The laws of thermodynamics are a set of
scientific law
Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow ...
s which define a group of
physical quantities
A physical quantity (or simply quantity) is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a '' numerical value'' and a '' ...
, such as
temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
,
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
, and
entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, that characterize
thermodynamic system
A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics.
Thermodynamic systems can be passive and active according to internal processes. According to inter ...
s in
thermodynamic equilibrium
Thermodynamic equilibrium is a notion of thermodynamics with axiomatic status referring to an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable ...
. The laws also use various parameters for
thermodynamic process
Classical thermodynamics considers three main kinds of thermodynamic processes: (1) changes in a system, (2) cycles in a system, and (3) flow processes.
(1) A Thermodynamic process is a process in which the thermodynamic state of a system is c ...
es, such as
thermodynamic work and
heat
In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
, and establish relationships between them. They state
empirical facts that form a basis of precluding the possibility of certain phenomena, such as
perpetual motion
Perpetual motion is the motion of bodies that continues forever in an unperturbed system. A perpetual motion machine is a hypothetical machine that can do work indefinitely without an external energy source. This kind of machine is impossible ...
. In addition to their use in
thermodynamics
Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
, they are important fundamental
laws
Law is a set of rules that are created and are law enforcement, enforceable by social or governmental institutions to regulate behavior, with its precise definition a matter of longstanding debate. It has been variously described as a Socia ...
of
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
in general and are applicable in other natural
sciences
Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
.
Traditionally, thermodynamics has recognized three fundamental laws, simply named by an ordinal identification, the first law, the second law, and the third law.
[Guggenheim, E.A. (1985). ''Thermodynamics. An Advanced Treatment for Chemists and Physicists'', seventh edition, North Holland, Amsterdam, .][Kittel, C. Kroemer, H. (1980). ''Thermal Physics'', second edition, W.H. Freeman, San Francisco, .][Adkins, C.J. (1968). ''Equilibrium Thermodynamics'', McGraw-Hill, ]London
London is the Capital city, capital and List of urban areas in the United Kingdom, largest city of both England and the United Kingdom, with a population of in . London metropolitan area, Its wider metropolitan area is the largest in Wester ...
, . A more fundamental statement was later labelled as the zeroth law after the first three laws had been established.
The
zeroth law of thermodynamics
The zeroth law of thermodynamics is one of the four principal laws of thermodynamics. It provides an independent definition of temperature without reference to entropy, which is defined in the second law. The law was established by Ralph H. Fowl ...
defines
thermal equilibrium
Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in t ...
and forms a basis for the definition of temperature: if two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium with each other.
The
first law of thermodynamics
The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. For a thermodynamic process affecting a thermodynamic system without transfer of matter, the law distinguishes two ...
states that, when energy passes into or out of a system (as
work
Work may refer to:
* Work (human activity), intentional activity people perform to support themselves, others, or the community
** Manual labour, physical work done by humans
** House work, housework, or homemaking
** Working animal, an ani ...
,
heat
In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
, or
matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
), the system's
internal energy
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
changes in accordance with the law of
conservation of energy
The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
. This also results in the observation that, in an externally
isolated system
In physical science, an isolated system is either of the following:
# a physical system so far removed from other systems that it does not interact with them.
# a thermodynamic system enclosed by rigid immovable walls through which neither ...
, even with internal changes, the sum of all forms of energy must remain constant, as energy cannot be created or destroyed.
The
second law of thermodynamics
The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
states that in a natural
thermodynamic process
Classical thermodynamics considers three main kinds of thermodynamic processes: (1) changes in a system, (2) cycles in a system, and (3) flow processes.
(1) A Thermodynamic process is a process in which the thermodynamic state of a system is c ...
, the sum of the
entropies of the interacting
thermodynamic system
A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics.
Thermodynamic systems can be passive and active according to internal processes. According to inter ...
s never decreases. A common corollary of the statement is that heat does not spontaneously pass from a colder body to a warmer body.
The
third law of thermodynamics
The third law of thermodynamics states that the entropy of a closed system at thermodynamic equilibrium approaches a constant value when its temperature approaches absolute zero. This constant value cannot depend on any other parameters characte ...
states that a system's entropy approaches a constant value as the temperature approaches
absolute zero
Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The absolute zero is defined as 0 K on the Kelvin scale, equivalent to −273.15 ° ...
. With the exception of non-crystalline solids (
glass
Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
es), the entropy of a system at absolute zero is typically close to zero.
The first and second laws prohibit two kinds of perpetual motion machines, respectively: the
perpetual motion machine of the first kind
Perpetual motion is the motion of bodies that continues forever in an unperturbed system. A perpetual motion machine is a hypothetical machine that can do work indefinitely without an external energy source. This kind of machine is impossible ...
which produces work with no energy input, and the
perpetual motion machine of the second kind
Perpetual motion is the motion of bodies that continues forever in an unperturbed system. A perpetual motion machine is a hypothetical machine that can do work indefinitely without an external energy source. This kind of machine is impossible ...
which spontaneously converts thermal energy into mechanical work.
History
The history of thermodynamics is fundamentally interwoven with the
history of physics
Physics is a branch of science in which the primary objects of study are matter and energy. These topics were discussed across many cultures in ancient times by philosophers, but they had no means to distinguish causes of natural phenomena fro ...
and the
history of chemistry
The history of chemistry represents a time span from ancient history to the present. By 1000 BC, civilizations used technologies that would eventually form the basis of the various branches of chemistry. Examples include the discovery of fire, ex ...
, and ultimately dates back to theories of heat in antiquity. The laws of thermodynamics are the result of progress made in this field over the nineteenth and early twentieth centuries. The first established thermodynamic principle, which eventually became the second law of thermodynamics, was formulated by
Sadi Carnot in 1824 in his book ''
Reflections on the Motive Power of Fire
''Reflections on the Motive Power of Fire and on Machines Fitted to Develop that Power'' () is a scientific treatise written by the French military engineer Sadi Carnot.full text of 1897 ed. ( Full text of 1897 edition on Wikisource ) Publis ...
''. By 1860, as formalized in the works of scientists such as
Rudolf Clausius
Rudolf Julius Emanuel Clausius (; 2 January 1822 – 24 August 1888) was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics. By his restatement of Sadi Carnot's principle ...
and
William Thomson, what are now known as the first and second laws were established. Later,
Nernst's theorem (or Nernst's postulate), which is now known as the third law, was formulated by
Walther Nernst
Walther Hermann Nernst (; 25 June 1864 – 18 November 1941) was a German physical chemist known for his work in thermodynamics, physical chemistry, electrochemistry, and solid-state physics. His formulation of the Nernst heat theorem helped ...
over the period 1906–1912. While the numbering of the laws is universal today, various textbooks throughout the 20th century have numbered the laws differently. In some fields, the second law was considered to deal with the efficiency of heat engines only, whereas what was called the third law dealt with entropy increases. Gradually, this resolved itself and a zeroth law was later added to allow for a self-consistent definition of temperature. Additional laws have been suggested, but have not achieved the generality of the four accepted laws, and are generally not discussed in standard textbooks.
Zeroth law
The
zeroth law of thermodynamics
The zeroth law of thermodynamics is one of the four principal laws of thermodynamics. It provides an independent definition of temperature without reference to entropy, which is defined in the second law. The law was established by Ralph H. Fowl ...
provides for the foundation of temperature as an empirical parameter in thermodynamic systems and establishes the
transitive relation
In mathematics, a binary relation on a set (mathematics), set is transitive if, for all elements , , in , whenever relates to and to , then also relates to .
Every partial order and every equivalence relation is transitive. For example ...
between the temperatures of multiple bodies in thermal equilibrium. The law may be stated in the following form:
Though this version of the law is one of the most commonly stated versions, it is only one of a diversity of statements that are labeled as "the zeroth law". Some statements go further, so as to supply the important physical fact that temperature is one-dimensional and that one can conceptually arrange bodies in a real number sequence from colder to hotter.
These concepts of temperature and of thermal equilibrium are fundamental to thermodynamics and were clearly stated in the nineteenth century. The name 'zeroth law' was invented by
Ralph H. Fowler
Sir Ralph Howard Fowler (17 January 1889 – 28 July 1944) was an English physicist, physical chemist, and astronomer.
Education
Ralph H. Fowler was born at Roydon, Essex, Roydon, Essex, on 17 January 1889 to Howard Fowler, from Burnham-on-Sea, ...
in the 1930s, long after the first, second, and third laws were widely recognized. The law allows the definition of temperature in a non-circular way without reference to entropy, its
conjugate variable. Such a temperature definition is said to be 'empirical'.
First law
The
first law of thermodynamics
The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. For a thermodynamic process affecting a thermodynamic system without transfer of matter, the law distinguishes two ...
is a version of the law of
conservation of energy
The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
, adapted for thermodynamic processes. In general, the conservation law states that the total
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
of an
isolated system
In physical science, an isolated system is either of the following:
# a physical system so far removed from other systems that it does not interact with them.
# a thermodynamic system enclosed by rigid immovable walls through which neither ...
is constant; energy can be transformed from one form to another, but can be neither created nor destroyed.
For processes that include the transfer of matter, a further statement is needed.
The First Law encompasses several principles:
*
Conservation of energy
The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
, which says that energy can be neither created nor destroyed, but can only change form. A particular consequence of this is that the total energy of an isolated system does not change.
* The concept of
internal energy
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
and its relationship to temperature. If a system has a definite temperature, then its total energy has three distinguishable components, termed
kinetic energy
In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.
In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
(energy due to the motion of the system as a whole),
potential energy
In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity ...
(energy resulting from an externally imposed force field), and
internal energy
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
. The establishment of the concept of internal energy distinguishes the first law of thermodynamics from the more general law of conservation of energy.
*
Work
Work may refer to:
* Work (human activity), intentional activity people perform to support themselves, others, or the community
** Manual labour, physical work done by humans
** House work, housework, or homemaking
** Working animal, an ani ...
is a process of transferring energy to or from a system in ways that can be described by macroscopic mechanical forces acting between the system and its surroundings. The work done by the system can come from its overall kinetic energy, from its overall potential energy, or from its internal energy. For example, when a machine (not a part of the system) lifts a system upwards, some energy is transferred from the machine to the system. The system's energy increases as work is done on the system and in this particular case, the energy increase of the system is manifested as an increase in the system's
gravitational potential energy
Gravitational energy or gravitational potential energy is the potential energy an object with mass has due to the gravitational potential of its position in a gravitational field. Mathematically, it is the minimum Work (physics), mechanical work t ...
. Work added to the system increases the potential energy of the system.
* When matter is transferred into a system, the internal energy and potential energy associated with it are transferred into the new combined system.
where denotes the internal energy per unit mass of the transferred matter, as measured while in the surroundings; and denotes the amount of transferred mass.
* The flow of
heat
In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
is a form of energy transfer. Heat transfer is the natural process of moving energy to or from a system, other than by work or the transfer of matter. In a
diathermal system, the internal energy can only be changed by the transfer of energy as heat:
Combining these principles leads to one traditional statement of the first law of thermodynamics: it is not possible to construct a machine which will perpetually output work without an equal amount of energy input to that machine. Or more briefly, a perpetual motion machine of the first kind is impossible.
Second law
The
second law of thermodynamics
The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
indicates the irreversibility of natural processes, and in many cases, the tendency of natural processes to lead towards spatial homogeneity of matter and energy, especially of temperature. It can be formulated in a variety of interesting and important ways. One of the simplest is the Clausius statement, that heat does not spontaneously pass from a colder to a hotter body.
It implies the existence of a quantity called the
entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
of a thermodynamic system. In terms of this quantity it implies that
The second law is applicable to a wide variety of processes, both reversible and irreversible. According to the second law, in a reversible heat transfer, an element of heat transferred,
, is the product of the temperature (
), both of the system and of the sources or destination of the heat, with the increment (
) of the system's conjugate variable, its
entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
(
):
:
While reversible processes are a useful and convenient theoretical limiting case, all natural processes are irreversible. A prime example of this irreversibility is the transfer of heat by conduction or radiation. It was known long before the discovery of the notion of entropy that when two bodies, initially of different temperatures, come into direct thermal connection, then heat immediately and spontaneously flows from the hotter body to the colder one.
Entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
may also be viewed as a physical measure concerning the microscopic details of the motion and configuration of a system, when only the macroscopic states are known. Such details are often referred to as ''disorder'' on a microscopic or molecular scale, and less often as
''dispersal of energy''. For two given macroscopically specified states of a system, there is a mathematically defined quantity called the 'difference of information entropy between them'. This defines how much additional microscopic physical information is needed to specify one of the macroscopically specified states, given the macroscopic specification of the other – often a conveniently chosen reference state which may be presupposed to exist rather than explicitly stated. A final condition of a natural process always contains microscopically specifiable effects which are not fully and exactly predictable from the macroscopic specification of the initial condition of the process. This is why entropy increases in natural processes – the increase tells how much extra microscopic information is needed to distinguish the initial macroscopically specified state from the final macroscopically specified state. Equivalently, in a thermodynamic process, energy spreads.
Third law
The
third law of thermodynamics
The third law of thermodynamics states that the entropy of a closed system at thermodynamic equilibrium approaches a constant value when its temperature approaches absolute zero. This constant value cannot depend on any other parameters characte ...
can be stated as:

At absolute zero temperature, the system is in the state with the minimum thermal energy, the
ground state
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
. The constant value (not necessarily zero) of entropy at this point is called the
residual entropy
Residual entropy is the difference in entropy between a non-equilibrium state and crystal state of a substance close to absolute zero. This term is used in condensed matter physics to describe the entropy at zero kelvin of a glass or plastic cr ...
of the system. With the exception of non-crystalline solids (e.g.
glass
Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
) the residual entropy of a system is typically close to zero.
However, it reaches zero only when the system has a unique ground state (i.e., the state with the minimum thermal energy has only one configuration, or
microstate
A microstate or ministate is a sovereign state having a very small population or land area, usually both. However, the meanings of "state" and "very small" are not well-defined in international law. Some recent attempts to define microstates ...
). Microstates are used here to describe the probability of a system being in a specific state, as each microstate is
assumed to have the same probability of occurring, so
macroscopic states with fewer microstates are less probable. In general, entropy is related to the number of possible microstates according to the
Boltzmann principle
The concept entropy was first developed by German physicist Rudolf Clausius in the mid-nineteenth century as a thermodynamic property that predicts that certain spontaneous processes are irreversible or impossible. In statistical mechanics, entrop ...
:
where ''S'' is the entropy of the system, ''k''
B is the
Boltzmann constant
The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
, and ''Ω'' the number of microstates. At absolute zero there is only 1 microstate possible (''Ω'' = 1 as all the atoms are identical for a pure substance, and as a result all orders are identical as there is only one combination) and
.
Onsager relations
The
Onsager reciprocal relations
In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.
"Reciprocal relations" occur betw ...
have been considered the fourth law of thermodynamics.
They describe the relation between thermodynamic flows and forces in
non-equilibrium thermodynamics
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities (non-equilibrium state variables) that represent an ex ...
, under the assumption that thermodynamic variables can be defined locally in a condition of
local equilibrium. These relations are derived from
statistical mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
under the principle of
microscopic reversibility The principle of microscopic reversibility in physics and chemistry is twofold:
* First, it states that the microscopic detailed dynamics of particles and fields is time-reversible because the microscopic equations of motion are symmetric with respe ...
(in the absence of external
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s). Given a set of extensive parameters (energy, mass, entropy, number of particles and so on) and
thermodynamic forces (related to their related intrinsic parameters, such as temperature and pressure), the Onsager theorem states that
:
where index every parameter and its related force, and
:
are called the thermodynamic flows.
See also
*
Chemical thermodynamics
Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measure ...
*
Enthalpy
Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
*
Entropy production
Entropy production (or generation) is the amount of entropy which is produced during heat process to evaluate the efficiency of the process.
Short history
Entropy is produced in irreversible processes. The importance of avoiding irreversible p ...
*
Ginsberg's theorem (Parody of the laws of thermodynamics)
*
H-theorem
In classical statistical mechanics, the ''H''-theorem, introduced by Ludwig Boltzmann in 1872, describes the tendency of the quantity ''H'' (defined below) to decrease in a nearly-ideal gas of molecules.L. Boltzmann,Weitere Studien über das Wär ...
*
Statistical mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
*
Table of thermodynamic equations
References
Further reading
*
Atkins, Peter (2007). ''Four Laws That Drive the Universe''. OUP Oxford.
* Goldstein, Martin & Inge F. (1993). ''The Refrigerator and the Universe''. Harvard Univ. Press.
* Guggenheim, E.A. (1985). ''Thermodynamics. An Advanced Treatment for Chemists and Physicists'', seventh edition.
* Adkins, C. J., (1968) ''Equilibrium Thermodynamics''. McGraw-Hill
External links
* {{Commonscatinline
Scientific laws