Flerovium is a
synthetic chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
; it has
symbol
A symbol is a mark, Sign (semiotics), sign, or word that indicates, signifies, or is understood as representing an idea, physical object, object, or wikt:relationship, relationship. Symbols allow people to go beyond what is known or seen by cr ...
Fl and
atomic number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
114. It is an extremely
radioactive,
superheavy element, named after the Flerov Laboratory of Nuclear Reactions of the
Joint Institute for Nuclear Research in
Dubna, Russia, where the element was discovered in 1999. The lab's name, in turn, honours Russian physicist
Georgy Flyorov ( in
Cyrillic
The Cyrillic script ( ) is a writing system used for various languages across Eurasia. It is the designated national script in various Slavic, Turkic, Mongolic, Uralic, Caucasian and Iranic-speaking countries in Southeastern Europe, Ea ...
, hence the transliteration of "
yo" to "e").
IUPAC
The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
adopted the name on 30 May 2012. The name and symbol had previously been proposed for element 102 (
nobelium
Nobelium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol No and atomic number 102. It is named after Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transura ...
) but were not accepted by IUPAC at that time.
It is a transactinide in the
p-block of the
periodic table
The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
. It is in
period 7 and is the heaviest known member of the
carbon group
The carbon group is a group (periodic table), periodic table group consisting of carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), and flerovium (Fl). It lies within the p-block.
In modern International Union of Pure and Applied Ch ...
. Initial chemical studies in 2007–2008 indicated that flerovium was unexpectedly volatile for a group 14 element.
More recent results show that flerovium's reaction with
gold
Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
is similar to that of
copernicium, showing it is very
volatile and may even be
gaseous at
standard temperature and pressure. Nonetheless, it also seems to show some
metal
A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
lic properties, consistent with it being the heavier
homologue of
lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
.
Very little is known about flerovium, as it can only be produced one atom at a time, either through direct synthesis or through
radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
of even heavier elements, and all known isotopes are short-lived. Six
isotopes of flerovium are known, ranging in
mass number
The mass number (symbol ''A'', from the German word: ''Atomgewicht'', "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is appro ...
between 284 and 289; the most stable of these, , has a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay.
Half-life, half life or halflife may also refer to:
Film
* Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang
* ''Half Life: ...
of ~2.1 seconds, but the unconfirmed may have a longer half-life of 19 seconds, which would be one of the longest half-lives of any
nuclide
Nuclides (or nucleides, from nucleus, also known as nuclear species) are a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state.
The word ''nuclide'' was coined by the A ...
in these farthest reaches of the periodic table. Flerovium is predicted to be near the centre of the theorized
island of stability, and it is expected that heavier flerovium isotopes, especially the possibly
magic , may have even longer half-lives.
Introduction
History
Pre-discovery
In the late 1940s to early 1960s, the early days of making heavier and heavier
transuranic elements, it was predicted that since such elements did not occur naturally, they would have shorter and shorter
spontaneous fission half-lives, until they stopped existing altogether around element 108 (now called
hassium). Initial work in synthesizing the heavier
actinides seemed to confirm this.
But the
nuclear shell model, introduced in 1949 and extensively developed in the late 1960s by William Myers and
Władysław Świątecki, stated that
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s and
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s form shells within a nucleus, analogous to
electron shells.
Noble gas
The noble gases (historically the inert gases, sometimes referred to as aerogens) are the members of Group (periodic table), group 18 of the periodic table: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn) and, in some ...
es are
unreactive
In chemistry, reactivity is the impulse for which a chemical substance undergoes a chemical reaction, either by itself or with other materials, with an overall release of energy.
''Reactivity'' refers to:
* the chemical reactions of a single sub ...
due to a full electron shell; similarly, it was theorized that elements with full nuclear shells – those having "
magic" numbers of protons or neutrons – would be stabilized against
decay. A doubly magic
isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
, with magic numbers of both protons and neutrons, would be especially stabilized. Heiner Meldner calculated in 1965 that the next doubly magic isotope after
was with 114 protons and 184 neutrons, which would be the centre of an "
island of stability".
This island of stability, supposedly from
copernicium (''Z'' = 112) to
oganesson
Oganesson is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint ...
(''Z'' = 118), would come after a long "sea of instability" from
mendelevium
Mendelevium is a synthetic chemical element; it has symbol Md ( formerly Mv) and atomic number 101. A metallic radioactive transuranium element in the actinide series, it is the first element by atomic number that currently cannot be produced ...
(''Z'' = 101) to
roentgenium (''Z'' = 111),
and the flerovium isotopes in it were speculated in 1966 to have half-lives over 10
8 years.
These early predictions fascinated researchers, and led to the first attempt to make flerovium, in 1968 with the reaction . No flerovium atoms were detected; this was thought to be because the compound nucleus only has 174 neutrons instead of the supposed magic 184, and this would have significant impact on the reaction
cross section (yield) and half-lives of nuclei produced.
It was then 30 more years before flerovium was first made.
Later work suggests the islands of stability around hassium and flerovium occur because these nuclei are respectively deformed and
oblate, which make them resistant to spontaneous fission, and that the true island of stability for spherical nuclei occurs at around
unbibium
Unbibium, also known as element 122 or eka-thorium, is a hypothetical chemical element; it has placeholder symbol Ubb and atomic number 122. ''Unbibium'' and ''Ubb'' are the temporary Systematic element name, systematic IUPAC name and symbol resp ...
-306 (122 protons, 184 neutrons).
In the 1970s and 1980s, theoretical studies debated whether element 114 would be a more volatile metal like lead, or an inert gas.
First signs
The first sign of flerovium was found in December 1998 by a team of scientists at
Joint Institute for Nuclear Research (JINR),
Dubna, Russia, led by
Yuri Oganessian, who bombarded a target of
plutonium-244 with accelerated nuclei of
calcium-48:
: + → * → + 2
This reaction had been tried before, without success; for this 1998 attempt, JINR had upgraded all of its equipment to detect and separate the produced atoms better and bombard the target more intensely.
One atom of flerovium,
alpha decay
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
ing with lifetime 30.4 s, was detected. The
decay energy measured was 9.71
MeV, giving an expected half-life of 2–23 s.
This observation was assigned to and was published in January 1999.
The experiment was later repeated, but an isotope with these decay properties was never observed again, so the exact identity of this activity is unknown. It may have been due to the
isomer
In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
,
but because the presence of a whole series of longer-lived isomers in its decay chain would be rather doubtful, the most likely assignment of this chain is to the 2n channel leading to and electron capture to . This fits well with the systematics and trends of flerovium isotopes, and is consistent with the low beam energy chosen for that experiment, though further confirmation would be desirable via synthesis of in a
248Cm(
48Ca,2n) reaction, which would alpha decay to .
The
RIKEN team reported possible synthesis of isotopes and in 2016 in a
248Cm(
48Ca,2n) reaction, but the alpha decay of was missed, alpha decay of to was observed instead of electron capture to , and the assignment to instead of was not certain.
Glenn T. Seaborg, a scientist at
Lawrence Berkeley National Laboratory who had been involved in work to make such superheavy elements, had said in December 1997 that "one of his longest-lasting and most cherished dreams was to see one of these magic elements";
he was told of the synthesis of flerovium by his colleague
Albert Ghiorso soon after its publication in 1999. Ghiorso later recalled:
Seaborg died two months later, on 25 February 1999.
In March 1999, the same team replaced the target with to make other flerovium isotopes. Two atoms of flerovium were produced as a result, each alpha-decaying with a half-life of 5.5 s. They were assigned as .
This activity has not been seen again either, and it is unclear what nucleus was produced. It is possible that it was an isomer
287mFl
or from electron capture by
287Fl, leading to
287Nh and
283Rg.
Confirmed discovery
The now-confirmed discovery of flerovium was made in June 1999 when the Dubna team repeated the first reaction from 1998. This time, two atoms of flerovium were produced; they alpha decayed with half-life 2.6 s, different from the 1998 result.
This activity was initially assigned to
288Fl in error, due to the confusion regarding the previous observations that were assumed to come from
289Fl. Further work in December 2002 finally allowed a positive reassignment of the June 1999 atoms to
289Fl.
In May 2009, the Joint Working Party (JWP) of
IUPAC
The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
published a report on the discovery of copernicium in which they acknowledged discovery of the isotope
283Cn. This implied the discovery of flerovium, from the acknowledgement of the data for the synthesis of
287Fl and
291 Lv, which decay to
283Cn. The discovery of flerovium-286 and -287 was confirmed in January 2009 at Berkeley. This was followed by confirmation of flerovium-288 and -289 in July 2009 at
Gesellschaft für Schwerionenforschung (GSI) in Germany. In 2011, IUPAC evaluated the Dubna team's 1999–2007 experiments. They found the early data inconclusive, but accepted the results of 2004–2007 as flerovium, and the element was officially recognized as having been discovered.
Isotopes
While the method of chemical characterization of a daughter was successful for flerovium and livermorium, and the simpler structure of
even–even nuclei made confirmation of oganesson (''Z'' = 118) straightforward, there have been difficulties in establishing the congruence of decay chains from isotopes with odd protons, odd neutrons, or both. To get around this problem with hot fusion, the decay chains from which terminate in spontaneous fission instead of connecting to known nuclei as cold fusion allows, experiments were done in Dubna in 2015 to produce lighter isotopes of flerovium by reaction of
48Ca with
239Pu and
240Pu, particularly
283Fl,
284Fl, and
285Fl; the last had previously been characterized in the
242Pu(
48Ca,5n)
285Fl reaction at
Lawrence Berkeley National Laboratory in 2010.
285Fl was more clearly characterized, while the new isotope
284Fl was found to undergo immediate spontaneous fission, and
283Fl was not observed.
This lightest isotope may yet conceivably be produced in the cold fusion reaction
208Pb(
76Ge,n)
283Fl,
which the team at
RIKEN in Japan at one point considered investigating:
this reaction is expected to have a higher cross-section of 200 fb than the "world record" low of 30 fb for
209Bi(
70Zn,n)
278Nh, the reaction which RIKEN used for the official discovery of element 113 (
nihonium).
Alternatively, it might be produced in future as a great-granddaughter of
295 120, reachable in the
249Cf(
50Ti,4n) reaction.
The reaction
239Pu+
48Ca has also been suggested as a means to produce
282Fl and
283Fl in the 5n and 4n channels respectively, but so far only the 3n channel leading to
284Fl has been observed.
[
The Dubna team repeated their investigation of the 240Pu+48Ca reaction in 2017, observing three new consistent decay chains of 285Fl, another decay chain from this nuclide that may pass through some isomeric states in its daughters, a chain that could be assigned to 287Fl (likely from 242Pu impurities in the target), and some spontaneous fissions of which some could be from 284Fl, though other interpretations including side reactions involving evaporation of charged particles are also possible.] The alpha decay of 284Fl to spontaneously fissioning 280Cn was finally observed by the Dubna team in 2024.[
]
Naming
Per Mendeleev's nomenclature for unnamed and undiscovered elements, flerovium is sometimes called ''eka-lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
''. In 1979, IUPAC published recommendations according to which the element was to be called ''ununquadium'' (symbol ''Uuq''),[
] a systematic element name as a placeholder, until the discovery of the element is confirmed and a permanent name is decided on. Most scientists in the field called it "element 114", with the symbol of ''E114'', ''(114)'' or ''114''.
Per IUPAC recommendations, the discoverer(s) of a new element has the right to suggest a name.
After IUPAC recognized the discovery of flerovium and livermorium on 1 June 2011, IUPAC asked the discovery team at JINR to suggest permanent names for the two elements. The Dubna team chose the name ''flerovium'' (symbol Fl),[
] after Russia's Flerov Laboratory of Nuclear Reactions (FLNR), named after Soviet physicist Georgy Flyorov (also spelled Flerov); earlier reports claim the element name was directly proposed to honour Flyorov.[
Mikhail Itkis, the vice-director of JINR, stated: "We would like to name element 114 after Georgy Flerov – flerovium, and the second lement 116– moscovium, not after Moscow, but after ]Moscow Oblast
Moscow Oblast (, , informally known as , ) is a federal subjects of Russia, federal subject of Russia (an oblast). With a population of 8,524,665 (Russian Census (2021), 2021 Census) living in an area of , it is one of the most densely populate ...
". In accordance with the proposal received from the discoverers, IUPAC officially named flerovium after Flerov Laboratory of Nuclear Reactions, not after Flyorov himself. Flyorov is known for writing to Joseph Stalin
Joseph Vissarionovich Stalin (born Dzhugashvili; 5 March 1953) was a Soviet politician and revolutionary who led the Soviet Union from 1924 until Death and state funeral of Joseph Stalin, his death in 1953. He held power as General Secret ...
in April 1942 and pointing out the silence in scientific journals in the field of nuclear fission
Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactiv ...
in the United States, Great Britain, and Germany. Flyorov deduced that this research must have become classified information
Classified information is confidential material that a government deems to be sensitive information which must be protected from unauthorized disclosure that requires special handling and dissemination controls. Access is restricted by law or ...
in those countries. Flyorov's work and urgings led to the development of the USSR's own atomic bomb project. Flyorov is also known for the discovery of spontaneous fission with Konstantin Petrzhak. The naming ceremony for flerovium and livermorium was held on 24 October 2012 in Moscow.
In a 2015 interview with Oganessian, the host, in preparation to ask a question, said, "You said you had dreamed to name n elementafter your teacher Georgy Flyorov." Without letting the host finish, Oganessian repeatedly said, "I did."
Predicted properties
Very few properties of flerovium or its compounds have been measured; due to its extremely limited and expensive production and the fact that it decays very quickly. A few singular properties have been measured, but for the most part, properties of flerovium remain unknown and only predictions are available.
Nuclear stability and isotopes
The basis of the chemical periodicity in the periodic table is the electron shell closure at each noble gas (atomic number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
s 2, 10, 18, 36, 54, 86, and 118): as any further electrons must enter a new shell with higher energy, closed-shell electron configurations are markedly more stable, hence the inertness of noble gases. Protons and neutrons are also known to form closed nuclear shells, so the same happens at nucleon shell closures, which happen at specific nucleon numbers often dubbed "magic numbers". The known magic numbers are 2, 8, 20, 28, 50, and 82 for protons and neutrons; also 126 for neutrons. Nuclei with magic proton and neutron numbers, such as helium-4
Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consi ...
, oxygen-16, calcium-48, and lead-208, are "doubly magic" and are very stable. This stability is very important for superheavy element
Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, or superheavies for short, are the chemical elements with atomic number greater than 104. The superheavy elements are those beyond the actinides in ...
s: with no stabilization, half-lives would be expected by exponential extrapolation to be nanoseconds at darmstadtium (element 110), because the ever-increasing electrostatic repulsion between protons overcomes the limited-range strong nuclear force that holds nuclei together. The next closed nucleon shells (magic numbers) are thought to denote the centre of the long-sought island of stability, where half-lives to alpha decay and spontaneous fission lengthen again.
Initially, by analogy with neutron magic number 126, the next proton shell was also expected at element 126, too far beyond the synthesis capabilities of the mid-20th century to get much theoretical attention. In 1966, new values for the potential and spin–orbit interaction in this region of the periodic table contradicted this and predicted that the next proton shell would instead be at element 114, and that nuclei in this region would be relatively stable against spontaneous fission. The expected closed neutron shells in this region were at neutron number 184 or 196, making 298Fl and 310Fl candidates for being doubly magic. 1972 estimates predicted a half-life of around 1 year for 298Fl, which was expected to be near an island of stability centered near 294Ds (with a half-life around 1010 years, comparable to 232 Th). After making the first isotopes of elements 112–118 at the turn of the 21st century, it was found that these neutron-deficient isotopes were stabilized against fission. In 2008 it was thus hypothesized that the stabilization against fission of these nuclides was due to their oblate nuclei, and that a region of oblate nuclei was centred on 288Fl. Also, new theoretical models showed that the expected energy gap between the proton orbitals 2f7/2 (filled at element 114) and 2f5/2 (filled at element 120) was smaller than expected, so element 114 no longer appeared to be a stable spherical closed nuclear shell. The next doubly magic nucleus is now expected to be around 306Ubb, but this nuclide's expected short half-life and low production cross section make its synthesis challenging. Still, the island of stability is expected to exist in this region, and nearer its centre (which has not been approached closely enough yet) some nuclides, such as 291 Mc and its alpha- and beta-decay daughters, may be found to decay by positron emission
Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron emi ...
or electron capture and thus move into the centre of the island. Due to the expected high fission barriers, any nucleus in this island of stability would decay exclusively by alpha decay and perhaps some electron capture and beta decay
In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
, both of which would bring the nuclei closer to the beta-stability line where the island is expected to be. Electron capture is needed to reach the island, which is problematic because it is not certain that electron capture is a major decay mode in this region of the chart of nuclides.
Experiments were done in 2000–2004 at Flerov Laboratory of Nuclear Reactions in Dubna studying the fission properties of the compound nucleus 292Fl by bombarding 244Pu with accelerated 48Ca ions. A compound nucleus is a loose combination of nucleons that have not yet arranged themselves into nuclear shells. It has no internal structure and is held together only by the collision forces between the two nuclei. Results showed how such nuclei fission mainly by expelling doubly magic or nearly doubly magic fragments such as 40 Ca, 132 Sn, 208 Pb, or 209 Bi. It was also found that 48Ca and 58 Fe projectiles had a similar yield for the fusion-fission pathway, suggesting possible future use of 58Fe projectiles in making superheavy elements.[
] It has also been suggested that a neutron-rich flerovium isotope can be formed by quasifission (partial fusion followed by fission) of a massive nucleus. Recently it has been shown that multi-nucleon transfer reactions in collisions of actinide nuclei (such as uranium
Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
and curium) might be used to make neutron-rich superheavy nuclei in the island of stability,[
] though production of neutron-rich nobelium
Nobelium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol No and atomic number 102. It is named after Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transura ...
or seaborgium is more likely.
Theoretical estimates of alpha decay half-lives of flerovium isotopes, support the experimental data.[
]
The fission-survived isotope 298Fl, long expected to be doubly magic, is predicted to have alpha decay half-life ~17 days.[
] Making 298Fl directly by a fusion–evaporation pathway is currently impossible: no known combination of target and stable projectile can give 184 neutrons for the compound nucleus, and radioactive projectiles such as 50Ca (half-life 14 s) cannot yet be used in the needed quantity and intensity. One possibility for making the theorized long-lived nuclei of copernicium (291Cn and 293Cn) and flerovium near the middle of the island, is using even heavier targets such as 250 Cm, 249 Bk, 251 Cf, and 254 Es, that when fused with 48Ca would yield isotopes such as 291Mc and 291Fl (as decay products of 299Uue, 295Ts, and 295Lv), which may have just enough neutrons to alpha decay to nuclides close enough to the centre of the island to possibly undergo electron capture and move inward to the centre. However, reaction cross sections would be small and little is yet known about the decay properties of superheavies near the beta-stability line. This may be the current best hope to synthesize nuclei in the island of stability, but it is speculative and may or may not work in practice. Another possibility is to use controlled nuclear explosions to get the high neutron flux needed to make macroscopic amounts of such isotopes. This would mimic the r-process
In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for nucleosynthesis, the creation of approximately half of the Atomic nucleus, atomic nuclei Heavy meta ...
where the actinides were first produced in nature and the gap of instability after polonium bypassed, as it would bypass the gaps of instability at 258–260 Fm and at mass number
The mass number (symbol ''A'', from the German word: ''Atomgewicht'', "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is appro ...
275 (atomic numbers 104 to 108). Some such isotopes (especially 291Cn and 293Cn) may even have been synthesized in nature, but would decay far too quickly (with half-lives of only thousands of years) and be produced in far too small quantities (~10−12 the abundance of lead) to be detectable today outside cosmic ray
Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
s.
Atomic and physical
Flerovium is in group 14 in the periodic table
The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
, below carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
, silicon, germanium
Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
, tin, and lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
. Every previous group 14 element has 4 electrons in its valence shell, hence valence electron configuration ns2np2. For flerovium, the trend will continue and the valence electron configuration is predicted as 7s27p2; flerovium will be similar to its lighter congeners in many ways. Differences are likely to arise; a large contributor is spin–orbit (SO) interaction—mutual interaction between the electrons' motion and spin. It is especially strong in superheavy elements, because the electrons move faster than in lighter atoms, at speeds comparable to the speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. For flerovium, it lowers the 7s and the 7p electron energy levels (stabilizing the corresponding electrons), but two of the 7p electron energy levels are stabilized more than the other four.[
] The stabilization of the 7s electrons is called the inert pair effect, and the effect "tearing" the 7p subshell into the more and less stabilized parts is called subshell splitting. Computational chemists see the split as a change of the second ( azimuthal) quantum number
In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system.
To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantu ...
from 1 to and for the more stabilized and less stabilized parts of the 7p subshell, respectively. For many theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s7p. These effects cause flerovium's chemistry to be somewhat different from that of its lighter neighbours.
Because the spin–orbit splitting of the 7p subshell is very large in flerovium, and both of flerovium's filled orbitals in the 7th shell are stabilized relativistically; the valence electron configuration of flerovium may be considered to have a completely filled shell. Its first ionization energy
In physics and chemistry, ionization energy (IE) is the minimum energy required to remove the most loosely bound electron of an isolated gaseous atom, Ion, positive ion, or molecule. The first ionization energy is quantitatively expressed as
: ...
of should be the second-highest in group 14. The 6d electron levels are also destabilized, leading to some early speculations that they may be chemically active, though newer work suggests this is unlikely. Because the first ionization energy is higher than in silicon and germanium
Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
, though still lower than in carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
, it has been suggested that flerovium could be classed as a metalloid
A metalloid is a chemical element which has a preponderance of material property, properties in between, or that are a mixture of, those of metals and Nonmetal (chemistry), nonmetals. The word metalloid comes from the Latin language, Latin ''meta ...
.
Flerovium's closed-shell electron configuration means metallic bonding in metallic flerovium is weaker than in the elements before and after; so flerovium is expected to have a low boiling point
The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.
The boiling point of a liquid varies depending upon the surrounding envi ...
, and has recently been suggested to be possibly a gaseous metal, similar to predictions for copernicium, which also has a closed-shell electron configuration. Flerovium's melting and boiling points were predicted in the 1970s to be around 70 and 150 °C, significantly lower than for the lighter group 14 elements (lead has 327 and 1749 °C), and continuing the trend of decreasing boiling points down the group. Earlier studies predicted a boiling point of ~1000 °C or 2840 °C, but this is now considered unlikely because of the expected weak metallic bonding and that group trends would expect flerovium to have low sublimation enthalpy. Preliminary 2021 calculations predicted that flerovium should have melting point −73 °C (lower than mercury at −39 °C and copernicium, predicted 10 ± 11 °C) and boiling point 107 °C, which would make it a liquid metal. Like mercury, radon, and copernicium, but not lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
and oganesson
Oganesson is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint ...
(eka-radon), flerovium is calculated to have no electron affinity.
A 2010 study published calculations predicting a hexagonal close-packed crystal structure for flerovium due to spin–orbit coupling effects, and a density of 9.928 g/cm3, though this was noted to be probably slightly too low. Newer calculations published in 2017 expected flerovium to crystallize in face-centred cubic crystal structure like its lighter congener lead, and calculations published in 2022 predicted a density of 11.4 ± 0.3 g/cm3, similar to lead (11.34 g/cm3). These calculations found that the face-centred cubic and hexagonal close-packed structures should have nearly the same energy, a phenomenon reminiscent of the noble gases. These calculations predict that hexagonal close-packed flerovium should be a semiconductor, with a band gap
In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
of 0.8 ± 0.3 eV. (Copernicium is also predicted to be a semiconductor.) These calculations predict that the cohesive energy of flerovium should be around −0.5 ± 0.1 eV; this is similar to that predicted for oganesson (−0.45 eV), larger than that predicted for copernicium (−0.38 eV), but smaller than that of mercury (−0.79 eV). The melting point was calculated as 284 ± 50 K (11 ± 50 °C), so that flerovium is probably a liquid at room temperature, although the boiling point was not determined.[
The electron of a hydrogen-like flerovium ion (Fl113+; remove all but one electron) is expected to move so fast that its mass is 1.79 times that of a stationary electron, due to relativistic effects. (The figures for hydrogen-like lead and tin are expected to be 1.25 and 1.073 respectively.) Flerovium would form weaker metal–metal bonds than lead and would be adsorbed less on surfaces.
]
Chemical
Flerovium is the heaviest known member of group 14, below lead, and is projected to be the second member of the 7p series of elements. Nihonium and flerovium are expected to form a very short subperiod corresponding to the filling of the 7p1/2 orbital, coming between the filling of the 6d5/2 and 7p3/2 subshells. Their chemical behaviour is expected to be very distinctive: nihonium's homology to thallium has been called "doubtful" by computational chemists, while flerovium's to lead has been called only "formal".
The first five group 14 members show a +4 oxidation state and the latter members have increasingly prominent +2 chemistry due to onset of the inert pair effect. For tin, the +2 and +4 states are similar in stability, and lead(II) is the most stable of all the chemically well-understood +2 oxidation states in group 14. The 7s orbitals are very highly stabilized in flerovium, so a very large sp3 orbital hybridization is needed to achieve a +4 oxidation state, so flerovium is expected to be even more stable than lead in its strongly predominant +2 oxidation state and its +4 oxidation state should be highly unstable. For example, the dioxide (FlO2) is expected to be highly unstable to decomposition into its constituent elements (and would not be formed by direct reaction of flerovium with oxygen), and flerovane (FlH4), which should have Fl–H bond lengths of 1.787 Å and would be the heaviest homologue of methane
Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
(the lighter compounds include silane, germane and stannane), is predicted to be more thermodynamically unstable than plumbane, spontaneously decomposing to flerovium(II) hydride (FlH2) and H2. The tetrafluoride FlF4 would have bonding mostly due to ''sd'' hybridizations rather than ''sp''3 hybridizations, and its decomposition to the difluoride and fluorine gas would be exothermic. The other tetrahalides (for example, FlCl4 is destabilized by about 400 kJ/mol) decompose similarly. The corresponding polyfluoride anion should be unstable to hydrolysis
Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
in aqueous solution, and flerovium(II) polyhalide anions such as and are predicted to form preferentially in solutions. The ''sd'' hybridizations were suggested in early calculations, as flerovium's 7s and 6d electrons share about the same energy, which would allow a volatile hexafluoride to form, but later calculations do not confirm this possibility. In general, spin–orbit contraction of the 7p1/2 orbital should lead to smaller bond lengths and larger bond angles: this has been theoretically confirmed in FlH2. Still, even FlH2 should be relativistically destabilized by 2.6 eV to below Fl+H2; the large spin–orbit effects also break down the usual singlet–triplet divide in the group 14 dihydrides. FlF2 and FlCl2 are predicted to be more stable than FlH2.
Due to relativistic stabilization of flerovium's 7s27p valence electron configuration, the 0 oxidation state should also be more stable for flerovium than for lead, as the 7p1/2 electrons begin to also have a mild inert pair effect: this stabilization of the neutral state may bring about some similarities between the behavior of flerovium and the noble gas radon. Due to flerovium's expected relative inertness, diatomic compounds FlH and FlF should have lower energies of dissociation than the corresponding lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
compounds PbH and PbF. Flerovium(IV) should be even more electronegative than lead(IV); lead(IV) has electronegativity 2.33 on the Pauling scale, though the lead(II) value is only 1.87. Flerovium could be a noble metal
A noble metal is ordinarily regarded as a metallic chemical element, element that is generally resistant to corrosion and is usually found in nature in its native element, raw form. Gold, platinum, and the other platinum group metals (ruthenium ...
.
Flerovium(II) should be more stable than lead(II), and halides FlX+, FlX2, , and (X = Cl, Br, I) are expected to form readily. The fluorides would undergo strong hydrolysis in aqueous solution. All flerovium dihalides are expected to be stable; the difluoride being water-soluble. Spin–orbit effects would destabilize the dihydride (FlH2) by almost . In aqueous solution, the oxyanion flerovite () would also form, analogous to plumbite. Flerovium(II) sulfate (FlSO4) and sulfide (FlS) should be very insoluble in water, and flerovium(II) acetate
An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called ...
(Fl(C2H3O2)2) and nitrate (Fl(NO3)2) should be quite water-soluble. The standard electrode potential for reduction of Fl2+ ion to metallic flerovium is estimated to be around +0.9 V, confirming the increased stability of flerovium in the neutral state. In general, due to relativistic stabilization of the 7p1/2 spinor, Fl2+ is expected to have properties intermediate between those of Hg2+ or Cd2+ and its lighter congener Pb2+.
Experimental chemistry
Flerovium is currently the last element whose chemistry has been experimentally investigated, though studies so far are not conclusive. Two experiments were done in April–May 2007 in a joint FLNR- PSI collaboration to study copernicium chemistry. The first experiment used the reaction 242Pu(48Ca,3n)287Fl; and the second, 244Pu(48Ca,4n)288Fl: these reactions give short-lived flerovium isotopes whose copernicium daughters would then be studied. Adsorption properties of the resultant atoms on a gold surface were compared to those of radon, as it was then expected that copernicium's full-shell electron configuration would lead to noble-gas like behavior. Noble gases interact with metal surfaces very weakly, which is uncharacteristic of metals.
The first experiment found 3 atoms of 283Cn but seemingly also 1 atom of 287Fl. This was a surprise; transport time for the product atoms is ~2 s, so the flerovium should have decayed to copernicium before adsorption. In the second reaction, 2 atoms of 288Fl and possibly 1 of 289Fl were seen. Two of the three atoms showed adsorption characteristics associated with a volatile, noble-gas-like element, which has been suggested but is not predicted by more recent calculations. These experiments gave independent confirmation for the discovery of copernicium, flerovium, and livermorium via comparison with published decay data. Further experiments in 2008 to confirm this important result detected 1 atom of 289Fl, and supported previous data showing flerovium had a noble-gas-like interaction with gold.
Empirical support for a noble-gas-like flerovium soon weakened. In 2009 and 2010, the FLNR-PSI collaboration synthesized more flerovium to follow up their 2007 and 2008 studies. In particular, the first three flerovium atoms made in the 2010 study suggested again a noble-gas-like character, but the complete set taken together resulted in a more ambiguous interpretation, unusual for a metal in the carbon group but not fully like a noble gas in character. In their paper, the scientists refrained from calling flerovium's chemical properties "close to those of noble gases", as had previously been done in the 2008 study. Flerovium's volatility was again measured through interactions with a gold surface, and provided indications that the volatility of flerovium was comparable to that of mercury, astatine
Astatine is a chemical element; it has Symbol (chemistry), symbol At and atomic number 85. It is the abundance of elements in Earth's crust, rarest naturally occurring element in the Earth's crust, occurring only as the Decay chain, decay product ...
, and the simultaneously investigated copernicium, which had been shown in the study to be a very volatile noble metal, conforming to its being the heaviest known group 12 element. Still, it was pointed out that this volatile behavior was not expected for a usual group 14 metal.
In experiments in 2012 at GSI, flerovium's chemistry was found to be more metallic than noble-gas-like. Jens Volker Kratz and Christoph Düllmann specifically named copernicium and flerovium as being in a new category of "volatile metals"; Kratz even speculated that they might be gases at standard temperature and pressure. These "volatile metals", as a category, were expected to fall between normal metals and noble gases in terms of adsorption properties. Contrary to the 2009 and 2010 results, it was shown in the 2012 experiments that the interactions of flerovium and copernicium respectively with gold were about equal. Further studies showed that flerovium was more reactive than copernicium, in contradiction to previous experiments and predictions.
In a 2014 paper detailing the experimental results of the chemical characterization of flerovium, the GSI group wrote: " leroviumis the least reactive element in the group, but still a metal." Nevertheless, in a 2016 conference about chemistry and physics of heavy and superheavy elements, Alexander Yakushev and Robert Eichler, two scientists who had been active at GSI and FLNR in determining flerovium's chemistry, still urged caution based on the inconsistencies of the various experiments previously listed, noting that the question of whether flerovium was a metal or a noble gas was still open with the known evidence: one study suggested a weak noble-gas-like interaction between flerovium and gold, while the other suggested a stronger metallic interaction. The longer-lived isotope has been considered of interest for future radiochemical studies.
Experiments published in 2022 suggest that flerovium is a metal, exhibiting lower reactivity towards gold than mercury, but higher reactivity than radon. The experiments could not identify if the adsorption was due to elemental flerovium (considered more likely), or if it was due to a flerovium compound such as FlO that was more reactive towards gold than elemental flerovium, but both scenarios involve flerovium forming chemical bonds.
See also
* Island of stability: Flerovium– Unbinilium– Unbihexium
* Isotopes of flerovium
* Extended periodic table
Notes
References
Bibliography
*
pp. 030001-1–030001-17
pp. 030001-18–030001-138, Table I. The NUBASE2016 table of nuclear and decay properties
*
*
*
*
*
:*
:*
:*
External links
''CERN Courier'' – First postcard from the island of nuclear stability
''CERN Courier'' – Second postcard from the island of stability
{{authority control
Chemical elements
Synthetic elements