HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
graph theory In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, a vertex-transitive graph is a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
in which, given any two vertices and of , there is some automorphism :f : G \to G\ such that :f(v_1) = v_2.\ In other words, a graph is vertex-transitive if its automorphism group acts
transitively Transitivity or transitive may refer to: Grammar * Transitivity (grammar), a property of verbs that relates to whether a verb can take direct objects * Transitive verb, a verb which takes an object * Transitive case, a grammatical case to mark a ...
on its vertices.. A graph is vertex-transitive
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bi ...
its graph complement is, since the group actions are identical. Every symmetric graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is
regular The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instrum ...
. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the
Frucht graph In the mathematical field of graph theory, the Frucht graph is a cubic graph with 12 vertices, 18 edges, and no nontrivial symmetries. It was first described by Robert Frucht in 1939. The Frucht graph is a pancyclic, Halin graph with chromatic ...
and Tietze's graph).


Finite examples

Finite vertex-transitive graphs include the symmetric graphs (such as the
Petersen graph In the mathematics, mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertex (graph theory), vertices and 15 edge (graph theory), edges. It is a small graph that serves as a useful example and counterexample for ...
, the Heawood graph and the vertices and edges of the Platonic solids). The finite Cayley graphs (such as cube-connected cycles) are also vertex-transitive, as are the vertices and edges of the Archimedean solids (though only two of these are symmetric). Potočnik, Spiga and Verret have constructed a census of all connected cubic vertex-transitive graphs on at most 1280 vertices. Although every Cayley graph is vertex-transitive, there exist other vertex-transitive graphs that are not Cayley graphs. The most famous example is the Petersen graph, but others can be constructed including the
line graph In the mathematical discipline of graph theory, the line graph of an undirected graph is another graph that represents the adjacencies between edges of . is constructed in the following way: for each edge in , make a vertex in ; for every ...
s of edge-transitive non-
bipartite Bipartite may refer to: * 2 (number) * Bipartite (theology), a philosophical term describing the human duality of body and soul * Bipartite graph, in mathematics, a graph in which the vertices are partitioned into two sets and every edge has an en ...
graphs with odd vertex degrees.


Properties

The edge-connectivity of a vertex-transitive graph is equal to the
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathemati ...
''d'', while the vertex-connectivity will be at least 2(''d'' + 1)/3. If the degree is 4 or less, or the graph is also edge-transitive, or the graph is a minimal Cayley graph, then the vertex-connectivity will also be equal to ''d''.


Infinite examples

Infinite vertex-transitive graphs include: * infinite paths (infinite in both directions) * infinite
regular The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instrum ...
trees, e.g. the Cayley graph of the free group * graphs of uniform tessellations (see a complete list of planar tessellations), including all
tilings by regular polygons Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his ''Harmonices Mundi'' (Latin: ''The Harmony of the World'', 1619). Notation of Eucli ...
* infinite Cayley graphs * the Rado graph Two countable vertex-transitive graphs are called quasi-isometric if the ratio of their distance functions is bounded from below and from above. A well known
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1 ...
stated that every infinite vertex-transitive graph is quasi-isometric to a Cayley graph. A counterexample was proposed by Diestel and Leader in 2001. In 2005, Eskin, Fisher, and Whyte confirmed the counterexample..


See also

*
Edge-transitive graph In the mathematical field of graph theory, an edge-transitive graph is a graph such that, given any two edges and of , there is an automorphism of that maps to . In other words, a graph is edge-transitive if its automorphism group acts ...
* Lovász conjecture * Semi-symmetric graph * Zero-symmetric graph


References


External links

* {{MathWorld , urlname=Vertex-TransitiveGraph , title=Vertex-transitive graph
A census of small connected cubic vertex-transitive graphs
Primož Potočnik, Pablo Spiga, Gabriel Verret, 2012. Graph families Algebraic graph theory Regular graphs