In
mathematical analysis, a space-filling curve is a
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight.
Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
whose
range contains the entire 2-dimensional
unit square
In mathematics, a unit square is a square whose sides have length . Often, ''the'' unit square refers specifically to the square in the Cartesian plane with corners at the four points ), , , and .
Cartesian coordinates
In a Cartesian coordina ...
(or more generally an ''n''-dimensional unit
hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions ...
). Because
Giuseppe Peano
Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much notation. The sta ...
(1858–1932) was the first to discover one, space-filling curves in the
2-dimensional plane are sometimes called ''Peano curves'', but that phrase also refers to the
Peano curve, the specific example of a space-filling curve found by Peano.
Definition
Intuitively, a curve in two or three (or higher) dimensions can be thought of as the path of a continuously moving point. To eliminate the inherent vagueness of this notion,
Jordan
Jordan ( ar, الأردن; tr. ' ), officially the Hashemite Kingdom of Jordan,; tr. ' is a country in Western Asia. It is situated at the crossroads of Asia, Africa, and Europe, within the Levant region, on the East Bank of the Jordan Ri ...
in 1887 introduced the following rigorous definition, which has since been adopted as the precise description of the notion of a ''curve'':
In the most general form, the range of such a function may lie in an arbitrary
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
, but in the most commonly studied cases, the range will lie in a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
such as the 2-dimensional plane (a ''planar curve'') or the 3-dimensional space (''space curve'').
Sometimes, the curve is identified with the
image
An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensio ...
of the function (the set of all possible values of the function), instead of the function itself. It is also possible to define curves without endpoints to be a continuous function on the
real line
In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
(or on the open unit interval ).
History
In 1890,
Peano
Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much notation. The sta ...
discovered a continuous curve, now called the
Peano curve, that passes through every point of the unit square. His purpose was to construct a
continuous mapping
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in va ...
from the
unit interval
In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analys ...
onto the
unit square
In mathematics, a unit square is a square whose sides have length . Often, ''the'' unit square refers specifically to the square in the Cartesian plane with corners at the four points ), , , and .
Cartesian coordinates
In a Cartesian coordina ...
. Peano was motivated by
Georg Cantor
Georg Ferdinand Ludwig Philipp Cantor ( , ; – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of ...
's earlier counterintuitive result that the infinite number of points in a unit interval is the same
cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
as the infinite number of points in any finite-dimensional
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
, such as the unit square. The problem Peano solved was whether such a mapping could be continuous; i.e., a curve that fills a space. Peano's solution does not set up a continuous
one-to-one correspondence
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
between the unit interval and the unit square, and indeed such a correspondence does not exist (see below).
It was common to associate the vague notions of ''thinness'' and 1-dimensionality to curves; all normally encountered curves were
piecewise
In mathematics, a piecewise-defined function (also called a piecewise function, a hybrid function, or definition by cases) is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain. P ...
differentiable (that is, have piecewise continuous derivatives), and such curves cannot fill up the entire unit square. Therefore, Peano's space-filling curve was found to be highly counterintuitive.
From Peano's example, it was easy to deduce continuous curves whose ranges contained the ''n''-dimensional
hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions ...
(for any positive integer ''n''). It was also easy to extend Peano's example to continuous curves without endpoints, which filled the entire ''n''-dimensional Euclidean space (where ''n'' is 2, 3, or any other positive integer).
Most well-known space-filling curves are constructed iteratively as the limit of a sequence of
piecewise linear continuous curves, each one more closely approximating the space-filling limit.
Peano's ground-breaking article contained no illustrations of his construction, which is defined in terms of
ternary expansions and a
mirroring operator. But the graphical construction was perfectly clear to him—he made an ornamental tiling showing a picture of the curve in his home in Turin. Peano's article also ends by observing that the technique can be obviously extended to other odd bases besides base 3. His choice to avoid any appeal to
graphical visualization was motivated by a desire for a completely rigorous proof owing nothing to pictures. At that time (the beginning of the foundation of general topology), graphical arguments were still included in proofs, yet were becoming a hindrance to understanding often counterintuitive results.
A year later,
David Hilbert published in the same journal a variation of Peano's construction. Hilbert's article was the first to include a picture helping to visualize the construction technique, essentially the same as illustrated here. The analytic form of the
Hilbert curve
The Hilbert curve (also known as the Hilbert space-filling curve) is a continuous fractal space-filling curve first described by the German mathematician David Hilbert in 1891, as a variant of the space-filling Peano curves discovered by Giusepp ...
, however, is more complicated than Peano's.
Outline of the construction of a space-filling curve
Let
denote the
Cantor space In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "t ...
.
We start with a continuous function
from the Cantor space
onto the entire unit interval