
In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a matrix (: matrices) is a
rectangular array or table of
number
A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
s,
symbol
A symbol is a mark, Sign (semiotics), sign, or word that indicates, signifies, or is understood as representing an idea, physical object, object, or wikt:relationship, relationship. Symbols allow people to go beyond what is known or seen by cr ...
s, or
expressions, with elements or entries arranged in rows and columns, which is used to represent a
mathematical object
A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
or property of such an object.
For example,
is a matrix with two rows and three columns. This is often referred to as a "two-by-three matrix", a " matrix", or a matrix of dimension .
Matrices are commonly used in
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
, where they represent
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
s. In
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, matrices are widely used for specifying and representing
geometric transformations (for example
rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
s) and
coordinate changes. In
numerical analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of ...
, many computational problems are solved by reducing them to a matrix computation, and this often involves computing with matrices of huge dimensions. Matrices are used in most areas of mathematics and scientific fields, either directly, or through their use in geometry and numerical analysis.
''
Square matrices'', matrices with the same number of rows and columns, play a major role in matrix theory. The
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of a square matrix is a number associated with the matrix, which is fundamental for the study of a square matrix; for example, a square matrix is
invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
if and only if it has a nonzero determinant and the
eigenvalues of a square matrix are the roots of a
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
determinant.
Matrix theory is the
branch of mathematics that focuses on the study of matrices. It was initially a sub-branch of
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
, but soon grew to include subjects related to
graph theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
,
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
,
combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
and
statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
.
Definition
A matrix is a rectangular array of
number
A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
s (or other mathematical objects), called the "entries" of the matrix. Matrices are subject to standard
operations such as
addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
and
multiplication
Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
. Most commonly, a matrix over a
field is a rectangular array of
elements of . A real matrix and a complex matrix are matrices whose entries are respectively
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s or
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. More general types of entries are discussed
below. For instance, this is a real matrix:
The numbers, symbols, or expressions in the matrix are called its ''entries'' or its ''elements''. The horizontal and vertical lines of entries in a matrix are respectively called ''rows'' and ''columns''.
Size
The size of a matrix is defined by the number of rows and columns it contains. There is no limit to the number of rows and columns that a matrix (in the usual sense) can have as long as they are positive integers. A matrix with
rows and
columns is called an
matrix, or
-by-
matrix, where
and
are called its ''dimensions''. For example, the matrix
above is a
matrix.
Matrices with a single row are called ''
row matrices'' or ''row vectors'', and those with a single column are called ''
column matrices'' or ''column vectors''. A matrix with the same number of rows and columns is called a ''
square matrix''. A matrix with an infinite number of rows or columns (or both) is called an
'' infinite matrix''. In some contexts, such as
computer algebra programs, it is useful to consider a matrix with no rows or no columns, called an
'' empty matrix''.
[
]
Notation
The specifics of symbolic matrix notation vary widely, with some prevailing trends. Matrices are commonly written in square brackets or parentheses, so that an matrix is represented as
This may be abbreviated by writing only a single generic term, possibly along with indices, as in
or in the case that .
Matrices are usually symbolized using upper-case letters (such as in the examples above), while the corresponding lower-case letters, with two subscript indices (e.g., , or ), represent the entries. In addition to using upper-case letters to symbolize matrices, many authors use a special typographical style, commonly boldface Roman (non-italic), to further distinguish matrices from other mathematical objects. An alternative notation involves the use of a double-underline with the variable name, with or without boldface style, as in .
The entry in the th row and th column of a matrix is sometimes referred to as the or entry of the matrix, and commonly denoted by or . Alternative notations for that entry are and . For example, the entry of the following matrix is (also denoted , ,