Digital polymerase chain reaction (digital PCR, DigitalPCR, dPCR, or dePCR) is a
biotechnological
Biotechnology is a multidisciplinary field that involves the integration of natural sciences and engineering sciences in order to achieve the application of organisms and parts thereof for products and services. Specialists in the field are kn ...
refinement of conventional
polymerase chain reaction
The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA (or a part of it) sufficiently to enable detailed st ...
methods that can be used to directly quantify and clonally amplify nucleic acids strands including
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
,
cDNA
In genetics, complementary DNA (cDNA) is DNA that was reverse transcribed (via reverse transcriptase) from an RNA (e.g., messenger RNA or microRNA). cDNA exists in both single-stranded and double-stranded forms and in both natural and engin ...
, or
RNA
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
. The key difference between dPCR and qPCR lies in the method of measuring nucleic acids amounts, with the former being a more precise method than PCR, though also more prone to error in the hands of inexperienced users.
PCR carries out one reaction per single sample. dPCR also carries out a single reaction within a sample, however the sample is separated into a large number of partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid amounts. The method has been demonstrated as useful for studying variations in gene sequences—such as copy number variants and point mutations.
Principles

The polymerase chain reaction method is used to quantify
nucleic acids
Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic a ...
by amplifying a nucleic acid molecule with the enzyme
DNA polymerase
A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create t ...
. Conventional
PCR is based on the theory that amplification is exponential. Therefore, nucleic acids may be quantified by comparing the number of amplification cycles and amount of PCR end-product to those of a reference sample. However, many factors complicate this calculation, creating uncertainties and inaccuracies. These factors include the following: initial amplification cycles may not be exponential; PCR amplification eventually plateaus after an uncertain number of cycles; and low initial concentrations of target nucleic acid molecules may not amplify to detectable levels. However, the most significant limitation of PCR is that PCR amplification efficiency in a sample of interest may be different from that of reference samples.

Instead of performing one reaction per well, dPCR involves partitioning the PCR solution into tens of thousands of nano-liter sized droplets, where a separate PCR reaction takes place in each one.
A PCR solution is made similarly to a
TaqMan
TaqMan probes are hydrolysis probes that are designed to increase the specificity of quantitative PCR. The method was first reported in 1991 by researcher David Gefland at Cetus Corporation, and the technology was subsequently developed by Hoffman ...
assay, which consists of template DNA (or RNA), fluorescence-quencher probes, primers, and a PCR
master mix
''Master Mix'' is a remix album by Australian synthpop band Real Life. The album was released in a limited edition in Australia in November 1984 and features remixed versions of songs from the band's debut studio album '' Heartland''. The album ...
, which contains
DNA polymerase
A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create t ...
,
dNTPs, MgCl
2, and reaction buffers at optimal concentrations. Several different methods can be used to partition samples, including microwell plates, capillaries, oil emulsion, and arrays of miniaturized chambers with nucleic acid binding surfaces.
The PCR solution is partitioned into smaller units, each with the necessary components for amplification. The partitioned units are then subjected to thermocycling so that each unit may independently undergo PCR amplification. After multiple PCR amplification cycles, the samples are checked for fluorescence with a binary readout of “0” or “1”. The fraction of fluorescing droplets is recorded.
The partitioning of the sample allows one to estimate the number of different molecules by assuming that the molecule population follows the
Poisson distribution
In probability theory and statistics, the Poisson distribution () is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known const ...
, thus accounting for the possibility of multiple target molecules inhabiting a single droplet. Using Poisson's law of small numbers, the distribution of target molecule within the sample can be accurately approximated allowing for a quantification of the target strand in the PCR product. This model simply predicts that as the number of samples containing at least one target molecule increases, the probability of the samples containing more than one target molecule increases. In conventional PCR, the number of PCR amplification cycles is proportional to the starting copy number. Different from many people's belief that dPCR provides absolute quantification, digital PCR uses statistical power to provide relative quantification. For example, if Sample A, when assayed in 1 million partitions, gives one positive reaction, it does not mean that the Sample A has one starting molecule.
The benefits of dPCR include increased precision through massive sample partitioning, which ensures reliable measurements in the desired DNA sequence due to reproducibility.
Error rates are larger when detecting small-fold change differences with basic PCR, while error rates are smaller with dPCR due to the smaller-fold change differences that can be detected in DNA sequence. The technique itself reduces the use of a larger volume of reagent needed, which inevitably will lower experiment cost. Also, dPCR is highly quantitative as it does not rely on relative fluorescence of the solution to determine the amount of amplified target DNA.
Comparison between dPCR and Real-Time PCR (qPCR)
dPCR measures the actual number of molecules (target DNA) as each molecule is in one droplet, thus making it a discrete “digital” measurement. It provides absolute quantification because dPCR measures the positive fraction of samples, which is the number of droplets that are fluorescing due to proper amplification. This positive fraction accurately indicates the initial amount of template nucleic acid. Similarly,
qPCR
A real-time polymerase chain reaction (real-time PCR, or qPCR when used quantitatively) is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule durin ...
utilizes fluorescence; however, it measures the intensity of fluorescence at specific times (generally after every amplification cycle) to determine the relative amount of target molecule (DNA), but cannot specify the exact amount without constructing a standard curve using different amounts of a defined standard. It gives the threshold per cycle (CT) and the difference in CT is used to calculate the amount of initial nucleic acid. As such, qPCR is an analog measurement, which may not be as precise due to the extrapolation required to attain a measurement.
dPCR measures the amount of DNA after amplification is complete and then determines the fraction of replicates. This is representative of an endpoint measurement as it requires the observation of the data after the experiment is completed. In contrast, qPCR records the relative fluorescence of the DNA at specific points during the amplification process, which requires stops in the experimental process. This “real-time” aspect of qPCR may theoretically affect results due to the stopping of the experiment. In practice, however, most qPCR
thermal cycler The thermal cycler (also known as a thermocycler, PCR machine or DNA amplifier) is a laboratory apparatus most commonly used to amplify segments of DNA via the polymerase chain reaction (PCR). Thermal cyclers may also be used in laboratories to faci ...
s read each sample's fluorescence very quickly at the end of the annealing/extension step before proceeding to the next melting step, meaning this hypothetical concern is not actually relevant or applicable for the vast majority of researchers. dPCR measures the amplification by measuring the products of end point PCR cycling and is therefore less susceptible to the artifacts arising from impaired amplification efficiencies due to the presence of PCR inhibitors or primer template mismatch.
Real-time Digital PCR (rdPCR) combines the methodologies of digital PCR (dPCR) and quantitative PCR (qPCR), integrating the precision of dPCR with the real-time analysis capabilities of qPCR. This integration aims to provide enhanced sensitivity, specificity, and the ability for absolute quantification of nucleic acid sequences, contributing to the quantification of genetic material in scientific and clinical research.
qPCR is unable to distinguish differences in gene expression or copy number variations that are smaller than twofold. On the other hand, dPCR has a higher precision and has been shown to detect differences of less than 30% in gene expression, distinguish between copy number variations that differ by only 1 copy, and identify alleles that occur at frequencies less than 0.1%.
Applications
Digital PCR has many applications in
basic research
Basic research, also called pure research, fundamental research, basic science, or pure science, is a type of scientific research with the aim of improving scientific theories for better understanding and prediction of natural or other phenome ...
,
clinical diagnostics and environmental testing. Its uses include
pathogen
In biology, a pathogen (, "suffering", "passion" and , "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a Germ theory of d ...
detection and
digestive health analysis;
liquid biopsy
A liquid biopsy, also known as fluid biopsy or fluid phase biopsy, is the sampling and analysis of non-solid biological tissue, primarily blood. Like traditional biopsy, this type of technique is mainly used as a diagnostic and monitoring tool for ...
for
cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
monitoring, organ
transplant rejection
Transplant rejection occurs when transplanted tissue is rejected by the recipient's immune system, which destroys the transplanted tissue. Transplant rejection can be lessened by determining the molecular similitude between donor and recipien ...
monitoring and non-invasive
prenatal testing
Prenatal testing is a tool that can be used to detect some birth defects at various stages prior to birth. Prenatal testing consists of prenatal screening and prenatal diagnosis, which are aspects of prenatal care that focus on detecting problem ...
for serious
genetic abnormalities;
copy number variation
Copy number variation (CNV) is a phenomenon in which sections of the genome are repeated and the number of repeats in the genome varies between individuals. Copy number variation is a type of structural variation: specifically, it is a type of ...
analysis,
single gene expression analysis, rare sequence detection,
gene expression profiling
In the field of molecular biology, gene expression profiling is the measurement of the activity (the gene expression, expression) of thousands of genes at once, to create a global picture of cellular function. These profiles can, for example, dis ...
and
single-cell analysis
In cell biology, single-cell analysis and subcellular analysis refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the level of an individual cell, as opposed to more conventional metho ...
;
the detection of
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
contaminants in bioprocessing,
the validation of
gene edits and detection of specific
methylation changes in DNA as
biomarkers of cancer,
as well as plasmid copy number determination in bacterial populations. dPCR is also frequently used as an orthogonal method to confirm rare mutations detected through
next-generation sequencing
Massive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation ...
(NGS) and to validate NGS
libraries
A library is a collection of Book, books, and possibly other Document, materials and Media (communication), media, that is accessible for use by its members and members of allied institutions. Libraries provide physical (hard copies) or electron ...
.
Absolute quantification
dPCR enables the absolute and reproducible quantification of target nucleic acids at single-molecule resolution.
Unlike analogue
quantitative PCR
A real-time polymerase chain reaction (real-time PCR, or qPCR when used quantitatively) is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule duri ...
(qPCR), however, absolute quantification with dPCR does not require a
standard curve
In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. ...
.
dPCR also has a greater tolerance for inhibitor substances and PCR assays that amplify inefficiently as compared to qPCR.
dPCR can quantify, for example, the presence of specific sequences from contaminating
genetically modified organisms
A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with ...
in foodstuffs,
viral load in the blood,
PBMC
A peripheral blood mononuclear cell (PBMC) is any peripheral blood cell having a round nucleus. These cells consist of lymphocytes (T cells, B cells, NK cells) and monocytes, whereas erythrocytes and platelets have no nuclei, and granulocytes (ne ...
s,
serum samples, chorionic villi tissues,
biomarkers of neurodegenerative disease in cerebral spinal fluid,
and fecal contamination in drinking water.
Copy number variation
An alteration in copy number state with respect to a single-copy reference locus is referred to as a “
copy number variation
Copy number variation (CNV) is a phenomenon in which sections of the genome are repeated and the number of repeats in the genome varies between individuals. Copy number variation is a type of structural variation: specifically, it is a type of ...
” (CNV) if it appears in germline cells, or a copy number alteration (CNA) if it appears in somatic cells.
A CNV or CNA could be due to a deletion or amplification of a locus with respect to the number of copies of the reference locus present in the cell, and together, they are major contributors to variability in the
human genome
The human genome is a complete set of nucleic acid sequences for humans, encoded as the DNA within each of the 23 distinct chromosomes in the cell nucleus. A small DNA molecule is found within individual Mitochondrial DNA, mitochondria. These ar ...
.
They have been associated with cancers;
neurological,
psychiatric,
and autoimmune diseases;
and adverse drug reactions.
However, it is difficult to measure these allelic variations with high precision using other methods such as qPCR, thus making phenotypic and disease associations with altered CNV status challenging.
The large number of “digitized,” endpoint measurements made possible by sample partitioning enables dPCR to resolve small differences in copy number with better
accuracy and precision
Accuracy and precision are two measures of ''observational error''.
''Accuracy'' is how close a given set of measurements (observations or readings) are to their ''true value''.
''Precision'' is how close the measurements are to each other.
The ...
when compared to other methods such as SNP-based microarrays
or qPCR.
qPCR is limited in its ability to precisely quantify gene amplifications in several diseases, including Crohn’s disease, HIV-1 infection, and obesity.
dPCR was designed to measure the concentration of a nucleic acid target in copies per unit volume of the sample. When operating in dilute reactions where less than ~10% of the partitions contain a desired target (referred to as “limiting dilution”), copy number can be estimated by comparing the number of fluorescent droplets arising from a target CNV with the number of fluorescent droplets arising from an invariant single-copy reference locus.
In fact, both at these lower target concentrations and at higher ones where multiple copies of the same target can co-localize to a single partition,
Poisson statistics
In probability theory and statistics, the Poisson distribution () is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known consta ...
are used to correct for these multiple occupancies to give a more accurate value for each target’s concentration.
Digital PCR has been used to uncover both germline and somatic variation in gene copy number between humans
and to study the link between amplification of
HER2
Receptor tyrosine-protein kinase erbB-2 is a protein that normally resides in the membranes of cells and is encoded by the ''ERBB2'' gene. ERBB is abbreviated from erythroblastic oncogene B, a gene originally isolated from the avian genome. The ...
(ERBB2) and
breast cancer
Breast cancer is a cancer that develops from breast tissue. Signs of breast cancer may include a Breast lump, lump in the breast, a change in breast shape, dimpling of the skin, Milk-rejection sign, milk rejection, fluid coming from the nipp ...
progression.
Rare mutation and rare allele detection
Partitioning in digital PCR increases sensitivity and allows for detection of rare events, especially
single nucleotide variants (SNVs), by isolating or greatly diminishing the target
biomarker
In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, ...
signal from potentially competing background.
These events can be organized into two classes: rare mutation detection and rare sequence detection.
Rare mutation detection
Rare mutation detection occurs when a biomarker exists within a background of a highly abundant counterpart that differs by only a single nucleotide variant (SNV). Digital PCR has been shown to be capable of detecting mutant DNA in the presence of a 200,000-fold excess of
wild type
The wild type (WT) is the phenotype of the typical form of a species as it occurs in nature. Originally, the wild type was conceptualized as a product of the standard "normal" allele at a locus, in contrast to that produced by a non-standard, " ...
background, which is 2,000 times more sensitive than achievable with conventional qPCR.
Rare sequence detection
Digital PCR can detect rare sequences such as HIV DNA in patients with HIV,
and DNA from fecal bacteria in ocean and other water samples for assessing water quality.
dPCR can detect sequences as rare as 1 in every 1,250,000 cells.
Liquid biopsy
dPCR’s ability to detect rare mutations may be of particular benefit in the clinic through the use of the
liquid biopsy
A liquid biopsy, also known as fluid biopsy or fluid phase biopsy, is the sampling and analysis of non-solid biological tissue, primarily blood. Like traditional biopsy, this type of technique is mainly used as a diagnostic and monitoring tool for ...
, a generally noninvasive strategy for detecting and monitoring disease via bodily fluids.
Researchers have used liquid biopsy to monitor tumor load, treatment response and disease progression in
cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
patients by measuring rare mutations in
circulating tumor DNA
Circulating tumor DNA (ctDNA) is tumor-derived fragmented DNA in the bloodstream that is not associated with cells. ctDNA should not be confused with cell-free DNA ( cfDNA), a broader term which describes DNA that is freely circulating in the blo ...
(ctDNA) in a variety of biological fluids from patients including
blood
Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells.
Blood is com ...
,
urine
Urine is a liquid by-product of metabolism in humans and many other animals. In placental mammals, urine flows from the Kidney (vertebrates), kidneys through the ureters to the urinary bladder and exits the urethra through the penile meatus (mal ...
and
cerebrospinal fluid
Cerebrospinal fluid (CSF) is a clear, colorless Extracellular fluid#Transcellular fluid, transcellular body fluid found within the meninges, meningeal tissue that surrounds the vertebrate brain and spinal cord, and in the ventricular system, ven ...
.
Early detection of ctDNA (as in molecular
relapse
In internal medicine, relapse or recidivism is a recurrence of a past (typically medical) condition. For example, multiple sclerosis and malaria often exhibit peaks of activity and sometimes very long periods of dormancy, followed by relapse or r ...
) may lead to earlier administration of an
immunotherapy
Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as ''activation immunotherapies,'' while immunotherap ...
or a targeted therapy specific for the patient’s mutation signature, potentially improving chances of the treatment’s effectiveness rather than waiting for clinical relapse before altering treatment. Liquid biopsies can have turnaround times of a few days, compared to two to four weeks or longer for tissue-based tests.
This reduced time to results has been used by physicians to expedite treatments tailored to
biopsy
A biopsy is a medical test commonly performed by a surgeon, interventional radiologist, an interventional radiologist, or an interventional cardiology, interventional cardiologist. The process involves the extraction of sampling (medicine), sample ...
data.
In 2016, a prospective trial using dPCR at the Dana-Farber Cancer Institute authenticated the clinical benefit of liquid biopsy as a predictive diagnostic tool for patients with
non-small-cell lung cancer
Non-small-cell lung cancer (NSCLC), or non-small-cell lung carcinoma, is any type of epithelial lung cancer other than small-cell lung cancer (SCLC). NSCLC accounts for about 85% of all lung cancers. As a class, NSCLCs are relatively insensitiv ...
.
The application of liquid biopsy tests have also been studied in patients with
breast
The breasts are two prominences located on the upper ventral region of the torso among humans and other primates. Both sexes develop breasts from the same embryology, embryological tissues. The relative size and development of the breasts is ...
,
colorectal
The large intestine, also known as the large bowel, is the last part of the gastrointestinal tract and of the digestive system in tetrapods. Water is absorbed here and the remaining waste material is stored in the rectum as feces before being rem ...
,
gynecologic
Gynaecology or gynecology (see American and British English spelling differences) is the area of medicine concerned with conditions affecting the female reproductive system. It is often paired with the field of obstetrics, which focuses on pre ...
,
and
bladder
The bladder () is a hollow organ in humans and other vertebrates that stores urine from the kidneys. In placental mammals, urine enters the bladder via the ureters and exits via the urethra during urination. In humans, the bladder is a distens ...
cancers
to monitor both the disease load and the tumor’s response to treatment.
Gene expression and RNA quantification
Gene expression
Gene expression is the process (including its Regulation of gene expression, regulation) by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, ...
and
RNA
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
quantification studies have benefited from the increased precision and absolute quantification of dPCR.
RNA quantification can be accomplished via
RT-PCR
Reverse transcription polymerase chain reaction (RT-PCR) is a laboratory technique combining reverse transcription of RNA into DNA (in this context called complementary DNA or cDNA) and amplification of specific DNA targets using polymerase chain ...
, wherein RNA is reverse-transcribed into
cDNA
In genetics, complementary DNA (cDNA) is DNA that was reverse transcribed (via reverse transcriptase) from an RNA (e.g., messenger RNA or microRNA). cDNA exists in both single-stranded and double-stranded forms and in both natural and engin ...
in the partitioned reaction itself, and the number of RNA molecules originating from each transcript (or allelic transcript) is quantified via dPCR.
One can often achieve greater sensitivity and precision by using dPCR rather than qPCR to quantify RNA molecules in part because it does not require use of a standard curve for quantification.
dPCR is also more resilient to PCR inhibitors for the quantification of RNA than qPCR.
dPCR can detect and quantify more individual target species per detection channel than qPCR by virtue of being able to distinguish targets based on their differential fluorescence amplitude or by the use of distinctive color combinations for their detection.
As an example of this, a 2-channel dPCR system has been used to detect in a single well the expression of four different splice variants of human
telomerase reverse transcriptase
Telomerase reverse transcriptase (abbreviated to TERT, or hTERT in humans) is a catalytic subunit of the enzyme telomerase, which, together with the telomerase RNA component (TERC), comprises the most important unit of the telomerase complex.
...
, a protein that is more active in most tumor cells than in healthy cells.
Alternative uses for partitioning
Using the dynamic partitioning capabilities employed in dPCR, improved NGS sequencing can be achieved by partitioning of complex PCR reactions prior to amplification to give more uniform amplification across many distinct
amplicons for
NGS analysis.
Additionally, the improved specificity of complex PCR amplification reactions in droplets has been shown to greatly reduce the number of iterations required to select for high affinity
aptamer
Aptamers are oligomers of artificial ssDNA, RNA, Xeno nucleic acid, XNA, or peptide that ligand, bind a specific target molecule, or family of target molecules. They exhibit a range of affinities (Dissociation constant, KD in the pM to μM rang ...
s in the
SELEX method.
Partitioning can also allow for more robust measurements of telomerase activity from cell lysates.
dPCR’s dynamic partitioning capabilities can also be used to partition thousands of nuclei or whole cells into individual droplets to facilitate library preparation for a single cell
assay for transposase-accessible chromatin using sequencing (scATAC-seq).
Droplet digital PCR
Droplet Digital PCR (ddPCR) is a method of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into ~20,000 nanoliter-sized oil droplets through a water-oil
emulsion
An emulsion is a mixture of two or more liquids that are normally Miscibility, immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloi ...
technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all droplets in each sample well in a droplet flow cytometer.
Chip-based digital PCR
Chip-based Digital PCR (dPCR) is also a method of dPCR in which the reaction mix (also when used in qPCR) is divided into ~10,000 to ~45,000 partitions on a chip, then amplified using an endpoint PCR thermocycling machine, and is read using a high-powered camera reader with fluorescence filter (HEX, FAM, Cy5, Cy5.5 and Texas Red) for all partitions on each chip.
History
dPCR rose out of an approach first published in 1988 by
Cetus Corporation
Cetus Corporation was one of the first biotechnology companies. It was established in Berkeley, California, in 1971, but conducted most of its operations in nearby Emeryville. Before merging with Chiron Corporation in 1991 (now a part of Novar ...
when researchers showed that a single copy of the β-globin gene could be detected and amplified by PCR. This was achieved by diluting DNA samples from a normal human cell line with DNA from a mutant line having a homozygous deletion of the β-globin gene, until it was no longer present in the reaction. In 1989, Peter Simmonds, AJ Brown et al. used this concept to quantify a molecule for the first time. Alex Morley and Pamela Sykes formally established the method as a quantitative technique in 1992.
In 1999, Bert Vogelstein and Kenneth Kinzler coined the term “digital PCR” and showed that the technique could be used to find rare cancer mutations.
However, dPCR was difficult to perform; it was labor-intensive, required a lot of training to do properly, and was difficult to do in large quantities.
In 2003, Kinzler and Vogelstein continued to refine dPCR and created an improved method that they called
BEAMing
In physics, relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to th ...
technology, an acronym for “beads, emulsion, amplification and magnetics.” The new protocol used emulsion to compartmentalize amplification reactions in a single tube. This change made it possible for scientists to scale the method to thousands of reactions in a single run. In 2007
Mikael Kubista,
Stephen Bustin
Stephen Andrew Bustin (born 1954) is a British scientist, former professor of molecular sciences at Queen Mary University of London from 2004 to 2012, as well as visiting professor at Middlesex University, beginning in 2006. In 2012 he was appoin ...
and coworkers published the first dPCR study using the first nanoliter platform, with a greater number of partitions, developed by
Fluidigm
Standard BioTools Inc., previously known as Fluidigm Corp., is an American life science tools company that offers analytical mass cytometry systems for flow cytometry and tissue imaging, along with associated assays and reagents, as well as an a ...
, studying intracellular mRNA distribution.
Companies developing commercial dPCR systems have integrated technologies like automated partitioning of samples, digital counting of nucleic acid targets, and increasing droplet count that can help the process be more efficient.
In recent years, scientists have developed and commercialized dPCR-based diagnostics for several conditions, including
non-small cell lung cancer
Non-small-cell lung cancer (NSCLC), or non-small-cell lung carcinoma, is any type of epithelial lung cancer other than small-cell lung cancer (SCLC). NSCLC accounts for about 85% of all lung cancers. As a class, NSCLCs are relatively insensitiv ...
and
Down’s Syndrome. The first dPCR system for clinical use was CE-marked in 2017 and cleared by the US
Food and Drug Administration
The United States Food and Drug Administration (FDA or US FDA) is a List of United States federal agencies, federal agency of the United States Department of Health and Human Services, Department of Health and Human Services. The FDA is respo ...
in 2019, for diagnosing
chronic myeloid leukemia
Chronic myelogenous leukemia (CML), also known as chronic myeloid leukemia, is a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of myeloid cells in the bone marrow and the accumula ...
.
References
External links
Digital PCR ProtocolHigh Throughput, Nanoliter Quantitative PCRPCR's next frontier{{Polymerase chain reaction
Molecular biology
Polymerase chain reaction
Laboratory techniques