Rhombicosidodecahedron
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the rhombicosidodecahedron is an
Archimedean solid The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygon and are vertex-transitive, although they aren't face-transitive. The solids were named after Archimedes, although he did not claim credit for them. They ...
, one of thirteen
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
isogonal nonprismatic solids constructed of two or more types of
regular polygon In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex ...
face The face is the front of the head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affect th ...
s. It has a total of 62 faces: 20 regular triangular faces, 30
square In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
faces, 12 regular
pentagon In geometry, a pentagon () is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is 540°. A pentagon may be simple or list of self-intersecting polygons, self-intersecting. A self-intersecting ...
al faces, with 60 vertices, and 120 edges.


Names

Johannes Kepler Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, Natural philosophy, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best know ...
in ''
Harmonices Mundi ''Harmonice Mundi'' (Latin: ''The Harmony of the World'', 1619) is a book by Johannes Kepler. In the work, written entirely in Latin, Kepler discusses harmony and congruence in geometrical forms and physical phenomena. The final section of t ...
'' (1618) named this polyhedron a ''rhombicosidodecahedron'', being short for ''truncated icosidodecahedral rhombus'', with ''icosidodecahedral rhombus'' being his name for a
rhombic triacontahedron The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombus, rhombic face (geometry), faces. It has 60 edge (geometry), edges and 32 vertex ...
. There are different truncations of a
rhombic triacontahedron The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombus, rhombic face (geometry), faces. It has 60 edge (geometry), edges and 32 vertex ...
into a
topological Topology (from the Greek words , and ) is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, wit ...
rhombicosidodecahedron: Prominently its rectification (left), the one that creates the uniform solid (center), and the rectification of the dual
icosidodecahedron In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (''icosi-'') triangular faces and twelve (''dodeca-'') pentagonal faces. An icosidodecahedron has 30 identical Vertex (geometry), vertices, with two triang ...
(right), which is the core of the dual compound.


Dimensions

For a rhombicosidodecahedron with edge length ''a'', its surface area and volume are: :\begin A &= \left(30+5\sqrt+3\sqrt\right)a^2 &&\approx 59.305\,982\,844\,9 a^2 \\ V &=\fraca^3 &&\approx 41.615\,323\,782\,5 a^3 \end


Geometric relations

Expanding an
icosidodecahedron In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (''icosi-'') triangular faces and twelve (''dodeca-'') pentagonal faces. An icosidodecahedron has 30 identical Vertex (geometry), vertices, with two triang ...
by moving the faces away from the origin the right amount, rotating each face so that each triangle vertex continues to touch a pentagon vertex, without changing the size of the faces, and patching the square holes in the result, yields a rhombicosidodecahedron. Therefore, it has the same number of triangles as an
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrical tha ...
and the same number of pentagons as a
dodecahedron In geometry, a dodecahedron (; ) or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three Kepler–Po ...
, with a square for each edge of either. Alternatively, expanding each of five cubes by moving the faces away from the origin the right amount and rotating each of the five 72° around so they are equidistant from each other, without changing the orientation or size of the faces, and patching the pentagonal and triangular holes in the result, yields a rhombicosidodecahedron. Therefore, it has the same number of squares as five cubes. Two clusters of faces of the bilunabirotunda, the ''lunes'' (each ''lune'' featuring two triangles adjacent to opposite sides of one square), can be aligned with a congruent patch of faces on the rhombicosidodecahedron. If two bilunabirotundae are aligned this way on opposite sides of the rhombicosidodecahedron, then a cube can be put between the bilunabirotundae at the very center of the rhombicosidodecahedron. The rhombicosidodecahedron shares the vertex arrangement with the small stellated truncated dodecahedron, and with the uniform compounds of six or twelve pentagrammic prisms. The Zometool kits for making
geodesic dome A geodesic dome is a hemispherical thin-shell structure (lattice-shell) based on a geodesic polyhedron. The rigid triangular elements of the dome distribute stress throughout the structure, making geodesic domes able to withstand very heavy ...
s and other
polyhedra In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary su ...
use slotted balls as connectors. The balls are "expanded" rhombicosidodecahedra, with the squares replaced by rectangles. The expansion is chosen so that the resulting rectangles are golden rectangles. Twelve of the 92
Johnson solid In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two Solid geometry, s ...
s are derived from the rhombicosidodecahedron, four of them by rotation of one or more pentagonal cupolae: the gyrate, parabigyrate, metabigyrate, and trigyrate rhombicosidodecahedron. Eight more can be constructed by removing up to three cupolae, sometimes also rotating one or more of the other cupolae.


Cartesian coordinates

Cartesian coordinates In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
for the vertices of a rhombicosidodecahedron with an edge length of 2 centered at the origin are all
even permutation In mathematics, when ''X'' is a finite set with at least two elements, the permutations of ''X'' (i.e. the bijective functions from ''X'' to ''X'') fall into two classes of equal size: the even permutations and the odd permutations. If any total ...
s of: :(±1, ±1, ±''φ''3), :(±''φ''2, ±''φ'', ±2''φ''), :(±(2+''φ''), 0, ±''φ''2), where ''φ'' =  is the
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \fr ...
. Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely = for edge length 2. For unit edge length, R must be halved, giving :''R'' = = ≈ 2.233.


Orthogonal projections

The ''rhombicosidodecahedron'' has six special
orthogonal projection In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it we ...
s, centered, on a vertex, on two types of edges, and three types of faces: triangles, squares, and pentagons. The last two correspond to the A2 and H2 Coxeter planes.


Spherical tiling

The rhombicosidodecahedron can also be represented as a
spherical tiling In geometry, a spherical polyhedron or spherical tiling is a tessellation, tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called ''spherical polygons''. A polyhedron whose vertices are equi ...
, and projected onto the plane via a
stereographic projection In mathematics, a stereographic projection is a perspective transform, perspective projection of the sphere, through a specific point (geometry), point on the sphere (the ''pole'' or ''center of projection''), onto a plane (geometry), plane (th ...
. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.


Related polyhedra


Symmetry mutations

This polyhedron is topologically related as a part of a sequence of cantellated polyhedra with vertex figure (3.4.n.4), which continues as tilings of the
hyperbolic plane In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P' ...
. These
vertex-transitive In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face i ...
figures have (*n32) reflectional
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
.


Johnson solids

There are 12 related
Johnson solid In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two Solid geometry, s ...
s, 5 by diminishment, and 8 including gyrations:


Vertex arrangement

The rhombicosidodecahedron shares its vertex arrangement with three nonconvex uniform polyhedra: the small stellated truncated dodecahedron, the small dodecicosidodecahedron (having the triangular and pentagonal faces in common), and the small rhombidodecahedron (having the square faces in common). It also shares its vertex arrangement with the uniform compounds of six or twelve pentagrammic prisms.


Rhombicosidodecahedral graph

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
field of
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
, a rhombicosidodecahedral graph is the graph of vertices and edges of the rhombicosidodecahedron, one of the
Archimedean solid The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygon and are vertex-transitive, although they aren't face-transitive. The solids were named after Archimedes, although he did not claim credit for them. They ...
s. It has 60 vertices and 120 edges, and is a quartic graph Archimedean graph.


See also

* Truncated rhombicosidodecahedron


Notes


References

* (Section 3-9) * *''
The Big Bang Theory ''The Big Bang Theory'' is an American television sitcom created by Chuck Lorre and Bill Prady for CBS. It aired from September 24, 2007, to May 16, 2019, running for 12 seasons and 279 episodes. The show originally centered on five charact ...
Series 8 Episode 2 - The Junior Professor Solution'': features this solid as the answer to an impromptu science quiz the main four characters have in Leonard and Sheldon's apartment, and is also illustrated in
Chuck Lorre Charles Michael Lorre ( ; né Levine; born October 18, 1952) is an American television producer, writer, director, and composer. Nicknamed the "King of Sitcoms", Lorre has created/co-created and produced many sitcoms including '' Cybill'' (199 ...
's Vanity Card #461 at the end of that episode.


External links

* ** *
Editable printable net of a Rhombicosidodecahedron with interactive 3D viewThe Uniform Polyhedra
The Encyclopedia of Polyhedra {{Polyhedron navigator Archimedean solids Uniform polyhedra