
In
mathematics, the differential geometry of surfaces deals with the
differential geometry of
smooth
Smooth may refer to:
Mathematics
* Smooth function, a function that is infinitely differentiable; used in calculus and topology
* Smooth manifold, a differentiable manifold for which all the transition maps are smooth functions
* Smooth algebrai ...
surface
A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is t ...
s with various additional structures, most often, a
Riemannian metric
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
.
Surfaces have been extensively studied from various perspectives: ''extrinsically'', relating to their
embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.
When some object X is said to be embedded in another object Y, the embedding is giv ...
in
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
and ''intrinsically'', reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the
Gaussian curvature
In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point:
K = \kappa_1 \kappa_2.
The Gaussian radius of curvature is the reciprocal of .
F ...
, first studied in depth by
Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refe ...
, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.
Surfaces naturally arise as
graphs
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
* Graph (topology), a topological space resembling a graph in the sense of discr ...
of
functions of a pair of
variables, and sometimes appear in parametric form or as
loci
Locus (plural loci) is Latin for "place". It may refer to:
Entertainment
* Locus (comics), a Marvel Comics mutant villainess, a member of the Mutant Liberation Front
* ''Locus'' (magazine), science fiction and fantasy magazine
** '' Locus Award ...
associated to
space curves
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ap ...
. An important role in their study has been played by
Lie group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the addit ...
s (in the spirit of the
Erlangen program
In mathematics, the Erlangen program is a method of characterizing geometries based on group theory and projective geometry. It was published by Felix Klein in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is na ...
), namely the
symmetry group
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
s of the
Euclidean plane
In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions ...
, the
sphere
A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
and the
hyperbolic plane
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P'' ...
. These Lie groups can be used to describe surfaces of constant Gaussian curvature; they also provide an essential ingredient in the modern approach to intrinsic differential geometry through
connections
Connections may refer to:
Television
* '' Connections: An Investigation into Organized Crime in Canada'', a documentary television series
* ''Connections'' (British documentary), a documentary television series and book by science historian Jam ...
. On the other hand, extrinsic properties relying on an embedding of a surface in Euclidean space have also been extensively studied. This is well illustrated by the non-linear
Euler–Lagrange equations in the
calculus of variations
The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions
and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
: although Euler developed the one variable equations to understand
geodesics
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
, defined independently of an embedding, one of Lagrange's main applications of the two variable equations was to
minimal surfaces
In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below).
The term "minimal surface" is used because these surfaces originally arose as surfaces th ...
, a concept that can only be defined in terms of an embedding.
History
The volumes of certain
quadric surface
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections ( ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension ''D'') in a -dimensional space, and it is d ...
s of
revolution
In political science, a revolution (Latin: ''revolutio'', "a turn around") is a fundamental and relatively sudden change in political power and political organization which occurs when the population revolts against the government, typically due ...
were calculated by
Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scienti ...
. The development of
calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
in the seventeenth century provided a more systematic way of computing them. Curvature of general surfaces was first studied by
Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
. In 1760 he proved a formula for the curvature of a plane section of a surface and in 1771 he considered surfaces represented in a parametric form.
Monge
Gaspard Monge, Comte de Péluse (9 May 1746 – 28 July 1818) was a French mathematician, commonly presented as the inventor of descriptive geometry, (the mathematical basis of) technical drawing, and the father of differential geometry. Durin ...
laid down the foundations of their theory in his classical memoir ''L'application de l'analyse à la géometrie'' which appeared in 1795. The defining contribution to the theory of surfaces was made by
Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
in two remarkable papers written in 1825 and 1827. This marked a new departure from tradition because for the first time Gauss considered the ''intrinsic'' geometry of a surface, the properties which are determined only by the geodesic distances between points on the surface independently of the particular way in which the surface is located in the ambient Euclidean space. The crowning result, the
Theorema Egregium
Gauss's ''Theorema Egregium'' (Latin for "Remarkable Theorem") is a major result of differential geometry, proved by Carl Friedrich Gauss in 1827, that concerns the curvature of surfaces. The theorem says that Gaussian curvature can be dete ...
of Gauss, established that the
Gaussian curvature
In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point:
K = \kappa_1 \kappa_2.
The Gaussian radius of curvature is the reciprocal of .
F ...
is an intrinsic invariant, i.e. invariant under local
isometries. This point of view was extended to higher-dimensional spaces by
Riemann
Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first r ...
and led to what is known today as
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to po ...
. The nineteenth century was the golden age for the theory of surfaces, from both the topological and the differential-geometric point of view, with most leading geometers devoting themselves to their study.
Darboux Darboux is a surname. Notable people with the surname include:
*Jean Gaston Darboux (1842–1917), French mathematician
*Lauriane Doumbouya (née Darboux), the current First Lady of Guinea since 5 September 2021
*Paul Darboux
Paul Darboux (May 10, ...
collected many results in his four-volume treatise ''Théorie des surfaces'' (1887–1896).
Overview
It is intuitively quite familiar to say that the leaf of a plant, the surface of a glass, or the shape of a face, are curved in certain ways, and that all of these shapes, even after ignoring any distinguishing markings, have certain geometric features which distinguish one from another. The differential geometry of surfaces is concerned with a mathematical understanding of such phenomena. The study of this field, which was initiated in its modern form in the 1700s, has led to the development of higher-dimensional and abstract geometry, such as
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to po ...
and
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
.
The essential mathematical object is that of a regular surface. Although conventions vary in their precise definition, these form a general class of subsets of three-dimensional
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
() which capture part of the familiar notion of "surface." By analyzing the class of curves which lie on such a surface, and the degree to which the surfaces force them to curve in , one can associate to each point of the surface two numbers, called the principal curvatures. Their average is called the mean curvature of the surface, and their product is called the Gaussian curvature.
There are many classic examples of regular surfaces, including:
* familiar examples such as planes, cylinders, and spheres
*
minimal surface
In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below).
The term "minimal surface" is used because these surfaces originally arose as surfaces tha ...
s, which are defined by the property that their mean curvature is zero at every point. The best-known examples are
catenoid
In geometry, a catenoid is a type of surface, arising by rotating a catenary curve about an axis (a surface of revolution). It is a minimal surface, meaning that it occupies the least area when bounded by a closed space. It was formally describe ...
s and
helicoid
The helicoid, also known as helical surface, after the plane and the catenoid, is the third minimal surface to be known.
Description
It was described by Euler in 1774 and by Jean Baptiste Meusnier in 1776. Its name derives from its similar ...
s, although many more have been discovered. Minimal surfaces can also be defined by properties to do with
surface area
The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of ...
, with the consequence that they provide a mathematical model for the shape of
soap film
Soap films are thin layers of liquid (usually water-based) surrounded by air. For example, if two soap bubbles come into contact, they merge and a thin film is created in between. Thus, foams are composed of a network of films connected by Platea ...
s when stretched across a wire frame
*
ruled surface
In geometry, a surface is ruled (also called a scroll) if through every point of there is a straight line that lies on . Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directri ...
s, which are surfaces that have at least one straight line running through every point; examples include the cylinder and the
hyperboloid
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by de ...
of one sheet.
A surprising result of
Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refe ...
, known as the
theorema egregium
Gauss's ''Theorema Egregium'' (Latin for "Remarkable Theorem") is a major result of differential geometry, proved by Carl Friedrich Gauss in 1827, that concerns the curvature of surfaces. The theorem says that Gaussian curvature can be dete ...
, showed that the Gaussian curvature of a surface, which by its definition has to do with how curves on the surface change directions in three dimensional space, can actually be measured by the lengths of curves lying on the surfaces together with the angles made when two curves on the surface intersect. Terminologically, this says that the Gaussian curvature can be calculated from the first fundamental form (also called
metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allo ...
) of the surface. The second fundamental form, by contrast, is an object which encodes how lengths and angles of curves on the surface are distorted when the curves are pushed off of the surface.
Despite measuring different aspects of length and angle, the first and second fundamental forms are not independent from one another, and they satisfy certain constraints called the Gauss-Codazzi equations. A major theorem, often called the fundamental theorem of the differential geometry of surfaces, asserts that whenever two objects satisfy the Gauss-Codazzi constraints, they will arise as the first and second fundamental forms of a regular surface.
Using the first fundamental form, it is possible to define new objects on a regular surface. Geodesics are curves on the surface which satisfy a certain second-order
ordinary differential equation
In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contras ...
which is specified by the first fundamental form. They are very directly connected to the study of lengths of curves; a geodesic of sufficiently short length will always be the curve of ''shortest'' length on the surface which connects its two endpoints. Thus, geodesics are fundamental to the optimization problem of determining the shortest path between two given points on a regular surface.
One can also define parallel transport along any given curve, which gives a prescription for how to deform a tangent vector to the surface at one point of the curve to tangent vectors at all other points of the curve. The prescription is determined by a first-order
ordinary differential equation
In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contras ...
which is specified by the first fundamental form.
The above concepts are essentially all to do with multivariable calculus. The Gauss-Bonnet theorem is a more global result, which relates the Gaussian curvature of a surface together with its topological type. It asserts that the average value of the Gaussian curvature is completely determined by the
Euler characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological spac ...
of the surface together with its surface area.
The notion of
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
and
Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ve ...
are two generalizations of the regular surfaces discussed above. In particular, essentially all of the theory of regular surfaces as discussed here has a generalization in the theory of Riemannian manifolds. This is not the case for Riemann surfaces, although every regular surface gives an example of a Riemann surface.
Regular surfaces in Euclidean space
Definition
It is intuitively clear that a sphere is smooth, while a cone or a pyramid, due to their vertex or edges, are not. The notion of a "regular surface" is a formalization of the notion of a smooth surface. The definition utilizes the local representation of a surface via maps between
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
s. There is a standard notion of smoothness for such maps; a map between two open subsets of Euclidean space is smooth if its partial derivatives of every order exist at every point of the domain.
The following gives three equivalent ways to present the definition; the middle definition is perhaps the most visually intuitive, as it essentially says that a regular surface is a subset of which is locally the graph of a smooth function (whether over a region in the plane, the plane, or the plane).

The homeomorphisms appearing in the first definition are known as local parametrizations or local coordinate systems or local charts on . The equivalence of the first two definitions asserts that, around any point on a regular surface, there always exist local parametrizations of the form , , or , known as Monge patches. Functions as in the third definition are called local defining functions. The equivalence of all three definitions follows from the
implicit function theorem.

Given any two local parametrizations and of a regular surface, the composition is necessarily smooth as a map between open subsets of . This shows that any regular surface naturally has the structure of a
smooth manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One m ...
, with a smooth atlas being given by the inverses of local parametrizations.
In the classical theory of differential geometry, surfaces are usually studied only in the regular case.
It is, however, also common to study non-regular surfaces, in which the two partial derivatives and of a local parametrization may fail to be
linearly independent
In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts ...
. In this case, may have singularities such as
cuspidal edge
In mathematics, a cusp, sometimes called spinode in old texts, is a point on a curve where a moving point must reverse direction. A typical example is given in the figure. A cusp is thus a type of singular point of a curve.
For a plane curve de ...
s. Such surfaces are typically studied in
singularity theory
In mathematics, singularity theory studies spaces that are almost manifolds, but not quite. A string can serve as an example of a one-dimensional manifold, if one neglects its thickness. A singularity can be made by balling it up, dropping it ...
. Other weakened forms of regular surfaces occur in
computer-aided design, where a surface is broken apart into disjoint pieces, with the derivatives of local parametrizations failing to even be continuous along the boundaries.

Simple examples. A simple example of a regular surface is given by the 2-sphere ; this surface can be covered by six Monge patches (two of each of the three types given above), taking . It can also be covered by two local parametrizations, using
stereographic projection
In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (the ''projection plane'') perpendicular to the diameter th ...
. The set is a
torus of revolution with radii and . It is a regular surface; local parametrizations can be given of the form
:
The
hyperboloid
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by de ...
on two sheets is a regular surface; it can be covered by two Monge patches, with . The
helicoid
The helicoid, also known as helical surface, after the plane and the catenoid, is the third minimal surface to be known.
Description
It was described by Euler in 1774 and by Jean Baptiste Meusnier in 1776. Its name derives from its similar ...
appears in the theory of
minimal surfaces
In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below).
The term "minimal surface" is used because these surfaces originally arose as surfaces th ...
. It is covered by a single local parametrization, .
Tangent vectors and normal vectors
Let be a regular surface in , and let be an element of . Using any of the above definitions, one can single out certain vectors in as being tangent to at , and certain vectors in as being orthogonal to at .
One sees that the ''
tangent space
In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
'' or ''
tangent plane
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
'' to at , which is defined to consist of all tangent vectors to at , is a two-dimensional linear subspace of ; it is often denoted by . The ''
normal space
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space ...
'' to at , which is defined to consist of all normal vectors to at , is a one-dimensional linear subspace of which is orthogonal to the tangent space . As such, at each point of , there are two normal vectors of unit length (unit normal vectors). It is useful to note that the unit normal vectors at can be given in terms of local parametrizations, Monge patches, or local defining functions, via the formulas
:
following the same notations as in the previous definitions.
It is also useful to note an "intrinsic" definition of tangent vectors, which is typical of the generalization of regular surface theory to the setting of
smooth manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One m ...
s. It defines the tangent space as an abstract two-dimensional real vector space, rather than as a linear subspace of . In this definition, one says that a tangent vector to at is an assignment, to each local parametrization with , of two numbers and , such that for any other local parametrization with (and with corresponding numbers and ), one has
:
where is the
Jacobian matrix
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables ...
of the mapping , evaluated at the point . The collection of tangent vectors to at naturally has the structure of a two-dimensional vector space. A tangent vector in this sense corresponds to a tangent vector in the previous sense by considering the vector
:
in . The Jacobian condition on and ensures, by the
chain rule
In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x) ...
, that this vector does not depend on .
For smooth functions on a surface, vector fields (i.e. tangent vector fields) have an important interpretation as first order operators or derivations. Let
be a regular surface,
an open subset of the plane and
a coordinate chart. If
, the space
can be identified with
. Similarly
identifies vector fields on
with vector fields on
. Taking standard variables and , a vector field has the form
, with and smooth functions. If
is a vector field and
is a smooth function, then
is also a smooth function. The first order differential operator
is a ''derivation'', i.e. it satisfies the Leibniz rule
For vector fields and it is simple to check that the operator
is a derivation corresponding to a vector field. It is called the
Lie bracket
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identi ...