HOME





Pseudo-Anosov Map
In mathematics, specifically in topology, a pseudo-Anosov map is a type of a diffeomorphism or homeomorphism of a Surface (topology), surface. It is a generalization of a linear Anosov diffeomorphism of the torus. Its definition relies on the notion of a measured foliation introduced by William Thurston, who also coined the term "pseudo-Anosov diffeomorphism" when he proved his Nielsen–Thurston classification, classification of diffeomorphisms of a surface. Definition of a measured foliation A measured foliation ''F'' on a closed surface ''S'' is a geometric structure on ''S'' which consists of a singular foliation and a measure in the transverse direction. In some neighborhood of a regular point of ''F'', there is a "flow box" ''φ'': ''U'' → R2 which sends the leaves of ''F'' to the horizontal lines in R2. If two such neighborhoods ''U''''i'' and ''U''''j'' overlap then there is a transition function ''φ''''ij'' defined on ''φ''''j''(''U''''j''), with the standard ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Foliation
In mathematics (differential geometry), a foliation is an equivalence relation on an topological manifold, ''n''-manifold, the equivalence classes being connected, injective function, injectively immersed submanifolds, all of the same dimension ''p'', modeled on the manifold decomposition, decomposition of the real coordinate space R''n'' into the cosets ''x'' + R''p'' of the standardly embedding, embedded subspace topology, subspace R''p''. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear manifold, piecewise-linear, differentiable manifold, differentiable (of class ''Cr''), or analytic manifold, analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class ''Cr'' it is usually understood that ''r'' ≥ 1 (otherwise, ''C''0 is a topological foliation). The number ''p'' (the dime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamical Systems
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, fluid dynamics, the flow of water in a pipe, the Brownian motion, random motion of particles in the air, and population dynamics, the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real number, real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a Set (mathematics), set, without the need of a Differentiability, smooth space-time structure defined on it. At any given time, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Valentin Poénaru
Valentin Alexandre Poénaru (born 1932 in Bucharest) is a Romanian– French mathematician. He was a Professor of Mathematics at University of Paris-Sud, specializing in low-dimensional topology. Life and career Born in Bucharest, Romania, he did his undergraduate studies at the University of Bucharest. In 1962, he was an invited speaker at the International Congress of Mathematicians in Stockholm, Sweden. While at the congress, Poénaru defected, subsequently leaving for France. He arrived in mid-September 1962 at the Institut des Hautes Études Scientifiques in Bures-sur-Yvette; the IHÉS decided to support him, and he has remained associated with the institute ever since then. Poénaru defended his Thèse d'État at the University of Paris on March 23, 1963. His dissertation topic was ''Sur les variétés tridimensionnelles ayant le type d'homotopie de la sphère S3'', and was written under the supervision of Charles Ehresmann. After that, he went to the United States, spend ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mladen Bestvina
Mladen Bestvina (born 1959) is a Croatian-American mathematician working in the area of geometric group theory. He is a Distinguished Professor in the Department of Mathematics at the University of Utah. Life and career Mladen Bestvina is a three-time medalist at the International Mathematical Olympiad (two silver medals in 1976 and 1978 and a bronze medal in 1977). He received a B. Sc. in 1982 from the University of Zagreb. He obtained a PhD in Mathematics in 1984 at the University of Tennessee under the direction of John Walsh. He was a visiting scholar at the Institute for Advanced Study in 1987-88 and again in 1990–91. Bestvina had been a faculty member at UCLA, and joined the faculty in the Department of Mathematics at the University of Utah in 1993.Mladen Bestvina: Distinguished Professor
''After ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Group
In mathematics, the free group ''F''''S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''−1''t'' but ''s'' ≠ ''t''−1 for ''s'',''t'',''u'' ∈ ''S''). The members of ''S'' are called generators of ''F''''S'', and the number of generators is the rank of the free group. An arbitrary group ''G'' is called free if it is isomorphic to ''F''''S'' for some subset ''S'' of ''G'', that is, if there is a subset ''S'' of ''G'' such that every element of ''G'' can be written in exactly one way as a product of finitely many elements of ''S'' and their inverses (disregarding trivial variations such as ''st'' = ''suu''−1''t''). A related but different notion is a free abelian group; both notions are particular instances of a free object from universal algebra. As such, free groups are defined by their universal property. History ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Poincaré Half-plane
Poincaré is a French surname. Notable people with the surname include: * Henri Poincaré (1854–1912), French physicist, mathematician and philosopher of science * Henriette Poincaré (1858–1943), wife of Prime Minister Raymond Poincaré * Lucien Poincaré (1862–1920), physicist, brother of Raymond and cousin of Henri * Raymond Poincaré (1860–1934), French Prime Minister or President ''inter alia'' from 1913 to 1920, cousin of Henri See also *List of things named after Henri Poincaré In physics and mathematics, a number of ideas are named after Henri Poincaré: * Euler–Poincaré characteristic * Hilbert–Poincaré series * Poincaré–Bendixson theorem * Poincaré–Birkhoff theorem * Poincaré–Birkhoff–Witt theorem, ... * {{DEFAULTSORT:Poincare French-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Teichmüller Space
In mathematics, the Teichmüller space T(S) of a (real) topological (or differential) surface S is a space that parametrizes complex structures on S up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller. Each point in a Teichmüller space T(S) may be regarded as an isomorphism class of "marked" Riemann surfaces, where a "marking" is an isotopy class of homeomorphisms from S to itself. It can be viewed as a moduli space for marked hyperbolic structure on the surface, and this endows it with a natural topology for which it is homeomorphic to a ball of dimension 6g-6 for a surface of genus g \ge 2. In this way Teichmüller space can be viewed as the universal covering orbifold of the Riemann moduli space. The Teichmüller space has a canonical complex manifold structure and a wealth of natural metrics. The study of geometric features of these various structures is an active body of researc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nielsen–Thurston Classification
In mathematics, Thurston's classification theorem characterizes homeomorphisms of a compact orientable surface. William Thurston's theorem completes the work initiated by . Given a homeomorphism ''f'' : ''S'' → ''S'', there is a map ''g'' isotopic to ''f'' such that at least one of the following holds: * ''g'' is periodic, i.e. some power of ''g'' is the identity; * ''g'' preserves some finite union of disjoint simple closed curves on ''S'' (in this case, ''g'' is called ''reducible''); or * ''g'' is pseudo-Anosov. The case where ''S'' is a torus (i.e., a surface whose genus is one) is handled separately (see torus bundle) and was known before Thurston's work. If the genus of ''S'' is two or greater, then ''S'' is naturally hyperbolic, and the tools of Teichmüller theory become useful. In what follows, we assume ''S'' has genus at least two, as this is the case Thurston considered. (Note, however, that the cases where ''S'' has boundary or is not orie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Thurston
William Paul Thurston (October 30, 1946August 21, 2012) was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds. Thurston was a professor of mathematics at Princeton University, University of California, Davis, and Cornell University. He was also a director of the Mathematical Sciences Research Institute. Early life and education William Thurston was born in Washington, D.C., to Margaret Thurston (), a seamstress, and Paul Thurston, an aeronautical engineer. William Thurston suffered from congenital strabismus as a child, causing issues with depth perception. His mother worked with him as a toddler to reconstruct three-dimensional images from two-dimensional ones. He received his bachelor's degree from New College in 1967 as part of its inaugural class. For his undergraduate thesis, he developed an intuitionist foundation for topology. Following th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a Lemon (geometry), spindle torus (or ''self-crossing torus'' or ''self-intersecting torus''). If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]