HOME



picture info

Vertex (graph Theory)
In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph consists of a set of vertices and a set of arcs (ordered pairs of vertices). In a diagram of a graph, a vertex is usually represented by a circle with a label, and an edge is represented by a line or arrow extending from one vertex to another. From the point of view of graph theory, vertices are treated as featureless and indivisible objects, although they may have additional structure depending on the application from which the graph arises; for instance, a semantic network is a graph in which the vertices represent concepts or classes of objects. The two vertices forming an edge are said to be the endpoints of this edge, and the edge is said to be incident to the vertices. A vertex ''w'' is said to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cut Vertex
In graph theory, a biconnected component or block (sometimes known as a 2-connected component) is a maximal biconnected subgraph. Any connected graph decomposes into a tree of biconnected components called the block-cut tree of the graph. The blocks are attached to each other at shared vertices called cut vertices or separating vertices or articulation points. Specifically, a cut vertex is any vertex whose removal increases the number of connected components. A block containing at most one cut vertex is called a leaf block, it corresponds to a leaf vertex in the block-cut tree. Algorithms Linear time depth-first search The classic sequential algorithm for computing biconnected components in a connected undirected graph is due to John Hopcroft and Robert Tarjan (1973). It runs in linear time, and is based on depth-first search. This algorithm is also outlined as Problem 22-2 of Introduction to Algorithms (both 2nd and 3rd editions). The idea is to run a depth-first sea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Separator
In graph theory, a vertex subset is a vertex separator (or vertex cut, separating set) for nonadjacent Vertex (graph theory), vertices and if the Graph partition, removal of from the Graph (discrete mathematics), graph separates and into distinct connected component (graph theory), connected components. Examples Consider a grid graph with rows and columns; the total number of vertices is . For instance, in the illustration, , , and . If is odd, there is a single central row, and otherwise there are two rows equally close to the center; similarly, if is odd, there is a single central column, and otherwise there are two columns equally close to the center. Choosing to be any of these central rows or columns, and removing from the graph, partitions the graph into two smaller connected subgraphs and , each of which has at most vertices. If (as in the illustration), then choosing a central column will give a separator with r \leq \sqrt vertices, and similarly if the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Node (computer Science)
A node is a basic unit of a data structure, such as a linked list or Tree (data structure), tree data structure. Nodes contain data and also may link to other nodes. Links between nodes are often implemented by Pointer (computer programming), pointers. Nodes and trees Nodes are often arranged into tree structures. A node represents the information contained in a single data structure. These nodes may contain a value or condition, or possibly serve as another independent data structure. Nodes are represented by a single parent node. The highest point on a tree structure is called a root node, which does not have a parent node, but serves as the parent or 'grandparent' of all of the nodes below it in the tree. The height of a node is determined by the total number of edges on the path from that node to the furthest leaf node, and the height of the tree is equal to the height of the root node. Node depth is determined by the distance between that particular node and the root node. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines across the connected faces, joining adjacent points around the face. When done, these lines form a complete circuit, i.e. a polygon, around the vertex. This polygon is the vertex figure. More precise formal definitions can vary quite widely, according to circumstance. For example Coxeter (e.g. 1948, 1954) varies his definition as convenient for the current area of discussion. Most of the following definitions of a vertex figure apply equally well to infinite tessellation, tilings or, by extension, to Honeycomb (geometry), space-filling tessellation with polytope Cell (geometry), cells and other higher-dimensional polytopes. As a flat slice Make a slice through the corner of the polyhedron, cutting through all the edges conn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Skeleton (topology)
In mathematics, particularly in algebraic topology, the of a topological space presented as a simplicial complex (resp. CW complex) refers to the subspace that is the union of the simplices of (resp. cells of ) of dimensions In other words, given an inductive definition of a complex, the is obtained by stopping at the . These subspaces increase with . The is a discrete space, and the a topological graph. The skeletons of a space are used in obstruction theory, to construct spectral sequences by means of filtrations, and generally to make inductive arguments. They are particularly important when has infinite dimension, in the sense that the do not become constant as In geometry In geometry, a of P (functionally represented as skel''k''(''P'')) consists of all elements of dimension up to ''k''. For example: : skel0(cube) = 8 vertices : skel1(cube) = 8 vertices, 12 edges : skel2(cube) = 8 vertices, 12 edges, 6 square faces For simplicial sets The above ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex (geometry)
In geometry, a vertex (: vertices or vertexes), also called a corner, is a point (geometry), point where two or more curves, line (geometry), lines, or line segments Tangency, meet or Intersection (geometry), intersect. For example, the point where two lines meet to form an angle and the point where edge (geometry), edges of polygons and polyhedron, polyhedra meet are vertices. Definition Of an angle The ''vertex'' of an angle is the point where two Line (mathematics)#Ray, rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place. :(3 vols.): (vol. 1), (vol. 2), (vol. 3). Of a polytope A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection (Euclidean geometry), intersection of Edge (geometry), edges, face (geometry), faces or facets of the object. In a polygon, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjacency (graph Theory)
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B C D E F G H I J K L M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Isomorphism
In graph theory, an isomorphism of graphs ''G'' and ''H'' is a bijection between the vertex sets of ''G'' and ''H'' : f \colon V(G) \to V(H) such that any two vertices ''u'' and ''v'' of ''G'' are adjacent in ''G'' if and only if f(u) and f(v) are adjacent in ''H''. This kind of bijection is commonly described as "edge-preserving bijection", in accordance with the general notion of isomorphism being a structure-preserving bijection. If an isomorphism exists between two graphs, then the graphs are called isomorphic, often denoted by G\simeq H. In the case when the isomorphism is a mapping of a graph onto itself, i.e., when ''G'' and ''H'' are one and the same graph, the isomorphism is called an automorphism of ''G''. Graph isomorphism is an equivalence relation on graphs and as such it partitions the class of all graphs into equivalence classes. A set of graphs isomorphic to each other is called an isomorphism class of graphs. The question of whether graph isomorphism can be dete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graph Enumeration
In combinatorics, an area of mathematics, graph enumeration describes a class of combinatorial enumeration problems in which one must count undirected graph, undirected or directed graphs of certain types, typically as a function of the number of vertices of the graph. These problems may be solved either exactly (as an algebraic enumeration problem) or asymptotic analysis, asymptotically. The pioneers in this area of mathematics were George Pólya, Arthur Cayley and J. Howard Redfield. Labeled vs unlabeled problems In some graphical enumeration problems, the vertices of the graph are considered to be ''labeled'' in such a way as to be distinguishable from each other, while in other problems any permutation of the vertices is considered to form the same graph, so the vertices are considered identical or ''unlabeled''. In general, labeled problems tend to be easier. As with combinatorial enumeration more generally, the Pólya enumeration theorem is an important tool for reducing unlab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex-transitive Graph
In the mathematics, mathematical field of graph theory, an Graph automorphism, automorphism is a permutation of the Vertex (graph theory), vertices such that edges are mapped to edges and non-edges are mapped to non-edges. A graph is a vertex-transitive graph if, given any two vertices and of , there is an automorphism such that :f(v_1) = v_2.\ In other words, a graph is vertex-transitive if its automorphism group Group action (mathematics), acts Group_action#Remarkable properties of actions, transitively on its vertices.. A graph is vertex-transitive if and only if its graph complement is, since the group actions are identical. Every symmetric graph without isolated vertex, isolated vertices is vertex-transitive, and every vertex-transitive graph is Regular graph, regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph and Tietze's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Space
In the mathematical discipline of graph theory, the edge space and vertex space of an undirected graph are vector spaces defined in terms of the edge and vertex sets, respectively. These vector spaces make it possible to use techniques of linear algebra in studying the graph. Definition Let G:=(V,E) be a finite undirected graph. The vertex space \mathcal(G) of ''G'' is the vector space over the finite field of two elements \mathbb/2\mathbb:=\lbrace 0,1 \rbrace of all functions V\rightarrow \mathbb/2\mathbb. Every element of \mathcal(G) naturally corresponds the subset of ''V'' which assigns a 1 to its vertices. Also every subset of ''V'' is uniquely represented in \mathcal(G) by its characteristic function. The edge space \mathcal(G) is the \mathbb/2\mathbb-vector space freely generated by the edge set ''E''. The dimension of the vertex space is thus the number of vertices of the graph, while the dimension of the edge space is the number of edges. These definitions can be made ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]