Scale of temperature is a methodology of calibrating the
physical quantity
A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For examp ...
temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer.
Thermometers are calibrated in various temperature scales that historically have relied on ...
in
metrology
Metrology is the scientific study of measurement. It establishes a common understanding of units, crucial in linking human activities. Modern metrology has its roots in the French Revolution's political motivation to standardise units in Fra ...
. Empirical scales measure temperature in relation to convenient and stable parameters, such as the
freezing and
boiling point of
water
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
.
Absolute temperature
Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.
Historically, thermodynamic temperature was defined by Kelvin in terms of a macroscopic relation between thermodynamic ...
is based on
thermodynamic
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of t ...
principles: using the
lowest possible temperature as the zero point, and selecting a convenient incremental unit.
Celsius,
Kelvin
The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ph ...
, and
Fahrenheit
The Fahrenheit scale () is a temperature scale based on one proposed in 1724 by the physicist Daniel Gabriel Fahrenheit (1686–1736). It uses the degree Fahrenheit (symbol: °F) as the unit. Several accounts of how he originally defined h ...
are common temperature scales. Other scales used throughout history include Centigrade,
Rankine,
Rømer,
Newton,
Delisle,
Réaumur,
Gas Mark,
Leiden
Leiden (; in English and archaic Dutch also Leyden) is a city and municipality in the province of South Holland, Netherlands. The municipality of Leiden has a population of 119,713, but the city forms one densely connected agglomeration wit ...
and
Wedgwood
Wedgwood is an English fine china, porcelain and luxury accessories manufacturer that was founded on 1 May 1759 by the potter and entrepreneur Josiah Wedgwood and was first incorporated in 1895 as Josiah Wedgwood and Sons Ltd. It was rap ...
.
Definition
The
zeroth law of thermodynamics
The zeroth law of thermodynamics is one of the four principal laws of thermodynamics. It provides an independent definition of temperature without reference to entropy, which is defined in the second law. The law was established by Ralph H. Fowl ...
describes thermal equilibrium between
thermodynamic system
A thermodynamic system is a body of matter and/or radiation, confined in space by walls, with defined permeabilities, which separate it from its surroundings. The surroundings may include other thermodynamic systems, or physical systems that are ...
s in form of an
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.
Each equivalence relatio ...
. Accordingly, all thermal systems may be divided into a
quotient set
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
, denoted as M. If the set M has the
cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of c, then one can construct an
injective function
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contraposi ...
, by which every thermal system has a parameter associated with it such that when two thermal systems have the same value of that parameter, they are in thermal equilibrium. This parameter is the property of temperature. The specific way of assigning numerical values for temperature is establishing a ''scale of temperature''. In practical terms, a temperature scale is always based on usually a single physical property of a simple thermodynamic system, called a ''thermometer'', that defines a scaling function for mapping the temperature to the measurable thermometric parameter. Such temperature scales that are purely based on measurement are called ''empirical temperature scales''.
The
second law of thermodynamics
The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
provides a fundamental, natural definition of
thermodynamic temperature
Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.
Historically, thermodynamic temperature was defined by Kelvin in terms of a macroscopic relation between thermodynamic ...
starting with a null point of
absolute zero
Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibrati ...
. A scale for thermodynamic temperature is established similarly to the empirical temperature scales, however, needing only one additional fixing point.
Empirical scales
Empirical scales are based on the measurement of physical parameters that express the property of interest to be measured through some formal, most commonly a simple linear, functional relationship. For the measurement of temperature, the formal definition of thermal equilibrium in terms of the thermodynamic coordinate spaces of thermodynamic systems, expressed in the
zeroth law of thermodynamics
The zeroth law of thermodynamics is one of the four principal laws of thermodynamics. It provides an independent definition of temperature without reference to entropy, which is defined in the second law. The law was established by Ralph H. Fowl ...
, provides the framework to measure temperature.
All temperature scales, including the modern thermodynamic temperature scale used in the
International System of Units, are calibrated according to thermal properties of a particular substance or device. Typically, this is established by fixing two well-defined temperature points and defining temperature increments via a linear function of the response of the thermometric device. For example, both the old
Celsius scale and
Fahrenheit scale
The Fahrenheit scale () is a temperature scale based on one proposed in 1724 by the physicist Daniel Gabriel Fahrenheit (1686–1736). It uses the degree Fahrenheit (symbol: °F) as the unit. Several accounts of how he originally defined h ...
were originally based on the linear expansion of a narrow mercury column within a limited range of temperature, each using different reference points and scale increments.
Different empirical scales may not be compatible with each other, except for small regions of temperature overlap. If an alcohol
thermometer
A thermometer is a device that measures temperature or a temperature gradient (the degree of hotness or coldness of an object). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb of a mercury-in-glass thermomete ...
and a mercury
thermometer
A thermometer is a device that measures temperature or a temperature gradient (the degree of hotness or coldness of an object). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb of a mercury-in-glass thermomete ...
have the same two fixed points, namely the freezing and boiling point of water, their readings will not agree with each other except at the fixed points, as the linear 1:1 relationship of expansion between any two thermometric substances may not be guaranteed.
Empirical temperature scales are not reflective of the fundamental, microscopic laws of matter. Temperature is a universal attribute of matter, yet empirical scales map a narrow range onto a scale that is known to have a useful functional form for a particular application. Thus, their range is limited. The working material only exists in a form under certain circumstances, beyond which it no longer can serve as a scale. For example,
mercury freezes below 234.32 K, so temperatures lower than that cannot be measured in a scale based on mercury. Even
ITS-90, which interpolates among different ranges of temperature, has a range of only 0.65 K to approximately 1358 K (−272.5 °C to 1085 °C).
Ideal gas scale
When pressure approaches zero, all real gas will behave like ideal gas, that is, of a mole of gas relying only on temperature. Therefore, we can design a scale with as its argument. Of course any bijective function will do, but for convenience's sake a linear function is the best. Therefore, we define it as
:
The ideal gas scale is in some sense a "mixed" scale. It relies on the universal properties of gas, a big advance from just a particular substance. But still it is empirical since it puts gas at a special position and thus has limited applicability—at some point no gas can exist. One distinguishing characteristic of ideal gas scale, however, is that it precisely equals thermodynamical scale when it is well defined (see ').
International temperature scale of 1990
ITS-90 is designed to represent the thermodynamic temperature scale (referencing
absolute zero
Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibrati ...
) as closely as possible throughout its range. Many different thermometer designs are required to cover the entire range. These include helium vapor pressure thermometers, helium gas thermometers,
standard platinum resistance thermometers (known as SPRTs, PRTs or Platinum RTDs) and
monochromatic radiation thermometers.
Although the Kelvin and Celsius scales are defined using absolute zero (0 K) and the
triple point
In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases ( gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium.. It is that temperature and pressure at which the subli ...
of water (273.16 K and 0.01 °C), it is impractical to use this definition at temperatures that are very different from the triple point of water. Accordingly, ITS–90 uses numerous defined points, all of which are based on various thermodynamic equilibrium states of fourteen pure
chemical elements
A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
and one
compound (water). Most of the defined points are based on a
phase transition
In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states ...
; specifically the
melting
Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
/
freezing point of a pure chemical element. However, the deepest
cryogenic
In physics, cryogenics is the production and behaviour of materials at very low temperatures.
The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
points are based exclusively on the
vapor pressure
Vapor pressure (or vapour pressure in English-speaking countries other than the US; see spelling differences) or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phase ...
/temperature relationship of helium and its isotopes whereas the remainder of its cold points (those less than room temperature) are based on
triple point
In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases ( gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium.. It is that temperature and pressure at which the subli ...
s. Examples of other defining points are the triple point of hydrogen (−259.3467 °C) and the freezing point of aluminum (660.323 °C).
Thermometers calibrated per ITS–90 use complex mathematical formulas to interpolate between its defined points. ITS–90 specifies rigorous control over variables to ensure reproducibility from lab to lab. For instance, the small effect that atmospheric pressure has upon the various melting points is compensated for (an effect that typically amounts to no more than half a
millikelvin across the different altitudes and barometric pressures likely to be encountered). The standard even compensates for the pressure effect due to how deeply the temperature probe is immersed into the sample. ITS–90 also draws a distinction between "freezing" and "melting" points. The distinction depends on whether heat is going ''into'' (melting) or ''out of'' (freezing) the sample when the measurement is made. Only gallium is measured while melting, all the other metals are measured while the samples are freezing.
There are often small differences between measurements calibrated per ITS–90 and thermodynamic temperature. For instance, precise measurements show that the boiling point of
VSMOW
Vienna Standard Mean Ocean Water (VSMOW) is an isotopic standard for water. Despite the name, VSMOW is pure water with no salt or other chemicals found in the oceans. The VSMOW standard was promulgated by the International Atomic Energy Agency ( ...
water under one standard atmosphere of pressure is actually 373.1339 K (99.9839 °C) when adhering ''strictly'' to the two-point definition of thermodynamic temperature. When calibrated to ITS–90, where one must interpolate between the defining points of gallium and indium, the boiling point of VSMOW water is about 10 mK less, about 99.974 °C. The virtue of ITS–90 is that another lab in another part of the world will measure the very same temperature with ease due to the advantages of a comprehensive international calibration standard featuring many conveniently spaced, reproducible, defining points spanning a wide range of temperatures.
Celsius scale
Celsius (known until 1948 as centigrade) is a
temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer.
Thermometers are calibrated in various temperature scales that historically have relied on ...
scale that is named after the Swedish astronomer
Anders Celsius
Anders Celsius (; 27 November 170125 April 1744) was a Swedish astronomer, physicist and mathematician. He was professor of astronomy at Uppsala University from 1730 to 1744, but traveled from 1732 to 1735 visiting notable observatories in Germa ...
(1701–1744), who developed a similar temperature scale two years before his death. The degree Celsius (°C) can refer to a specific temperature on the Celsius scale as well as a unit to indicate a temperature ''
interval ''(a difference between two temperatures).
From 1744 until 1954, 0 °C was defined as the freezing point of water and 100 °C was defined as the boiling point of water, both at a pressure of one
standard atmosphere.
Although these defining correlations are commonly taught in schools today, by international agreement, between 1954 and 2019 the unit ''degree Celsius'' and the Celsius scale were defined by
absolute zero
Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibrati ...
and the
triple point
In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases ( gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium.. It is that temperature and pressure at which the subli ...
of
VSMOW
Vienna Standard Mean Ocean Water (VSMOW) is an isotopic standard for water. Despite the name, VSMOW is pure water with no salt or other chemicals found in the oceans. The VSMOW standard was promulgated by the International Atomic Energy Agency ( ...
(specially prepared water). This definition also precisely related the Celsius scale to the
Kelvin
The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ph ...
scale, which defines the
SI base unit
The SI base units are the standard units of measurement defined by the International System of Units (SI) for the seven base quantities of what is now known as the International System of Quantities: they are notably a basic set from which all ...
of
thermodynamic temperature
Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.
Historically, thermodynamic temperature was defined by Kelvin in terms of a macroscopic relation between thermodynamic ...
with symbol K. Absolute zero, the lowest temperature possible, is defined as being exactly 0 K and −273.15 °C. Until 19 May 2019, the temperature of the triple point of water was defined as exactly 273.16 K (0.01 °C). This means that a temperature difference of one degree Celsius and that of one kelvin are exactly the same.
On 20 May 2019, the kelvin was
redefined so that its value is now determined by the definition of the
Boltzmann constant
The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas consta ...
rather than being defined by the triple point of VSMOW. This means that the triple point is now a measured value, not a defined value. The newly-defined exact value of the Boltzmann constant was selected so that the measured value of the VSMOW triple point is exactly the same as the older defined value to within the limits of accuracy of contemporary
metrology
Metrology is the scientific study of measurement. It establishes a common understanding of units, crucial in linking human activities. Modern metrology has its roots in the French Revolution's political motivation to standardise units in Fra ...
. The degree Celsius remains exactly equal to the kelvin, and 0 K remains exactly −273.15 °C.
Thermodynamic scale
Thermodynamic scale differs from empirical scales in that it is absolute. It is based on the fundamental laws of thermodynamics or statistical mechanics instead of some arbitrary chosen working material. Besides it covers full range of temperature and has simple relation with microscopic quantities like the average kinetic energy of particles (see
equipartition theorem). In experiments ITS-90 is used to approximate thermodynamic scale due to simpler realization.
Definition
Lord Kelvin
William Thomson, 1st Baron Kelvin, (26 June 182417 December 1907) was a British mathematician, mathematical physicist and engineer born in Belfast. Professor of Natural Philosophy at the University of Glasgow for 53 years, he did important ...
devised the thermodynamic scale based on the efficiency of heat engines as shown below:
The efficiency of an engine is the work divided by the heat introduced to the system or
:
where ''w''
cy is the work done per cycle. Thus, the efficiency depends only on ''q''
C/''q''
H.
Because of
Carnot theorem, any reversible heat engine operating between temperatures ''T''
1 and ''T''
2 must have the same efficiency, meaning, the efficiency is the function of the temperatures only:
:
In addition, a reversible heat engine operating between temperatures ''T''
1 and ''T''
3 must have the same efficiency as one consisting of two cycles, one between ''T''
1 and another (intermediate) temperature ''T''
2, and the second between ''T''
2 and ''T''
3. This can only be the case if
:
Specializing to the case that
is a fixed reference temperature: the temperature of the triple point of water. Then for any ''T''
2 and ''T''
3,
:
Therefore, if thermodynamic temperature is defined by
:
then the function ''f'', viewed as a function of thermodynamic temperature, is
:
and the reference temperature ''T''
1 has the value 273.16. (Of course any reference temperature and any positive numerical value could be used—the choice here corresponds to the
Kelvin
The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ph ...
scale.)
Equality to ideal gas scale
It follows immediately that
:
Substituting Equation 3 back into Equation 1 gives a relationship for the efficiency in terms of temperature:
:
This is identical to the efficiency formula for
Carnot cycle
A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynam ...
, which effectively employs the ideal gas scale. This means that the two scales equal numerically at every point.
Conversion table between different temperature scales
73
See also
*
Conversion of scales of temperature
This is a collection of temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer.
Thermometers are calibrated in various temperature sc ...
Notes and references
{{DEFAULTSORT:Scale of Temperature
Temperature
Metrology
Thermodynamics