HOME

TheInfoList



OR:

In topology and related branches of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint
closed set In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a cl ...
s of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.


Definitions

A topological space ''X'' is a normal space if, given any disjoint
closed set In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a cl ...
s ''E'' and ''F'', there are
neighbourhoods A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural ar ...
''U'' of ''E'' and ''V'' of ''F'' that are also disjoint. More intuitively, this condition says that ''E'' and ''F'' can be
separated by neighbourhoods In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets a ...
. A T4 space is a T1 space ''X'' that is normal; this is equivalent to ''X'' being normal and Hausdorff. A completely normal space, or , is a topological space ''X'' such that every subspace of ''X'' with subspace topology is a normal space. It turns out that ''X'' is completely normal if and only if every two
separated set In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets a ...
s can be separated by neighbourhoods. Also, ''X'' is completely normal if and only if every open subset of ''X'' is normal with the subspace topology. A T5 space, or completely T4 space, is a completely normal T1 space ''X'', which implies that ''X'' is Hausdorff; equivalently, every subspace of ''X'' must be a T4 space. A perfectly normal space is a topological space X in which every two disjoint closed sets E and F can be precisely separated by a function, in the sense that there is a continuous function f from X to the interval ,1/math> such that f^(0)=E and f^(1)=F. (This is a stronger separation property than normality, as by Urysohn's lemma disjoint closed sets in a normal space can be separated by a function, in the sense of E\subseteq f^(0) and F\subseteq f^(1), but not precisely separated in general.) It turns out that ''X'' is perfectly normal if and only if ''X'' is normal and every closed set is a Gδ set. Equivalently, ''X'' is perfectly normal if and only if every closed set is a zero set. The equivalence between these three characterizations is called Vedenissoff's theorem. Every perfectly normal space is completely normal, because perfect normality is a hereditary property. A T6 space, or perfectly T4 space, is a perfectly normal Hausdorff space. Note that the terms "normal space" and "T4" and derived concepts occasionally have a different meaning. (Nonetheless, "T5" always means the same as "completely T4", whatever that may be.) The definitions given here are the ones usually used today. For more on this issue, see History of the separation axioms. Terms like "normal regular space" and "normal Hausdorff space" also turn up in the literature—they simply mean that the space both is normal and satisfies the other condition mentioned. In particular, a normal Hausdorff space is the same thing as a T4 space. Given the historical confusion of the meaning of the terms, verbal descriptions when applicable are helpful, that is, "normal Hausdorff" instead of "T4", or "completely normal Hausdorff" instead of "T5". Fully normal spaces and fully T4 spaces are discussed elsewhere; they are related to paracompactness. A locally normal space is a topological space where every point has an open neighbourhood that is normal. Every normal space is locally normal, but the converse is not true. A classical example of a completely regular locally normal space that is not normal is the Nemytskii plane.


Examples of normal spaces

Most spaces encountered in mathematical analysis are normal Hausdorff spaces, or at least normal regular spaces: * All metric spaces (and hence all metrizable spaces) are perfectly normal Hausdorff; * All pseudometric spaces (and hence all pseudometrisable spaces) are perfectly normal regular, although not in general Hausdorff; * All compact Hausdorff spaces are normal; * In particular, the Stone–Čech compactification of a Tychonoff space is normal Hausdorff; * Generalizing the above examples, all paracompact Hausdorff spaces are normal, and all paracompact regular spaces are normal; * All paracompact topological manifolds are perfectly normal Hausdorff. However, there exist non-paracompact manifolds that are not even normal. * All order topologies on totally ordered sets are hereditarily normal and Hausdorff. * Every regular second-countable space is completely normal, and every regular
Lindelöf space In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of '' compactness'', which requires the existence of a ''finite'' sub ...
is normal. Also, all fully normal spaces are normal (even if not regular). Sierpiński space is an example of a normal space that is not regular.


Examples of non-normal spaces

An important example of a non-normal topology is given by the Zariski topology on an algebraic variety or on the
spectrum of a ring In commutative algebra, the prime spectrum (or simply the spectrum) of a ring ''R'' is the set of all prime ideals of ''R'', and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with the ...
, which is used in
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
. A non-normal space of some relevance to analysis is the topological vector space of all functions from the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
R to itself, with the topology of pointwise convergence. More generally, a theorem of Arthur Harold Stone states that the product of
uncountably many In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal numb ...
non- compact metric spaces is never normal.


Properties

Every closed subset of a normal space is normal. The continuous and closed image of a normal space is normal. The main significance of normal spaces lies in the fact that they admit "enough" continuous real-valued functions, as expressed by the following theorems valid for any normal space ''X''. Urysohn's lemma: If ''A'' and ''B'' are two disjoint closed subsets of ''X'', then there exists a continuous function ''f'' from ''X'' to the real line R such that ''f''(''x'') = 0 for all ''x'' in ''A'' and ''f''(''x'') = 1 for all ''x'' in ''B''. In fact, we can take the values of ''f'' to be entirely within the unit interval ,1 (In fancier terms, disjoint closed sets are not only separated by neighbourhoods, but also separated by a function.) More generally, the Tietze extension theorem: If ''A'' is a closed subset of ''X'' and ''f'' is a continuous function from ''A'' to R, then there exists a continuous function ''F'': ''X'' → R that extends ''f'' in the sense that ''F''(''x'') = ''f''(''x'') for all ''x'' in ''A''. The map ''\emptyset\rightarrow X'' has the
lifting property In mathematics, in particular in category theory, the lifting property is a property of a pair of morphism (category theory), morphisms in a category (mathematics), category. It is used in homotopy theory within algebraic topology to define propert ...
with respect to a map from a certain finite topological space with five points (two open and three closed) to the space with one open and two closed points. If U is a locally finite open cover of a normal space ''X'', then there is a partition of unity precisely subordinate to U. (This shows the relationship of normal spaces to paracompactness.) In fact, any space that satisfies any one of these three conditions must be normal. A product of normal spaces is not necessarily normal. This fact was first proved by Robert Sorgenfrey. An example of this phenomenon is the Sorgenfrey plane. In fact, since there exist spaces which are Dowker, a product of a normal space and
, 1 The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline (t ...
need not to be normal. Also, a subset of a normal space need not be normal (i.e. not every normal Hausdorff space is a completely normal Hausdorff space), since every Tychonoff space is a subset of its Stone–Čech compactification (which is normal Hausdorff). A more explicit example is the Tychonoff plank. The only large class of product spaces of normal spaces known to be normal are the products of compact Hausdorff spaces, since both compactness ( Tychonoff's theorem) and the T2 axiom are preserved under arbitrary products.


Relationships to other separation axioms

If a normal space is R0, then it is in fact completely regular. Thus, anything from "normal R0" to "normal completely regular" is the same as what we usually call ''normal regular''. Taking Kolmogorov quotients, we see that all normal T1 spaces are Tychonoff. These are what we usually call ''normal Hausdorff'' spaces. A topological space is said to be pseudonormal if given two disjoint closed sets in it, one of which is countable, there are disjoint open sets containing them. Every normal space is pseudonormal, but not vice versa. Counterexamples to some variations on these statements can be found in the lists above. Specifically, Sierpiński space is normal but not regular, while the space of functions from R to itself is Tychonoff but not normal.


See also

* *


Citations


References

* Engelking, Ryszard, ''General Topology'', Heldermann Verlag Berlin, 1989. * * * * *{{cite book , last= Willard , first= Stephen , title= General Topology , publisher= Addison-Wesley , location= Reading, MA , year= 1970 , isbn= 978-0-486-43479-7 , url= https://archive.org/details/generaltopology00will_0 , url-access= registration Properties of topological spaces Separation axioms