HOME



picture info

Solenoid
upright=1.20, An illustration of a solenoid upright=1.20, Magnetic field created by a seven-loop solenoid (cross-sectional view) described using field lines A solenoid () is a type of electromagnet formed by a helix, helical coil of wire whose length is substantially greater than its diameter, which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it. André-Marie Ampère coined the term ''solenoid'' in 1823, having conceived of the device in 1820. The French term originally created by Ampère is ''solénoïde'', which is a French transliteration of the Greek word '' σωληνοειδὴς'' which means ''tubular''. The helical coil of a solenoid does not necessarily need to revolve around a straight-line axis; for example, William Sturgeon's electromagnet of 1824 consisted of a solenoid bent into a horseshoe shape (similarly to an arc spring). Solenoids provide magnetic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solenoid And Ampere Law - 2
file:Solenoid-1.png, upright=1.20, An illustration of a solenoid file:VFPt Solenoid correct2.svg, upright=1.20, Magnetic field created by a seven-loop solenoid (cross-sectional view) described using field lines A solenoid () is a type of electromagnet formed by a helix, helical coil of wire whose length is substantially greater than its diameter, which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it. André-Marie Ampère coined the term ''solenoid'' in 1823, having conceived of the device in 1820. The French term originally created by Ampère is ''solénoïde'', which is a French transliteration of the Greek word ''wikt:σωλήνας, σωληνοειδὴς'' which means ''tubular''. The helical coil of a solenoid does not necessarily need to revolve around a straight-line axis; for example, William Sturgeon's electromagnet of 1824 consisted of a solenoid bent into a horsesh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solenoid With 3 Loops
upright=1.20, An illustration of a solenoid upright=1.20, Magnetic field created by a seven-loop solenoid (cross-sectional view) described using field lines A solenoid () is a type of electromagnet formed by a helix, helical coil of wire whose length is substantially greater than its diameter, which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it. André-Marie Ampère coined the term ''solenoid'' in 1823, having conceived of the device in 1820. The French term originally created by Ampère is ''solénoïde'', which is a French transliteration of the Greek word '' σωληνοειδὴς'' which means ''tubular''. The helical coil of a solenoid does not necessarily need to revolve around a straight-line axis; for example, William Sturgeon's electromagnet of 1824 consisted of a solenoid bent into a horseshoe shape (similarly to an arc spring). Solenoids provide magnetic fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Electromagnet
An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire (likely copper) wound into a electromagnetic coil, coil. A current through the wire creates a magnetic field which is concentrated along the center of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet. The main advantage of an electromagnet over a permanent magnet is that the magnetic field can be quickly changed by controlling the amount of electric current in the winding. However, unlike a permanent magnet, which needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field. Electromagnets are widely used as components of other electrical devices, such as Electric motor, motor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function (mathematics), function assigning a Euclidean vector, vector to each point of space, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Helix
A helix (; ) is a shape like a cylindrical coil spring or the thread of a machine screw. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is formed as two intertwined helices, and many proteins have helical substructures, known as alpha helices. The word ''helix'' comes from the Greek word , "twisted, curved". A "filled-in" helix – for example, a "spiral" (helical) ramp – is a surface called a '' helicoid''. Properties and types The pitch of a helix is the height of one complete helix turn, measured parallel to the axis of the helix. A double helix consists of two (typically congruent) helices with the same axis, differing by a translation along the axis. A circular helix (i.e. one with constant radius) has constant band curvature and constant torsion. The slope of a circular helix is commonly defined as the ratio of the circumference of the circular cylinder that it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vector Potential
In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a ''scalar potential'', which is a scalar field whose gradient is a given vector field. Formally, given a vector field \mathbf, a ''vector potential'' is a C^2 vector field \mathbf such that \mathbf = \nabla \times \mathbf. Consequence If a vector field \mathbf admits a vector potential \mathbf, then from the equality \nabla \cdot (\nabla \times \mathbf) = 0 (divergence of the curl is zero) one obtains \nabla \cdot \mathbf = \nabla \cdot (\nabla \times \mathbf) = 0, which implies that \mathbf must be a solenoidal vector field. Theorem Let \mathbf : \R^3 \to \R^3 be a solenoidal vector field which is twice continuously differentiable. Assume that \mathbf(\mathbf) decreases at least as fast as 1/\, \mathbf\, for \, \mathbf\, \to \infty . Define \mathbf (\mathbf) = \frac \int_ \frac \, d^3\mathbf where \nabla_y \times denotes curl with respect to variab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ampère's Circuital Law
In classical electromagnetism, Ampère's circuital law, often simply called Ampère's law, and sometimes Oersted's law, relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell derived it using hydrodynamics in his 1861 published paper " On Physical Lines of Force". In 1865, he generalized the equation to apply to time-varying currents by adding the displacement current term, resulting in the modern form of the law, sometimes called the Ampère–Maxwell law, which is one of Maxwell's equations that form the basis of classical electromagnetism. Ampère's original circuital law Until the early 19th century, electricity and magnetism were thought to be completely separate phenomena. This view changed in 1820 when Danish physicist Hans Christian Ørsted discovered that an electric current produces a magnetic effect. He observed that a compass needle placed near a current-carrying wire deflect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


André-Marie Ampère
André-Marie Ampère (, ; ; 20 January 177510 June 1836) was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as ''electrodynamics''. He is also the inventor of numerous applications, such as the solenoid (a term coined by him) and the electrical telegraph. As an autodidact, Ampère was a member of the French Academy of Sciences and professor at the École polytechnique and the Collège de France. The SI unit of electric current, the ampere (A), is named after him. His name is also one of the 72 names inscribed on the Eiffel Tower. The term ''kinematic'' is the English version of his ''cinématique'', which he constructed from the Greek ''kinema'' ("movement, motion"), itself derived from ''kinein'' ("to move"). Biography Early life André-Marie Ampère was born on 20 January 1775 in Lyon to Jean-Jacques Ampère, a prosperous businessman, and Jeanne Antoinette Desutières-Sarcey Ampè ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Right Hand Grip Rule
In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field. The various right- and left-hand rules arise from the fact that the three axes of three-dimensional space have two possible orientations. This can be seen by holding your hands together with palms up and fingers curled. If the curl of the fingers represents a movement from the first or x-axis to the second or y-axis, then the third or z-axis can point along either right thumb or left thumb. History The right-hand rule dates back to the 19th century when it was implemented as a way for identifying the positive direction of coordinate axes in three dimensions. William Rowan Hamilton, recognized for his development of quaternions, a mathematical system for rep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]