Baire category theorem
   HOME

TheInfoList



OR:

The Baire category theorem (BCT) is an important result in
general topology In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometri ...
and
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defi ...
. The theorem has two forms, each of which gives
sufficient condition In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of ...
s for a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
to be a
Baire space In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are e ...
(a topological space such that the
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, thei ...
of
countably In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
many dense
open set In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are su ...
s is still dense). It is used in the proof of results in many areas of analysis and geometry, including some of the fundamental theorems of
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defi ...
. Versions of the Baire category theorem were first proved independently in 1897 by Osgood for the real line \R and in 1899 by Baire for Euclidean space \R^n.


Statement

A
Baire space In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are e ...
is a topological space X in which every
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
intersection of
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * Open (Blues Image album), ''Open'' (Blues Image album), 1969 * Open (Gotthard album), ''Open'' (Gotthard album), 1999 * Open (C ...
dense set In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the ra ...
s is dense in X. See the corresponding article for a list of equivalent characterizations, as some are more useful than others depending on the application. * (BCT1) Every
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
pseudometric space In mathematics, a pseudometric space is a generalization of a metric space in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by Đuro Kurepa in 1934. In the same way as every normed space is a metric ...
is a Baire space. In particular, every
completely metrizable In mathematics, a completely metrizable space (metrically topologically complete space) is a topological space (''X'', ''T'') for which there exists at least one metric ''d'' on ''X'' such that (''X'', ''d'') is a complete metric space and ''d'' ind ...
topological space is a Baire space. * (BCT2) Every
locally compact regular In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ...
space is a Baire space. In particular, every
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the ma ...
is a Baire space. Neither of these statements directly implies the other, since there are complete metric spaces that are not locally compact (the
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s with the metric defined below; also, any
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
of infinite dimension), and there are locally compact Hausdorff spaces that are not
metrizable In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \mathcal) is said to be metrizable if there is a metric d : X \times X \to , \infty) s ...
(for instance, any uncountable product of non-trivial compact Hausdorff spaces is such; also, several function spaces used in functional analysis; the uncountable
Fort space In mathematics, there are a few topological spaces named after M. K. Fort, Jr. Fort space Fort space is defined by taking an infinite set ''X'', with a particular point ''p'' in ''X'', and declaring open the subsets ''A'' of ''X'' such that: * ...
). See Steen and Seebach in the references below.


Relation to the axiom of choice

The proof of BCT1 for arbitrary complete metric spaces requires some form of the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
; and in fact BCT1 is equivalent over ZF to the
axiom of dependent choice In mathematics, the axiom of dependent choice, denoted by \mathsf , is a weak form of the axiom of choice ( \mathsf ) that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores wh ...
, a weak form of the axiom of choice. A restricted form of the Baire category theorem, in which the complete metric space is also assumed to be separable, is provable in ZF with no additional choice principles. This restricted form applies in particular to the
real line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
, the
Baire space In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are e ...
\omega^, the
Cantor space In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the ...
2^, and a separable
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
such as the L^p-space L^2\left(\R^n\right).


Uses

BCT1 is used in
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defi ...
to prove the open mapping theorem, the
closed graph theorem In mathematics, the closed graph theorem may refer to one of several basic results characterizing continuous functions in terms of their graphs. Each gives conditions when functions with closed graphs are necessarily continuous. Graphs and m ...
and the
uniform boundedness principle In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the corner ...
. BCT1 also shows that every nonempty complete metric space with no
isolated point ] In mathematics, a point ''x'' is called an isolated point of a subset ''S'' (in a topological space ''X'') if ''x'' is an element of ''S'' and there exists a neighborhood of ''x'' which does not contain any other points of ''S''. This is equiva ...
is
uncountable In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal num ...
. (If X is a nonempty countable metric space with no isolated point, then each
singleton Singleton may refer to: Sciences, technology Mathematics * Singleton (mathematics), a set with exactly one element * Singleton field, used in conformal field theory Computing * Singleton pattern, a design pattern that allows only one instance ...
\ in X is
nowhere dense In mathematics, a subset of a topological space is called nowhere dense or rare if its closure has empty interior. In a very loose sense, it is a set whose elements are not tightly clustered (as defined by the topology on the space) anywher ...
, and X is meagre in itself.) In particular, this proves that the set of all
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s is uncountable. BCT1 shows that each of the following is a Baire space: * The space \R of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s * The
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s, with the metric defined by d(x, y) = \tfrac, where n is the first index for which the
continued fraction In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer ...
expansions of x and y differ (this is a complete metric space) * The
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. T ...
By BCT2, every finite-dimensional Hausdorff
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
is a Baire space, since it is locally compact and Hausdorff. This is so even for non-
paracompact In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal ...
(hence nonmetrizable) manifolds such as the
long line Long line or longline may refer to: *'' Long Line'', an album by Peter Wolf * Long line (topology), or Alexandroff line, a topological space *Long line (telecommunications), a transmission line in a long-distance communications network *Longline fi ...
. BCT is used to prove Hartogs's theorem, a fundamental result in the theory of several complex variables. BCT1 is used to prove that a
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
cannot have countably infinite dimension.


Proof

(BCT1) The following is a standard proof that a complete pseudometric space X is a Baire space. Let U_1, U_2, \ldots be a countable collection of open dense subsets. It remains to show that the intersection U_1 \cap U_2 \cap \ldots is dense. A subset is dense if and only if every nonempty open subset intersects it. Thus to show that the intersection is dense, it suffices to show that any nonempty open subset W of X has some point x in common with all of the U_n. Because U_1 is dense, W intersects U_1; consequently, there exists a point x_1 and a number 0 < r_1 < 1 such that: \overline\left(x_1, r_1\right) \subseteq W \cap U_1 where B(x, r) and \overline(x, r) denote an open and closed ball, respectively, centered at x with radius r. Since each U_n is dense, this construction can be continued recursively to find a pair of sequences x_n and 0 < r_n < \tfrac such that: \overline\left(x_n, r_n\right) \subseteq B\left(x_, r_\right) \cap U_n. (This step relies on the axiom of choice and the fact that a finite intersection of open sets is open and hence an open ball can be found inside it centered at x_n.) The sequence \left(x_n\right) is
Cauchy Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. He w ...
because x_n \in B\left(x_m, r_m\right) whenever n > m, and hence \left(x_n\right) converges to some limit x by completeness. If n is a positive integer then x \in \overline\left(x_n, r_n\right) (because this set is closed). Thus x \in W and x \in U_n for all n. \blacksquare There is an alternative proof using Choquet's game. (BCT2) The proof that a
locally compact regular In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ...
space X is a Baire space is similar. It uses the facts that (1) in such a space every point has a
local base In topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter \mathcal(x) for a point x in a topological space is the collection of all neighbourhoods of x. Definitions Neighbour ...
of
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
neighborhoods; and (2) in a compact space any collection of closed sets with the
finite intersection property In general topology, a branch of mathematics, a non-empty family ''A'' of subsets of a set X is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of A is non-empty. It has the strong finite inters ...
has nonempty intersection. The result for
locally compact Hausdorff In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ...
spaces is a special case, as such spaces are regular.


Notes


References

* * * * * * Reprinted by Dover Publications, New York, 1995. (Dover edition).


External links


Encyclopaedia of Mathematics article on Baire theorem
* {{DEFAULTSORT:Baire Category Theorem Articles containing proofs Functional analysis General topology Theorems in topology