling flaws. Inert gas evaporation and inert gas deposition are free many of these defects due to the distillation (cf. purification) nature of the process and having enough time to form single crystal particles, however even their non-aggreated deposits have
lognormal In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normal distribution, normally distributed. Thus, if the random variable is log-normally distributed ...
size distribution, which is typical with nanoparticles. The reason why modern gas evaporation techniques can produce a relatively narrow size distribution is that aggregation can be avoided. However, even in this case, random residence times in the growth zone, due to the combination of drift and diffusion, result in a size distribution appearing lognormal. It would, therefore, appear desirable to process a material in such a way that it is physically uniform with regard to the distribution of components and porosity, rather than using particle size distributions that will maximize the green density. The containment of a uniformly dispersed assembly of strongly interacting particles in suspension requires total control over interparticle forces. Monodisperse nanoparticles and colloids provide this potential.


Characterization

Nanoparticles have different analytical requirements than conventional chemicals, for which chemical composition and concentration are sufficient metrics. Nanoparticles have other physical properties that must be measured for a complete description, such as
size Size in general is the Magnitude (mathematics), magnitude or dimensions of a thing. More specifically, ''geometrical size'' (or ''spatial size'') can refer to three geometrical measures: length, area, or volume. Length can be generalized ...
,
shape A shape is a graphics, graphical representation of an object's form or its external boundary, outline, or external Surface (mathematics), surface. It is distinct from other object properties, such as color, Surface texture, texture, or material ...
, surface properties,
crystallinity Crystallinity refers to the degree of structural order in a solid. In a crystal, the atoms or molecules are arranged in a regular, periodic manner. The degree of crystallinity has a large influence on hardness, density, transparency and diffusi ...
, and dispersion state. Additionally, sampling and laboratory procedures can perturb their dispersion state or bias the distribution of other properties. In environmental contexts, an additional challenge is that many methods cannot detect low concentrations of nanoparticles that may still have an adverse effect. For some applications, nanoparticles may be characterized in complex matrices such as water, soil, food, polymers, inks, complex mixtures of organic liquids such as in cosmetics, or blood. There are several overall categories of methods used to characterize nanoparticles.
Microscopy Microscopy is the technical field of using microscopes to view subjects too small to be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of microscopy: optical mic ...
methods generate images of individual nanoparticles to characterize their shape, size, and location.
Electron microscopy An electron microscope is a microscope that uses a beam of electrons as a source of illumination. It uses electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing i ...
and
scanning probe microscopy Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging ...
are the dominant methods. Because nanoparticles have a size below the
diffraction limit In optics, any optical instrument or systema microscope, telescope, or camerahas a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of res ...
of
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
, conventional
optical microscopy Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
is not useful. Electron microscopes can be coupled to spectroscopic methods that can perform
elemental analysis Elemental analysis is a process where a sample of some material (e.g., soil, waste or drinking water, bodily fluids, minerals, chemical compounds) is analyzed for its elemental and sometimes isotopic composition. Elemental analysis can be qualita ...
. Microscopy methods are destructive and can be prone to undesirable artifacts from sample preparation, or from probe tip geometry in the case of scanning probe microscopy. Additionally, microscopy is based on single-particle measurements, meaning that large numbers of individual particles must be characterized to estimate their bulk properties.
Spectroscopy Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectro ...
, which measures the particles' interaction with
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
as a function of
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
, is useful for some classes of nanoparticles to characterize concentration, size, and shape.
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
, ultraviolet–visible,
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
, and
nuclear magnetic resonance spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a Spectroscopy, spectroscopic technique based on re-orientation of Atomic nucleus, atomic nuclei with non-zero nuclear sp ...
can be used with nanoparticles. Light-scattering methods using
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
light,
X-rays An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
, or
neutron scattering Neutron scattering, the irregular dispersal of free neutrons by matter, can refer to either the naturally occurring physical process itself or to the man-made experimental techniques that use the natural process for investigating materials. Th ...
are used to determine particle size, with each method suitable for different size ranges and particle compositions. Some miscellaneous methods are
electrophoresis Electrophoresis is the motion of charged dispersed particles or dissolved charged molecules relative to a fluid under the influence of a spatially uniform electric field. As a rule, these are zwitterions with a positive or negative net ch ...
for surface charge, the Brunauer–Emmett–Teller method for surface area, and
X-ray diffraction X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. ...
for crystal structure, as well as
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
for particle mass, and
particle counter A particle counter is used for monitoring and diagnosing particle contamination within specific clean media, including air, water, and chemicals. Particle counters are used to support clean manufacturing practices in a variety of industrial appl ...
s for particle number.
Chromatography In chemical analysis, chromatography is a laboratory technique for the Separation process, separation of a mixture into its components. The mixture is dissolved in a fluid solvent (gas or liquid) called the ''mobile phase'', which carries it ...
,
centrifugation Centrifugation is a mechanical process which involves the use of the centrifugal force to separate particles from a solution according to their size, shape, density, medium viscosity and rotor speed. The denser components of the mixture migrate ...
, and
filtration Filtration is a physical separation process that separates solid matter and fluid from a mixture using a ''filter medium'' that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filte ...
techniques can be used to separate nanoparticles by size or other physical properties before or during characterization.


Health and safety

Nanoparticles present possible dangers, both medically and environmentally. Most of these are due to the high surface to volume ratio, which can make the particles very reactive or
catalytic Catalysis () is the increase in reaction rate, rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst ...
. They are also thought to aggregate on phospholipid bilayers and pass through
cell membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
s in organisms, and their interactions with biological systems are relatively unknown. However, it is unlikely the particles would enter the cell nucleus, Golgi complex, endoplasmic reticulum or other internal cellular components due to the particle size and intercellular agglomeration. A recent study looking at the effects of ZnO nanoparticles on human immune cells has found varying levels of susceptibility to
cytotoxicity Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are toxic metals, toxic chemicals, microbe neurotoxins, radiation particles and even specific neurotransmitters when the system is out of balance. Also some types of d ...
. There are concerns that pharmaceutical companies, seeking regulatory approval for nano-reformulations of existing medicines, are relying on safety data produced during clinical studies of the earlier, pre-reformulation version of the medicine. This could result in regulatory bodies, such as the FDA, missing new side effects that are specific to the nano-reformulation. However considerable research has demonstrated that zinc nanoparticles are not absorbed into the bloodstream in vivo. Concern has also been raised over the health effects of respirable nanoparticles from certain combustion processes. Preclinical investigations have demonstrated that some inhaled or injected noble metal nano-architectures avoid persistence in organisms. As of 2013 the
U.S. Environmental Protection Agency The Environmental Protection Agency (EPA) is an independent agency of the United States government tasked with environmental protection matters. President Richard Nixon proposed the establishment of EPA on July 9, 1970; it began operation on De ...
was investigating the safety of the following nanoparticles: *
Carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''S ...
s: Carbon materials have a wide range of uses, ranging from composites for use in vehicles and sports equipment to integrated circuits for electronic components. The interactions between nanomaterials such as carbon nanotubes and natural organic matter strongly influence both their aggregation and deposition, which strongly affects their transport, transformation, and exposure in aquatic environments. In past research, carbon nanotubes exhibited some toxicological impacts that will be evaluated in various environmental settings in current EPA chemical safety research. EPA research will provide data, models, test methods, and best practices to discover the acute health effects of carbon nanotubes and identify methods to predict them. * Cerium oxide: Nanoscale cerium oxide is used in electronics, biomedical supplies, energy, and fuel additives. Many applications of engineered cerium oxide nanoparticles naturally disperse themselves into the environment, which increases the risk of exposure. There is ongoing exposure to new diesel emissions using fuel additives containing CeO2 nanoparticles, and the environmental and public health impacts of this new technology are unknown. EPA's chemical safety research is assessing the environmental, ecological, and health implications of nanotechnology-enabled diesel fuel additives. *
Titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound derived from titanium with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or Colour Index Internationa ...
: Nano titanium dioxide is currently used in many products. Depending on the type of particle, it may be found in sunscreens, cosmetics, and paints and coatings. It is also being investigated for use in removing contaminants from drinking water. * Nano Silver: Nano Silver is being incorporated into textiles, clothing, food packaging, and other materials to eliminate bacteria. EPA and the
U.S. Consumer Product Safety Commission The United States Consumer Product Safety Commission (USCPSC, CPSC, or commission) is an independent agency of the United States government. The CPSC seeks to promote the safety of consumer products by addressing "unreasonable risks" of injury ...
are studying certain products to see whether they transfer nano-size silver particles in real-world scenarios. EPA is researching this topic to better understand how much nano-silver children come in contact with in their environments. *Iron: While nano-scale iron is being investigated for many uses, including "smart fluids" for uses such as optics polishing and as a better-absorbed
iron nutrient supplement Iron supplements, also known as iron salts and iron pills, are a number of iron formulations used to treat and prevent iron deficiency including iron-deficiency anemia. For prevention they are only recommended in those with poor absorption, ...
, one of its more prominent current uses is to remove contamination from groundwater. This use, supported by EPA research, is being piloted at a number of sites across the United States.


Regulation

As of 2016, the U.S. Environmental Protection Agency had conditionally registered, for a period of four years, only two nanomaterial pesticides as ingredients. The EPA differentiates nanoscale ingredients from non-nanoscale forms of the ingredient, but there is little scientific data about potential variation in toxicity. Testing protocols still need to be developed.


Applications

As the most prevalent morphology of nanomaterials used in consumer products, nanoparticles have an enormous range of potential and actual applications. Table below summarizes the most common nanoparticles used in various product types available on the global markets. Scientific research on nanoparticles is intense as they have many potential applications in pre-clinical and clinical medicine, physics, optics, and electronics. The U.S.
National Nanotechnology Initiative The National Nanotechnology Initiative (NNI) is a research and development initiative which provides a framework to coordinate nanoscale research and resources among United States federal government agencies and departments. History In the lat ...
offers government funding focused on nanoparticle research. The use of nanoparticles in laser dye-doped
poly(methyl methacrylate) Poly(methyl methacrylate) (PMMA) is a synthetic polymer derived from methyl methacrylate. It is a transparent thermoplastic, used as an engineering plastic. PMMA is also known as acrylic, acrylic glass, as well as by the trade names and bran ...
(PMMA) laser
gain media The active laser medium (also called a gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from ...
was demonstrated in 2003 and it has been shown to improve conversion efficiencies and to decrease laser beam divergence. Researchers attribute the reduction in beam divergence to improved dn/dT characteristics of the organic-inorganic dye-doped nanocomposite. The optimum composition reported by these researchers is 30% w/w of SiO2 (~ 12 nm) in dye-doped PMMA. Nanoparticles are being investigated as a potential drug delivery system. Drugs,
growth factor A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for ...
s or other biomolecules can be conjugated to nano particles to aid targeted delivery. This nanoparticle-assisted delivery allows for spatial and temporal controls of the loaded drugs to achieve the most desirable biological outcome. Nanoparticles are also studied for possible applications as
dietary supplement A dietary supplement is a manufactured product intended to supplement a person's diet by taking a pill (pharmacy), pill, capsule (pharmacy), capsule, tablet (pharmacy), tablet, powder, or liquid. A supplement can provide nutrients eithe ...
s for delivery of biologically active substances, for example mineral elements.


Polymer reinforcement

Clay nanoparticles, when incorporated into polymer matrices, increase reinforcement, leading to stronger plastics, verifiable by a higher
glass transition temperature The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials (or in amorphous regions within semicrystalline materials) from a hard and relatively brittle "glassy" state into a viscous or rub ...
and other mechanical property tests. These nanoparticles are hard, and impart their properties to the polymer (plastic). Nanoparticles have also been attached to textile fibers in order to create smart and functional clothing.


Liquid properties tuner

The inclusion of nanoparticles in a solid or liquid medium can substantially change its mechanical properties, such as elasticity, plasticity, viscosity, compressibility.


Photocatalysis

Being smaller than the wavelengths of visible light, nanoparticles can be dispersed in transparent media without affecting its transparency at those wavelengths. This property is exploited in many applications, such as
photocatalysis In chemistry, photocatalysis is the acceleration of a photoreaction in the presence of a photocatalyst, the excited state of which "repeatedly interacts with the reaction partners forming reaction intermediates and regenerates itself after each ...
.


Road paving

Asphalt modification through nanoparticles can be considered as an interesting low-cost technique in asphalt pavement engineering providing novel perspectives in making asphalt materials more durable.


Biomedical

Nanoscale particles are used in biomedical applications as
drug carrier A drug carrier or drug vehicle is a substrate used in the process of drug delivery which serves to improve the selectivity, effectiveness, and/or safety of drug administration. Drug carriers are primarily used to control the release of drugs into ...
s or imaging contrast agents in microscopy. Anisotropic nanoparticles are a good candidate in biomolecular detection. Moreover, nanoparticles for nucleic acid delivery offer an unprecedented opportunity to overcome some drawbacks related to the delivery, owing to their tunability with diverse physico-chemical properties, they can readily be functionalized with any type of biomolecules/moieties for selective targeting.Mendes, B.B., Conniot, J., Avital, A. et al. Nanodelivery of nucleic acids. Nat Rev Methods Primers 2, 24 (2022). https://doi.org/10.1038/s43586-022-00104-y


Sunscreens

Titanium dioxide nanoparticles imparts what is known as the self-cleaning effect, which lend useful water-repellant and antibacterial properties to paints and other products.
Zinc oxide Zinc oxide is an inorganic compound with the Chemical formula, formula . It is a white powder which is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, Zinc metabolism, food supplements, rubbe ...
nanoparticles have been found to have superior UV blocking properties and are widely used in the preparation of
sunscreen Sunscreen, also known as sunblock, sun lotion or sun cream, is a photoprotection, photoprotective topical product for the Human skin, skin that helps protect against sunburn and prevent skin cancer. Sunscreens come as lotions, sprays, gels, fo ...
lotions, being completely photostable though toxic.


Compounds by industrial area


See also

*
Carbon quantum dot Carbon quantum dots also commonly called carbon nano dots or simply carbon dots (abbreviated as CQDs, C-dots or CDs) are carbon nanoparticles which are less than 10 nm in size and have some form of surface passivation. History CQDs were f ...
*
Ceramic engineering Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions ...
*Coating *Colloid *Colloidal crystal *Colloidal gold *Colloid-facilitated transport *Eigencolloid *Fiveling, Fiveling or decahedral nanoparticle *Fullerene *Gallium(II) selenide *Icosahedral twins *Indium(III) selenide *Liposome *Magnetic immunoassay *Magnetoelastic filament a.k.a. magnetic nanochain *Magnetic nanoparticles *Nanobiotechnology *Nanocrystalline silicon *Nanofluid *Nanogeoscience *Nanomaterials *Nanomedicine *Nanoparticle deposition *Nanoparticle tracking analysis *Nanotechnology *Patchy particles *Photonic crystal *Plasmon *Platinum nanoparticle *Quantum dot *Self-assembly of nanoparticles *Silicon quantum dot *Silicon *Silver Nano *Sol–gel process *Synthesis of nanoparticles by fungi *Transparent material *Upconverting nanoparticles *Erythrocyte membrane-coated nanoparticles


References


Further reading

*
Nanoparticles Used in Solar Energy Conversion
(''ScienceDaily'').
"Nanoparticles: An occupational hygiene review"
by RJ Aitken and others. Health and Safety Executive Research Report 274/2004
"EMERGNANO: A review of completed and near completed environment, health and safety research on nanomaterials and nanotechnology"
by RJ Aitken and others.
High transmission Tandem DMA for nanoparticle studies
by SEADM, 2014.


External links


Nanohedron.com
images of nanoparticles
Lectures on All Phases of Nanoparticle Science and Technology

ENPRA – Risk Assessment of Engineered NanoParticles
EC FP7 Project led by the Institute of Occupational Medicine {{Authority control Nanoparticles,