HOME

TheInfoList



OR:

In
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, especially
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
, the cone of a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
X is intuitively obtained by stretching ''X'' into a
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an ...
and then collapsing one of its end faces to a point. The cone of X is denoted by CX or by \operatorname(X).


Definitions

Formally, the cone of ''X'' is defined as: :CX = (X \times ,1\cup_p v\ =\ \varinjlim \bigl( (X \times ,1 \hookleftarrow (X\times \) \xrightarrow v\bigr), where v is a point (called the vertex of the cone) and p is the projection to that point. In other words, it is the result of attaching the
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an ...
X \times ,1/math> by its face X\times\ to a point v along the projection p: \bigl( X\times\ \bigr)\to v. If X is a non-empty
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
subspace of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
, the cone on X is
homeomorphic In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomor ...
to the union of segments from X to any fixed point v \not\in X such that these segments intersect only by v itself. That is, the topological cone agrees with the geometric cone for compact spaces when the latter is defined. However, the topological cone construction is more general. The cone is a special case of a
join Join may refer to: * Join (law), to include additional counts or additional defendants on an indictment *In mathematics: ** Join (mathematics), a least upper bound of sets orders in lattice theory ** Join (topology), an operation combining two topo ...
: CX \simeq X\star \ = the join of X with a single point v\not\in X.''''


Examples

Here we often use a geometric cone (C X where X is a non-empty
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
subspace of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
). The considered spaces are compact, so we get the same result up to homeomorphism. * The cone over a point ''p'' of the
real line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
is a line-segment in \mathbb^2, \ \times ,1/math>. * The cone over two points is a "V" shape with endpoints at and . * The cone over a
closed interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
''I'' of the real line is a filled-in
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colline ...
(with one of the edges being ''I''), otherwise known as a 2-simplex (see the final example). * The cone over a
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two ...
''P'' is a pyramid with base ''P''. * The cone over a disk is the solid
cone A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines con ...
of classical geometry (hence the concept's name). * The cone over a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is cons ...
given by ::\ :is the curved surface of the solid cone: ::\. :This in turn is homeomorphic to the closed disc. More general examples:'', Section 4.3'' * The cone over an ''n''-sphere is homeomorphic to the closed (''n'' + 1)-
ball A ball is a round object (usually spherical, but can sometimes be ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used f ...
. * The cone over an ''n''-ball is also homeomorphic to the closed (''n'' + 1)-
ball A ball is a round object (usually spherical, but can sometimes be ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used f ...
. * The cone over an ''n''-
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
is an (''n'' + 1)-simplex.


Properties

All cones are
path-connected In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties ...
since every point can be connected to the vertex point. Furthermore, every cone is
contractible In mathematics, a topological space ''X'' is contractible if the identity map on ''X'' is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within th ...
to the vertex point by the
homotopy In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deform ...
:h_t(x,s) = (x, (1-t)s). The cone is used in algebraic topology precisely because it embeds a space as a subspace of a contractible space. When ''X'' is
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
and Hausdorff (essentially, when ''X'' can be embedded in Euclidean space), then the cone CX can be visualized as the collection of lines joining every point of ''X'' to a single point. However, this picture fails when ''X'' is not compact or not Hausdorff, as generally the
quotient topology In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient to ...
on CX will be finer than the set of lines joining ''X'' to a point.


Cone functor

The map X\mapsto CX induces a
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
C\colon \mathbf\to\mathbf on the
category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again cont ...
Top. If f \colon X \to Y is a
continuous map In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in valu ...
, then Cf \colon CX \to CY is defined by :(Cf)( ,t= (x),t/math>, where square brackets denote
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
es.


Reduced cone

If (X,x_0) is a pointed space, there is a related construction, the reduced cone, given by :(X\times ,1 / (X\times \left\ \cup\left\\times ,1 where we take the basepoint of the reduced cone to be the equivalence class of (x_0,0). With this definition, the natural inclusion x\mapsto (x,1) becomes a based map. This construction also gives a functor, from the
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
of pointed spaces to itself.


See also

* Cone (disambiguation) *
Suspension (topology) In topology, a branch of mathematics, the suspension of a topological space ''X'' is intuitively obtained by stretching ''X'' into a cylinder and then collapsing both end faces to points. One views ''X'' as "suspended" between these end points. The ...
* Desuspension *
Mapping cone (topology) In mathematics, especially homotopy theory, the mapping cone is a construction C_f of topology, analogous to a quotient space. It is also called the homotopy cofiber, and also notated Cf. Its dual, a fibration, is called the mapping fibre. The m ...
*
Join (topology) In topology, a field of mathematics, the join of two topological spaces A and B, often denoted by A\ast B or A\star B, is a topological space formed by taking the disjoint union of the two spaces, and attaching line segments joining every point in ...


References

*
Allen Hatcher Allen, Allen's or Allens may refer to: Buildings * Allen Arena, an indoor arena at Lipscomb University in Nashville, Tennessee * Allen Center, a skyscraper complex in downtown Houston, Texas * Allen Fieldhouse, an indoor sports arena on the Univer ...

''Algebraic topology.''
Cambridge University Press, Cambridge, 2002. xii+544 pp. and *{{planetmath reference, urlname=Cone, title=Cone Topology Algebraic topology