HOME

TheInfoList



OR:

In the mathematical field of
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, ca ...
, the category of sets, denoted as Set, is the category whose
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ai ...
are sets. The arrows or
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
s between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition of morphisms is the composition of functions. Many other categories (such as the category of groups, with
group homomorphisms In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) ...
as arrows) add structure to the objects of the category of sets and/or restrict the arrows to functions of a particular kind.


Properties of the category of sets

The axioms of a category are satisfied by Set because composition of functions is
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
, and because every set ''X'' has an
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, un ...
id''X'' : ''X'' → ''X'' which serves as identity element for function composition. The epimorphisms in Set are the
surjective In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element o ...
maps, the monomorphisms are the
injective In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositi ...
maps, and the
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
s are the bijective maps. The
empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in othe ...
serves as the initial object in Set with empty functions as morphisms. Every singleton is a terminal object, with the functions mapping all elements of the source sets to the single target element as morphisms. There are thus no zero objects in Set. The category Set is complete and co-complete. The product in this category is given by the
cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\t ...
of sets. The coproduct is given by the disjoint union: given sets ''A''''i'' where ''i'' ranges over some index set ''I'', we construct the coproduct as the union of ''A''''i''× (the cartesian product with ''i'' serves to ensure that all the components stay disjoint). Set is the prototype of a concrete category; other categories are concrete if they are "built on" Set in some well-defined way. Every two-element set serves as a subobject classifier in Set. The power object of a set ''A'' is given by its power set, and the exponential object of the sets ''A'' and ''B'' is given by the set of all functions from ''A'' to ''B''. Set is thus a topos (and in particular
cartesian closed In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mat ...
and exact in the sense of Barr). Set is not
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
, additive nor preadditive. Every non-empty set is an
injective object In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of model categori ...
in Set. Every set is a projective object in Set (assuming the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
). The finitely presentable objects in Set are the finite sets. Since every set is a
direct limit In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any cate ...
of its finite subsets, the category Set is a locally finitely presentable category. If ''C'' is an arbitrary category, the contravariant functors from ''C'' to Set are often an important object of study. If ''A'' is an object of ''C'', then the functor from ''C'' to Set that sends ''X'' to Hom''C''(''X'',''A'') (the set of morphisms in ''C'' from ''X'' to ''A'') is an example of such a functor. If ''C'' is a small category (i.e. the collection of its objects forms a set), then the contravariant functors from ''C'' to Set, together with natural transformations as morphisms, form a new category, a functor category known as the category of
presheaves In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ...
on ''C''.


Foundations for the category of sets

In
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
the collection of all sets is not a set; this follows from the axiom of foundation. One refers to collections that are not sets as
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
es. One cannot handle proper classes as one handles sets; in particular, one cannot write that those proper classes belong to a collection (either a set or a proper class). This is a problem because it means that the category of sets cannot be formalized straightforwardly in this setting. Categories like Set whose collection of objects forms a proper class are known as large categories, to distinguish them from the small categories whose objects form a set. One way to resolve the problem is to work in a system that gives formal status to proper classes, such as NBG set theory. In this setting, categories formed from sets are said to be ''small'' and those (like Set) that are formed from proper classes are said to be ''large''. Another solution is to assume the existence of Grothendieck universes. Roughly speaking, a Grothendieck universe is a set which is itself a model of ZF(C) (for instance if a set belongs to a universe, its elements and its powerset will belong to the universe). The existence of Grothendieck universes (other than the empty set and the set V_\omega of all hereditarily finite sets) is not implied by the usual ZF axioms; it is an additional, independent axiom, roughly equivalent to the existence of
strongly inaccessible cardinal In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal is strongly inaccessible if it is uncountable, it is not a sum of ...
s. Assuming this extra axiom, one can limit the objects of Set to the elements of a particular universe. (There is no "set of all sets" within the model, but one can still reason about the class ''U'' of all inner sets, i.e., elements of ''U''.) In one variation of this scheme, the class of sets is the union of the entire tower of Grothendieck universes. (This is necessarily a
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
, but each Grothendieck universe is a set because it is an element of some larger Grothendieck universe.) However, one does not work directly with the "category of all sets". Instead, theorems are expressed in terms of the category Set''U'' whose objects are the elements of a sufficiently large Grothendieck universe ''U'', and are then shown not to depend on the particular choice of ''U''. As a foundation for
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, ca ...
, this approach is well matched to a system like Tarski–Grothendieck set theory in which one cannot reason directly about proper classes; its principal disadvantage is that a theorem can be true of all Set''U'' but not of Set. Various other solutions, and variations on the above, have been proposed. The same issues arise with other concrete categories, such as the category of groups or the
category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again cont ...
.


See also

*
Category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again cont ...
*
Set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
* Small set (category theory)


Notes


References

* * *Lawvere, F.W
An elementary theory of the category of sets (long version) with commentary
* * *


External links


A231344    Number of morphisms in full subcategories of Set spanned by
at OEIS. {{Foundations-footer Foundations of mathematics Sets Basic concepts in set theory