Purpose and operation
RCDs are designed to disconnect the circuit if there is a leakage current. In their first implementation in the 1950s, power companies used them to prevent electricity theft where consumers grounded returning circuits rather than connecting them to neutral to inhibit electrical meters from registering their power consumption. The most common modern application is as a safety device to detect small leakage currents (typically 5–30mA) and disconnecting quickly enough (<30 milliseconds) to prevent device damage or electrocution. They are an essential part of the automatic disconnection of supply (ADS), i.e. to switch off when a fault develops, rather than rely on human intervention, one of the essential tenets of modern electrical practice. To reduce the risk of electrocution, RCDs should operate within 25–40 milliseconds with any leakage currents (through a person) of greater than 30mA, before electric shock can drive the heart into ventricular fibrillation, the most common cause of death through electric shock. By contrast, conventional circuit breakers or fuses only break the circuit when the total current is excessive (which may be thousands of times the leakage current an RCD responds to). A small leakage current, such as through a person, can be a very serious fault, but would probably not increase the total current enough for a fuse or overload circuit breaker to isolate the circuit, and not fast enough to save a life. RCDs operate by measuring the current balance between two conductors using a differential current transformer. This measures the difference between current flowing through the live conductor and that returning through the neutral conductor. If these do not sum to zero, there is a leakage of current to somewhere else (to earth/ground or to another circuit), and the device will open its contacts. Operation does not require a fault current to return through the earth wire in the installation; the trip will operate just as well if the return path is through plumbing, contact with the ground or any other current path. Automatic disconnection and a measure of shock protection is therefore still provided even if the earth wiring of the installation is damaged or incomplete. For an RCD used with three-phase power, all three live conductors and the neutral (if fitted) must pass through the current transformer.Application
Electrical plugs with incorporated RCD are sometimes installed on appliances that might be considered to pose a particular safety hazard, for example long extension leads, which might be used outdoors, or garden equipment or hair dryers, which may be used near a bath or sink. Occasionally an in-line RCD may be used to serve a similar function to one in a plug. By putting the RCD in the extension lead, protection is provided at whatever outlet is used even if the building has old wiring, such as knob and tube, or wiring that does not contain a grounding conductor. The in-line RCD can also have a lower tripping threshold than the building to further improve safety for a specific electrical device. In North America, GFI receptacles can be used in cases where there is no grounding conductor, but they must be labeled as "no equipment ground". This is referenced in the National Electric Code section 406 (D) 2, however codes change and someone should always consult a licensed professional and their local building and safety departments. The code is An ungrounded GFI receptacle will trip using the built-in "test" button, but will not trip using a GFI test plug, because the plug tests by passing a small current from line to the non-existent ground. It is worth noting that despite this, only one GFCI receptacle at the beginning of each circuit is necessary to protect downstream receptacles. There does not appear to be a risk of using multiple GFI receptacles on the same circuit, though it is considered redundant. In Europe, RCDs can fit on the same DIN rail as theRCBO
A pure RCD will detect imbalance in the currents of the supply and return conductors of a circuit. But it cannot protect against overload or short circuit like a fuse or a miniature circuit breaker (MCB) does (except for the special case of a short circuit from live to ground, not live to neutral). However, a RCD and a MCB often come integrated in the same device, thus being able to detect both supply imbalance and overload current. Such a device is called * RCBO (for residual-current circuit breaker with overcurrent protection) in Europe and Australia; * GFCI breaker (for ground fault circuit interrupter) in USA and Canada;Typical design
The diagram depicts the internal mechanism of a residual-current device (RCD). The device is designed to be wired in-line in an appliance power cord. It is rated to carry a maximal current of 13A and is designed to trip on a leakage current of 30mA. This is an active RCD; that is, it latches electrically and therefore trips on power failure, a useful feature for equipment that could be dangerous on unexpected re-energisation. Some early RCDs were entirely electromechanical and relied on finely balanced sprung over-centre mechanisms driven directly from the current transformer. As these are hard to manufacture to the required accuracy and prone to drift in sensitivity both from pivot wear and lubricant dry-out, the electronically-amplified type with a more robustRCD with additional overcurrent protection circuitry (RCBO or GFCI breaker)
RCD with additional arc fault protection circuitry
In addition to ground fault circuit interrupters (GFCIs), arc-fault circuit interrupters (AFCI) are equally important as they offer added protection from potentially hazardous arc-faults resulting from damage in branch circuit wiring as well as extensions to branches such as appliances and cord sets. By detecting hazardous arc-faults and responding by interrupting power, AFCIs helps reduce the likelihood of the home's electrical system being an ignition source of a fire. Dual function AFCI/GFCI devices offer both electrical fire prevention and shock prevention in one device making them a solution for many rooms in the home, especially when replacing an existing standard receptacle or existing ungrounded receptacle.Common features and variations
Differences in disconnection actions
Major differences exist regarding the manner in which an RCD-unit will act to disconnect the power to a circuit or appliance. There are four situations in which different types of RCD-units are used: # At the consumer power distribution level, usually in conjunction with an RCBO resettable circuit breaker; # Built into a wall socket; # Plugged into a wall socket, which may be part of a power-extension cable; and # Built into the cord of a portable appliance, such as those intended to be used in outdoor or wet areas. The first three of those situations, relate largely to usage as part of a power-distribution system and are almost always of the 'passive' or 'latched' variety, whereas the fourth relates solely to specific appliances and are always of the 'active' or 'non-latching' variety. 'Active' means prevention of any 're-activation' of the power supply after any inadvertent form of power outage, as soon as the mains supply becomes re-established; 'latch' relates to a 'switch' inside the unit housing the RCD that remains as set following any form of power outage, but has to be reset manually after the detection of an error-condition. In the fourth situation, it would be deemed to be highly undesirable, and probably very unsafe, for a connected appliance to automatically resume operation after a power disconnection, without having the operator in attendance – as such manual reactivation of the RCD is necessary. The difference between the modes of operation of the essentially two different types of RCD functionality is that the operation for power distribution purposes requires the internal latch to remain set within the RCD after any form of power disconnection caused by either the user turning the power off, or after any power outage; such arrangements are particularly applicable for connections to refrigerators and freezers. Situation two is mostly installed just as described above, but some wall socket RCDs are available to fit the fourth situation, often by operating a switch on the fascia panel. RCDs for the first and third situation are most commonly rated at 30mA and 40ms. For the fourth situation, there is generally a greater choice of ratings available – generally all lower than the other forms, but lower values often result in more nuisance tripping. Sometimes users apply protection in addition to one of the other forms, when they wish to override those with a lower rating. It may be wise to have a selection of type 4 RCDs available, because connections made under damp conditions or using lengthy power cables are more prone to trip-out when any of the lower ratings of RCD are used; ratings as low as 10mA are available.Number of poles and pole terminology
The number of poles represents the number of conductors that are interrupted when a fault condition occurs. RCDs used on single-phase AC supplies (two current paths), such as domestic power, are usually one- or two-pole designs, also known as single- andSensitivity
RCD sensitivity is expressed as the rated residual operating current, noted ''IΔn''. Preferred values have been defined by the IEC, thus making it possible to divide RCDs into three groups according to their ''IΔn'' value: * high sensitivity (HS): 5** – 10 – 30mA (for direct-contact or life injury protection), * medium sensitivity (MS): 100 – 300 – 500 – 1000mA (for fire protection), * low sensitivity (LS): 3 – 10 – 30A (typically for protection of machine). The 5mA sensitivity is typical for GFCI outlets.Break time (response speed)
There are two groups of devices. ''G'' (general use) ''instantaneous'' RCDs have no intentional time delay. They must never trip at one-half of the nominal current rating, but must trip within 200 milliseconds for rated current, and within 40 milliseconds at five times rated current. ''S'' (selective) or ''T'' (time-delayed) RCDs have a short time delay. They are typically used at the origin of an installation for fire protection to discriminate with ''G'' devices at the loads, and in circuits containing surge suppressors. They must not trip at one-half of rated current. They provide at least 130 milliseconds delay of tripping at rated current, 60 milliseconds at twice rated, and 50 milliseconds at five times rated. The maximum break time is 500ms at rated current, 200ms at twice rated, and 150ms at five times rated. Programmable earth fault relays are available to allow co-ordinated installations to minimise outage. For example, a power distribution system might have a 300mA, 300ms device at the service entry of a building, feeding several 100mA ''S'' type at each sub-board, and 30mA ''G'' type for each final circuit. In this way, a failure of a device to detect the fault will eventually be cleared by a higher-level device, at the cost of interrupting more circuits.Type (types of leakage current detected)
IEC Standard 60755 (''General requirements for residual current operated protective devices'') defines three types of RCD depending on the waveforms and frequency of the fault current. * Type AC RCDs trip on sinusoidal residual current. * Type A RCDs, in addition to Type AC, also respond to pulsating or continuous direct current of either polarity. * Type B RCDs, in addition to Type A, also respond to steady DC, and higher frequency current, or for combinations of alternating and direct current as may be found from single-phase or multi-phase rectifying circuits, like all the switching power supplies used at home, or for example washing machines etc., equipped with DC motors. The BEAMA RCD Handbook - Guide to the Selection and Application of RCDs summaries this as follows: * Type AC RCDs trip on alternating sinusoidal residual current, suddenly applied or smoothly increasing. * Type A RCDs trip on alternating sinusoidal residual current and on residual pulsating direct current, suddenly applied or smoothly increasing. * Type F RCDs trip in the same conditions as Type A and in addition: ** for composite residual currents, whether suddenly applied or slowly rising intended for circuit supplied between phase and neutral or phase and earthed middle conductor; ** for residual pulsating direct currents superimposed on smooth direct current. * Type B RCDs trip in the same conditions as Type F and in addition: ** for residual sinusoidal alternating currents up to 1kHz; ** for residual alternating currents superimposed on a smooth direct current; ** for residual pulsating direct currents superimposed on a smooth direct current; ** for residual pulsating rectified direct current which results from two or more phases; ** for residual smooth direct currents whether suddenly applied or slowly increased independent of polarity. and notes that these designations have been introduced because some designs of type A and AC RCD can be disabled if a DC current is present that saturates the core of the detector.Surge current resistance
The surge current refers to the peak current an RCD is designed to withstand using a test impulse of specified characteristics. The IEC 61008 and IEC 61009 standards require that RCDs withstand a 200A "ring wave" impulse. The standards also require RCDs classified as "selective" to withstand a 3000A impulse surge current of specified waveform.Testing of correct operation
Limitations
A residual-current circuit breaker cannot remove all risk of electric shock or fire. In particular, an RCD alone will not detect overload conditions, phase-to-neutral short circuits or phase-to-phase short circuits (see three-phase electric power). Over-current protection ( fuses or circuit breakers) must be provided. Circuit breakers that combine the functions of an RCD with overcurrent protection respond to both types of fault. These are known as RCBOs and are available in 2-, 3- and 4-pole configurations. RCBOs will typically have separate circuits for detecting current imbalance and for overload current but use a common interrupting mechanism. An RCD helps to protect against electric shock when current flows through a person from a phase (live / line / hot) to earth. It cannot protect against electric shock when current flows through a person from phase to neutral or from phase to phase, for example where a finger touches both live and neutral contacts in a light fitting; a device cannot differentiate between current flow through an intended load from flow through a person, though the RCD may still trip if the person is in contact with the ground (earth), as some current may still pass through the persons finger and body to earth. Whole installations on a single RCD, common in older installations in the UK, are prone to "nuisance" trips that can cause secondary safety problems with loss of lighting and defrosting of food. Frequently the trips are caused by deteriorating insulation on heater elements, such as water heaters and cooker elements or rings. Although regarded as a nuisance, the fault is with the deteriorated element and not the RCD: replacement of the offending element will resolve the problem, but replacing the RCD will not. In the case of RCDs that need a power supply, a dangerous condition can arise if the neutral wire is broken or switched off on the supply side of the RCD, while the corresponding live wire remains uninterrupted. The tripping circuit needs power to work and does not trip when the power supply fails. Connected equipment will not work without a neutral, but the RCD cannot protect people from contact with the energized wire. For this reason circuit breakers must be installed in a way that ensures that the neutral wire cannot be switched off unless the live wire is also switched off at the same time. Where there is a requirement for switching off the neutral wire, two-pole breakers (or four-pole for 3-phase) must be used. To provide some protection with an interrupted neutral, some RCDs and RCBOs are equipped with an auxiliary connection wire that must be connected to the earth busbar of the distribution board. This either enables the device to detect the missing neutral of the supply, causing the device to trip, or provides an alternative supply path for the tripping circuitry, enabling it to continue to function normally in the absence of the supply neutral. Related to this, a single-pole RCD/RCBO interrupts the energized conductor only, while a double-pole device interrupts both the energized and return conductors. Usually this is a standard and safe practice, since the return conductor is held at ground potential anyway. However, because of its design, a single-pole RCD will not isolate or disconnect all relevant wires in certain uncommon situations, for example where the return conductor is not being held, as expected, at ground potential, or where current leakage occurs between the return and earth conductors. In these cases, a double-pole RCD will offer protection, since the return conductor would also be disconnected.History and nomenclature
The world's first high-sensitivity earth leakage protection system (i.e. a system capable of protecting people from the hazards of direct contact between a live conductor and earth), was a second-harmonic magnetic amplifier core-balance system, known as the magamp, developed in South Africa by Henri Rubin. Electrical hazards were of great concern in South African gold mines, and Rubin, an engineer at the company C.J. Fuchs Electrical Industries of Alberton Johannesburg, initially developed a cold-cathode system in 1955 which operated at 525V and had a tripping sensitivity of 250mA. Prior to this, core balance earth leakage protection systems operated at sensitivities of about 10A. The cold cathode system was installed in a number of gold mines and worked reliably. However, Rubin began working on a completely novel system with greatly improved sensitivity, and by early 1956, he had produced a prototype second-harmonic magnetic amplifier-type core balance system (South African Patent No. 2268/56 and Australian Patent No. 218360). The prototype magamp was rated at 220V, 60A and had an internally adjustable tripping sensitivity of 12.5–17.5mA. Very rapid tripping times were achieved through a novel design, and this combined with the high sensitivity was well within the safe current-time envelope for ventricular fibrillation determined byRegulation and adoption
Regulations differ widely from country to country. A single RCD installed for an entire electrical installation provides protection against shock hazards to all circuits, however, any fault may cut all power to the premises. A solution is to create groups of circuits each with a RCD, or to use RCBO for each individual circuit.Australia
In Australia, residual current devices have been mandatory on power circuits since 1991 and on light circuits since 2000. A minimum of two RCDs is required per domestic installation. All socket outlets and lighting circuits are to be distributed over circuit RCDs. A maximum of three subcircuits only, may be connected to a single RCD.Austria
Austria regulated residual current devices in the ÖVE E8001-1/A1:2013-11-01 norm (most recent revision). It has been required in private housing since 1980. The maximum activation time must not exceed 0.4 seconds. It needs to be installed on all circuits with power plugs with a maximum leakage current of 30mA and a maximum rated current of 16A. Additional requirements are placed on circuits in wet areas, construction sites and commercial buildings.Belgium
Belgian domestic installations are required to be equipped with a 300mA residual current device that protects all circuits. Furthermore, at least one 30mA residual current device is required that protects all circuits in "wet rooms" (e.g. bathroom, kitchen) as well as circuits that power certain "wet" appliances (washing machine, tumble dryer, dishwasher). Electrical underfloor heating is required to be protected by a 100mA RCD. These RCDs must be of type A.Brazil
Since NBR 5410 (1997) residual current devices and grounding are required for new construction or repair in wet areas, outdoor areas, interior outlets used for external appliances, or in areas where water is more probable like bathrooms and kitchens.Denmark
Denmark requires 30mA RCDs on all circuits that are rated for less than 20 A (circuits at greater rating are mostly used for distribution). RCDs became mandatory in 1975 for new buildings, and then for all buildings in 2008.France
According to the NF C15-100 regulation (1911 -> 2002), a general RCD not exceeding 100 to 300mA at the origin of the installation is mandatory. Moreover, in rooms where there is water, high power or sensitive equipment (bathrooms, kitchens, IT...), each socket outlet must be protected by an RCD not exceeding 30mA. The type of RCD required (A, AC, F) depends upon the type of the equipment that will be connected and the maximum power of the socket outlet. Minimal distances between electrical devices and water or the floor are described and mandatory.Germany
Since 1 May 1984, RCDs are mandatory for all rooms with a bath tub or a shower. Since June 2007 Germany requires the use of RCDs with a trip current of no more than 30mA on sockets rated up to 32A which are for general use. (India
According to Regulation 36 of the Electricity Regulations 1990 a) For a place of public entertainment, protection against earth leakage current must be provided by a residual current device of sensitivity not exceeding 10mA. b) For a place where the floor is likely to be wet or where the wall or enclosure is of low electrical resistance, protection against earth leakage current must be provided by a residual current device of sensitivity not exceeding 10mA. c) For an installation where hand-held equipment, apparatus or appliance is likely to be used, protection against earth leakage current must be provided by a residual current device of sensitivity not exceeding 30mA. d) For an installation other than the installation in (a), (b) and (c), protection against earth leakage current must be provided by a residual current device of sensitivity not exceeding 100mA.Italy
The Italian law (n. 46 March 1990) prescribes RCDs with no more than 30mA residual current (informally called "salvavita"—life saver, after earlyMalaysia
In the latest guidelines for electrical wiring in residential buildings (2008) handbook, the overall residential wiring need to be protected by a residual current device of sensitivity not exceeding 100mA. Additionally, all power sockets need to be protected by a residual current device of sensitivity not exceeding 30mA and all equipment in wet places (water heater, water pump) need to be protected by a residual current device of sensitivity not exceeding 10mA.New Zealand
From January 2003, all new circuits originating at the switchboard supplying lighting or socket outlets (power points) in domestic buildings must have RCD protection. Residential facilities (such as boarding houses, hospitals, hotels and motels) will also require RCD protection for all new circuits originating at the switchboard supplying socket outlets. These RCDs will normally be located at the switchboard. They will provide protection for all electrical wiring and appliances plugged into the new circuits.''Residual current devices - ACC''North America
Norway
In Norway, it has been required in all new homes since 2002, and on all new sockets since 2006. This applies to 32A sockets and below. The RCD must trigger after a maximum 0.4 seconds for 230V circuits, or 0.2 seconds for 400V circuits.South Africa
South Africa mandated the use of Earth Leakage Protection devices in residential environments (e.g. houses, flats, hotels, etc.) from October 1974, with regulations being refined in 1975 and 1976. Devices need to be installed in new premises and when repairs are carried out. Protection is required for power outlets and lighting, with the exception of emergency lighting that should not be interrupted. The standard device used in South Africa is indeed a hybrid of ELPD and RCCB.Taiwan
Taiwan requires circuits of receptacles in washrooms, balconies, and receptacles in kitchen no more than 1.8 metres from the sink the use of earth leakage circuit breakers. This requirement also apply to circuit of water heater in washrooms and circuits that involves devices in water, lights on metal frames, public drinking fountains and so on. In principle, ELCBs should be installed on branch circuits, with trip current no more than 30mA within 0.1 second according to Taiwanese law.Turkey
Turkey requires the use of RCDs with no more than 30mA and 300mA in all new homes since 2004. This rule was introduced in RG-16/06/2004-25494.United Kingdom
The current (18th) edition of the IEE Electrical Wiring Regulations requires that all socket outlets in most installations have RCD protection, though there are exemptions. Non armoured cables buried in walls must also be RCD protected (again with some specific exemptions). Provision of RCD protection for circuits present in bathrooms and shower rooms reduces the requirement for supplementary bonding in those locations. Two RCDs may be used to cover the installation, with upstairs and downstairs lighting and power circuits spread across both RCDs. When one RCD trips, power is maintained to at least one lighting and power circuit. Other arrangements, such as the use of RCBOs, may be employed to meet the regulations. The new requirements for RCDs do not affect most existing installations unless they are rewired, the distribution board is changed, a new circuit is installed, or alterations are made such as additional socket outlets or new cables buried in walls. RCDs used for shock protection must be of the 'immediate' operation type (not time-delayed) and must have a residual current sensitivity of no greater than 30mA. If spurious tripping would cause a greater problem than the risk of the electrical accident the RCD is supposed to prevent (examples might be a supply to a critical factory process, or to life support equipment), RCDs may be omitted, providing affected circuits are clearly labelled and the balance of risks considered; this may include the provision of alternative safety measures. The previous edition of the regulations required use of RCDs for socket outlets that were liable to be used by outdoor appliances. Normal practice in domestic installations was to use a single RCD to cover all the circuits requiring RCD protection (typically sockets and showers) but to have some circuits (typically lighting) not RCD protected. This was to avoid a potentially dangerous loss of lighting should the RCD trip. Protection arrangements for other circuits varied. To implement this arrangement it was common to install a consumer unit incorporating an RCD in what is known as a split load configuration, where one group of circuit breakers is supplied direct from the main switch (or time delay RCD in the case of a TT earth) and a second group of circuits is supplied via the RCD. This arrangement had the recognised problems that cumulative earth leakage currents from the normal operation of many items of equipment could cause spurious tripping of the RCD, and that tripping of the RCD would disconnect power from all the protected circuits.See also
* Domestic AC power plugs and sockets * Electrical injury * Insulation monitoring device * Protective relay * Arc-fault circuit interrupter * Isolation transformerNotes
References
External links