A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a
nuclide
Nuclides (or nucleides, from nucleus, also known as nuclear species) are a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state.
The word ''nuclide'' was coined by the A ...
that has excess numbers of either
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s or
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as
gamma radiation
A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
; transferred to one of its
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s to release it as a
conversion electron; or used to create and emit a new
particle
In the physical sciences, a particle (or corpuscle in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass.
They vary greatly in size or quantity, from s ...
(
alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
or
beta particle
A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β− decay and � ...
) from the nucleus. During those processes, the radionuclide is said to undergo
radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. These emissions are considered
ionizing radiation
Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching ...
because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay.
However, for a collection of atoms of a single nuclide the decay rate, and thus the
half-life Half-life is a mathematical and scientific description of exponential or gradual decay.
Half-life, half life or halflife may also refer to:
Film
* Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang
* ''Half Life: ...
(''t''
1/2) for that collection, can be calculated from their measured
decay constant
A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where is the quantity and (lambda) is a positive rate ...
s. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.
Radionuclides occur naturally or are artificially produced in
nuclear reactor
A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
s,
cyclotron
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
s,
particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s or
radionuclide generator
A radionuclide generator is a device which provides a local supply of a short-lived radioactive substance from the decay of a longer-lived parent radionuclide. They are commonly used in nuclear medicine to supply a radiopharmacy. The generator prov ...
s. There are about 730 radionuclides with half-lives longer than 60 minutes (see
list of nuclides
This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This includes isotopes of the first 105 elements, except for 87 (francium), 102 (nobelium) and 104 (rutherfordium). At ...
). Thirty-two of those are
primordial radionuclide
In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
s that were created before the Earth was formed. At least another 60 radionuclides are detectable in nature, either as daughters of primordial radionuclides or as radionuclides produced through natural production on Earth by cosmic radiation. More than 2400 radionuclides have half-lives less than 60 minutes. Most of those are only produced artificially, and have very short half-lives. For comparison, there are 251
stable nuclide
Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionu ...
s.
All
chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s can exist as radionuclides. Even the lightest element,
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
, has a well-known radionuclide,
tritium
Tritium () or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.33 years. The tritium nucleus (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of the ...
. Elements heavier than
lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
, and the elements
technetium
Technetium is a chemical element; it has Symbol (chemistry), symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense ...
and
promethium
Promethium is a chemical element; it has Symbol (chemistry), symbol Pm and atomic number 61. All of its isotopes are Radioactive decay, radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in the Earth's crust a ...
, exist only as radionuclides.
Unplanned exposure to radionuclides generally has a harmful effect on living organisms including humans, although low levels of exposure occur naturally without harm. The degree of harm will depend on the nature and extent of the radiation produced, the amount and nature of exposure (close contact, inhalation or ingestion), and the biochemical properties of the element; with increased risk of cancer the most usual consequence. However, radionuclides with suitable properties are used in
nuclear medicine
Nuclear medicine (nuclear radiology, nucleology), is a medical specialty involving the application of radioactivity, radioactive substances in the diagnosis and treatment of disease. Nuclear imaging is, in a sense, ''radiology done inside out'', ...
for both diagnosis and treatment. An imaging tracer made with radionuclides is called a
radioactive tracer
A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide (a radioactive atom). By virtue of its radioactive decay, it can be used to ...
. A
pharmaceutical drug
Medication (also called medicament, medicine, pharmaceutical drug, medicinal product, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy ( pharmacotherapy) is an important part of the ...
made with radionuclides is called a
radiopharmaceutical
Radiopharmaceuticals, or medicinal radiocompounds, are a group of pharmaceutical drugs containing radioactive isotopes. Radiopharmaceuticals can be used as diagnostic and therapeutic agents. Radiopharmaceuticals emit radiation themselves, which ...
.
Origin
Natural
On Earth, naturally occurring radionuclides fall into three categories: primordial radionuclides, secondary radionuclides, and
cosmogenic radionuclides.
* Radionuclides are produced in
stellar nucleosynthesis
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
and
supernova explosions along with stable nuclides. Most decay quickly but can still be observed astronomically and can play a part in understanding astronomic processes. Primordial radionuclides, such as
uranium
Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
and
thorium
Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
, exist in the present time because their
half-lives Half-life is a mathematical and scientific description of exponential or gradual decay.
Half-life, half life or halflife may also refer to:
Film
* ''Half-Life'' (film), a 2008 independent film by Jennifer Phang
* '' Half Life: A Parable for t ...
are so long (>100 million years) that they have not yet completely decayed. Some radionuclides have half-lives so long (many times the age of the universe) that decay has only recently been detected, and for most practical purposes they can be considered stable, most notably
bismuth-209
Bismuth-209 (Bi) is an isotope of bismuth, with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass unit ...
: detection of this decay meant that
bismuth
Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs nat ...
was no longer considered stable. It is possible decay may be observed in other nuclides, adding to this list of primordial radionuclides.
* Secondary radionuclides are radiogenic isotopes derived from the decay of primordial radionuclides. They have shorter half-lives than primordial radionuclides. They arise in the
decay chain
In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements.
Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
of the primordial isotopes
thorium-232
Thorium-232 () is the main naturally occurring isotope of thorium, with a relative abundance of 99.98%. It has a half life of 14.05 billion years, which makes it the longest-lived isotope of thorium. It decays by alpha decay to radium-228; its de ...
,
uranium-238
Uranium-238 ( or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it i ...
, and
uranium-235
Uranium-235 ( or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nat ...
. Examples include the natural isotopes of
polonium and
radium
Radium is a chemical element; it has chemical symbol, symbol Ra and atomic number 88. It is the sixth element in alkaline earth metal, group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, ...
.
*
Cosmogenic isotopes, such as
carbon-14
Carbon-14, C-14, C or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic matter is the basis of the radiocarbon dating method pioneered by Willard Libby and coll ...
, are present because they are continually being formed in the atmosphere due to
cosmic ray
Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
s.
Many of these radionuclides exist only in trace amounts in nature, including all cosmogenic nuclides. Secondary radionuclides will occur in proportion to their half-lives, so short-lived ones will be very rare. For example, polonium can be found in
uranium
Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
ores at about 0.1 mg per
metric ton
The tonne ( or ; symbol: t) is a unit of mass equal to 1,000 kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton in the United States to distinguish it from the non-metric units of the sh ...
(1 part in 10
10). Further radionuclides may occur in nature in virtually undetectable amounts as a result of rare events such as spontaneous fission or uncommon cosmic ray interactions.
Nuclear fission
Radionuclides are produced as an unavoidable result of
nuclear fission
Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactiv ...
and
thermonuclear explosions. The process of nuclear fission creates a wide range of
fission products, most of which are radionuclides. Further radionuclides can be created from irradiation of the nuclear fuel (creating a range of
actinides) and of the surrounding structures, yielding
activation products. This complex mixture of radionuclides with different chemistries and radioactivity makes handling
nuclear waste
Radioactive waste is a type of hazardous waste that contains radioactive material. It is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear ...
and dealing with
nuclear fallout
Nuclear fallout is residual radioactive material that is created by the reactions producing a nuclear explosion. It is initially present in the mushroom cloud, radioactive cloud created by the explosion, and "falls out" of the cloud as it is ...
particularly problematic.
Synthetic
Synthetic radionuclides are deliberately synthesised using
nuclear reactor
A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
s, particle accelerators or radionuclide generators:
* As well as being extracted from nuclear waste, radioisotopes can be produced deliberately with nuclear reactors, exploiting the high flux of
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s present. These neutrons activate elements placed within the reactor. A typical product from a nuclear reactor is
iridium-192. The elements that have a large propensity to take up the neutrons in the reactor are said to have a high
neutron cross-section.
* Particle accelerators such as
cyclotron
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
s accelerate particles to bombard a target to produce radionuclides. Cyclotrons accelerate protons at a target to produce positron-emitting radionuclides, e.g.
fluorine-18
Fluorine-18 (18F, also called radiofluorine) is a fluorine radioisotope which is an important source of positrons. It has a mass of 18.0009380(6) u and its half-life is 109.771(20) minutes. It decays by positron emission 96.7% of the time and el ...
.
* Radionuclide generators contain a parent radionuclide that decays to produce a radioactive daughter. The parent is usually produced in a nuclear reactor. A typical example is the
technetium-99m generator
A technetium-99m generator, or colloquially a technetium cow or moly cow, is a device used to extract the metastable isotope 99mTc of technetium from a decaying sample of molybdenum-99. 99Mo has a half-life of 66 hours and can be easily tran ...
used in
nuclear medicine
Nuclear medicine (nuclear radiology, nucleology), is a medical specialty involving the application of radioactivity, radioactive substances in the diagnosis and treatment of disease. Nuclear imaging is, in a sense, ''radiology done inside out'', ...
. The parent produced in the reactor is
molybdenum-99.
Uses
Radionuclides are used in two major ways: either for their radiation alone (
irradiation,
nuclear batteries) or for the combination of chemical properties and their radiation (tracers, biopharmaceuticals).
* In
biology
Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
, radionuclides of
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
can serve as
radioactive tracer
A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide (a radioactive atom). By virtue of its radioactive decay, it can be used to ...
s because they are chemically very similar to the nonradioactive nuclides, so most chemical, biological, and ecological processes treat them in a nearly identical way. One can then examine the result with a radiation detector, such as a
Geiger counter, to determine where the provided atoms were incorporated. For example, one might culture plants in an environment in which the
carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
contained radioactive carbon; then the parts of the plant that incorporate atmospheric carbon would be radioactive. Radionuclides can be used to monitor processes such as
DNA replication
In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all life, living organisms, acting as the most essential part of heredity, biolog ...
or
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
transport.
* in
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
and
biology
Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
radionuclide X-ray fluorescence spectrometry is used to determine
chemical composition
A chemical composition specifies the identity, arrangement, and ratio of the chemical elements making up a compound by way of chemical and atomic bonds.
Chemical formulas can be used to describe the relative amounts of elements present in a com ...
of the
compound.
Radiation
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes:
* ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
from a radionuclide source hits the sample and excites characteristic X-rays in the sample. This radiation is registered and the chemical composition of the sample can be determined from the analysis of the measured spectrum. By measuring the energy of the characteristic radiation lines, it is possible to determine the
proton number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
of the
chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
that emits the radiation, and by measuring the number of emitted
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s, it is possible to determine the
concentration
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
of individual chemical elements.
* In
nuclear medicine
Nuclear medicine (nuclear radiology, nucleology), is a medical specialty involving the application of radioactivity, radioactive substances in the diagnosis and treatment of disease. Nuclear imaging is, in a sense, ''radiology done inside out'', ...
, radioisotopes are used for diagnosis, treatment, and research. Radioactive chemical tracers emitting gamma rays or positrons can provide diagnostic information about internal anatomy and the functioning of specific organs, including the
human brain
The human brain is the central organ (anatomy), organ of the nervous system, and with the spinal cord, comprises the central nervous system. It consists of the cerebrum, the brainstem and the cerebellum. The brain controls most of the activi ...
. This is used in some forms of tomography:
single-photon emission computed tomography
Single-photon emission computed tomography (SPECT, or less commonly, SPET) is a nuclear medicine tomography, tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera ...
and
positron emission tomography
Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, r ...
(PET) scanning and
Cherenkov luminescence imaging. Radioisotopes are also a method of treatment in
hemopoietic forms of tumors; the success for treatment of solid tumors has been limited. More powerful gamma sources
sterilise syringes and other medical equipment.
* In
food preservation
Food preservation includes processes that make food more resistant to microorganism growth and slow the redox, oxidation of fats. This slows down the decomposition and rancidification process. Food preservation may also include processes that in ...
, radiation is used to stop the sprouting of root crops after harvesting, to kill parasites and pests, and to control the ripening of stored fruit and vegetables.
Food irradiation usually uses beta-decaying nuclides with strong gamma emissions like
cobalt-60
Cobalt-60 (Co) is a synthetic radioactive isotope of cobalt with a half-life of 5.2714 years. It is produced artificially in nuclear reactors. Deliberate industrial production depends on neutron activation of bulk samples of the monoisotop ...
or
caesium-137.
* In
industry, and in
mining
Mining is the Resource extraction, extraction of valuable geological materials and minerals from the surface of the Earth. Mining is required to obtain most materials that cannot be grown through agriculture, agricultural processes, or feasib ...
, radionuclides are used to examine welds, to detect leaks, to study the rate of wear, erosion and corrosion of metals, and for on-stream analysis of a wide range of minerals and fuels.
* In
spacecraft
A spacecraft is a vehicle that is designed spaceflight, to fly and operate in outer space. Spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth observation, Weather s ...
, radionuclides are used to provide power and heat, notably through
radioisotope thermoelectric generator
A radioisotope thermoelectric generator (RTG, RITEG), or radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the Decay heat, heat released by the decay of a suitable radioactive material i ...
s (RTGs) and
radioisotope heater unit
A radioisotope heater unit (RHU) is a small device that provides heat through radioactive decay. They are similar to tiny radioisotope thermoelectric generators (RTG) and normally provide about one watt of heat each, derived from the decay of ...
s (RHUs).
* In
astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
and
cosmology
Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
, radionuclides play a role in understanding stellar and planetary process.
* In
particle physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
, radionuclides help discover new physics (
physics beyond the Standard Model
Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neut ...
) by measuring the energy and momentum of their beta decay products (for example,
neutrinoless double beta decay
Neutrinoless double beta decay (0νββ) is a commonly proposed and experimentally pursued theoretical radioactive decay process that would prove a Majorana particle, Majorana nature of the neutrino particle. To this day, it has not been found.
...
and the search for
weakly interacting massive particles
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.
There exists no formal definition of a WIMP, but broadly, it is an elementary particle which interacts via gravity an ...
).
* In
ecology
Ecology () is the natural science of the relationships among living organisms and their Natural environment, environment. Ecology considers organisms at the individual, population, community (ecology), community, ecosystem, and biosphere lev ...
, radionuclides are used to trace and analyze pollutants, to study the movement of surface water, and to measure water runoffs from rain and snow, as well as the flow rates of streams and rivers.
* In
geology
Geology (). is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth ...
,
archaeology
Archaeology or archeology is the study of human activity through the recovery and analysis of material culture. The archaeological record consists of Artifact (archaeology), artifacts, architecture, biofact (archaeology), biofacts or ecofacts, ...
, and
paleontology
Paleontology, also spelled as palaeontology or palæontology, is the scientific study of the life of the past, mainly but not exclusively through the study of fossils. Paleontologists use fossils as a means to classify organisms, measure ge ...
, natural radionuclides are used to measure ages of rocks, minerals, and fossil materials.
Examples
The following table lists properties of selected radionuclides illustrating the range of properties and uses.
Key: ''Z'' =
atomic number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
; ''N'' =
neutron number; DM = decay mode; DE = decay energy; EC =
electron capture
Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
Household smoke detectors

Radionuclides are present in many homes as they are used inside the most common household
smoke detectors. The radionuclide used is
americium-241
Americium-241 (Am, Am-241) is an isotope of americium. Like all isotopes of americium, it is radioactive, with a half-life of . Am is the most common isotope of americium as well as the most prevalent isotope of americium in nuclear waste. It ...
, which is created by bombarding plutonium with neutrons in a nuclear reactor. It decays by emitting
alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s and
gamma radiation
A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
to become
neptunium-237. Smoke detectors use a very small quantity of
241Am (about 0.29 micrograms per smoke detector) in the form of
americium dioxide.
241Am is used as it emits alpha particles which ionize the air in the detector's
ionization chamber
The ionization chamber is the simplest type of gaseous ionisation detector, and is widely used for the detection and measurement of many types of ionizing radiation, including X-rays, gamma rays, alpha particles and beta particles. Conventionall ...
. A small electric voltage is applied to the ionized air which gives rise to a small electric current. In the presence of smoke, some of the ions are neutralized, thereby decreasing the current, which activates the detector's alarm.
Impacts on organisms
Radionuclides that find their way into the environment may cause harmful effects as
radioactive contamination
Radioactive contamination, also called radiological pollution, is the deposition of, or presence of Radioactive decay, radioactive substances on surfaces or within solids, liquids, or gases (including the human body), where their presence is uni ...
. They can also cause damage if they are excessively used during treatment or in other ways exposed to living beings, by
radiation poisoning. Potential health damage from exposure to radionuclides depends on a number of factors, and "can damage the functions of healthy tissue/organs. Radiation exposure can produce effects ranging from skin redness and hair loss, to
radiation burn
A radiation burn is a damage to the skin or other biological tissue and organs as an effect of radiation. The radiation types of greatest concern are thermal radiation, radio frequency energy, ultraviolet light and ionizing radiation.
The most ...
s and
acute radiation syndrome
Acute radiation syndrome (ARS), also known as radiation sickness or radiation poisoning, is a collection of health effects that are caused by being exposed to high amounts of ionizing radiation in a short period of time. Symptoms can start wit ...
. Prolonged exposure can lead to cells being damaged and in turn lead to cancer. Signs of cancerous cells might not show up until years, or even decades, after exposure."
Summary table for classes of nuclides, stable and radioactive
Following is a summary table for the
list of 989 nuclides with half-lives greater than one hour. A total of 251 nuclides have never been observed to decay, and are classically considered stable. Of these, 90 are believed to be absolutely stable except to
proton decay (which has never been observed), while the rest are "
observationally stable
Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
" and theoretically can undergo radioactive decay with extremely long half-lives.
The remaining tabulated radionuclides have half-lives longer than 1 hour, and are well-characterized (see
list of nuclides
This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This includes isotopes of the first 105 elements, except for 87 (francium), 102 (nobelium) and 104 (rutherfordium). At ...
for a complete tabulation). They include 30 nuclides with measured half-lives longer than the estimated age of the universe (13.8 billion years), and another four nuclides with half-lives long enough (> 100 million years) that they are radioactive
primordial nuclide
In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
s, and may be detected on Earth, having survived from their presence in interstellar dust since before the formation of the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, about 4.6 billion years ago. Another 60+ short-lived nuclides can be detected naturally as daughters of longer-lived nuclides or cosmic-ray products. The remaining known nuclides are known solely from artificial
nuclear transmutation
Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.
A transmutat ...
.
Numbers are not exact, and may change slightly in the future, as "stable nuclides" are observed to be radioactive with very long half-lives.
This is a summary table
[Table data is derived by counting members of the list; see WP:CALC. References for the list data itself are given below in the reference section in ]list of nuclides
This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This includes isotopes of the first 105 elements, except for 87 (francium), 102 (nobelium) and 104 (rutherfordium). At ...
for the 989 nuclides with half-lives longer than one hour (including those that are stable), given in
list of nuclides
This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This includes isotopes of the first 105 elements, except for 87 (francium), 102 (nobelium) and 104 (rutherfordium). At ...
.
List of commercially available radionuclides
This list covers common isotopes, most of which are available in very small quantities to the general public in most countries. Others that are not publicly accessible are traded commercially in industrial, medical, and scientific fields and are subject to government regulation.
Gamma emission only
Beta emission only
Alpha emission only
Multiple radiation emitters
See also
*
List of nuclides
This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This includes isotopes of the first 105 elements, except for 87 (francium), 102 (nobelium) and 104 (rutherfordium). At ...
shows all radionuclides with half-life > 1 hour
*
Hyperaccumulators table – 3
*
Radioactivity in biology
*
Radiometric dating
Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to Chronological dating, date materials such as Rock (geology), rocks or carbon, in which trace radioactive impurity, impurities were selectively incorporat ...
*
Radionuclide cisternogram
*
Uses of radioactivity in oil and gas wells
Notes
References
*
*
*
Further reading
*
External links
EPA – Radionuclides– EPA's Radiation Protection Program: Information.
FDA – Radionuclides– FDA's Radiation Protection Program: Information.
Interactive Chart of Nuclides– A chart of all nuclides
National Isotope Development Center– U.S. Government source of radionuclides – production, research, development, distribution, and information
The Live Chart of Nuclides – IAEA Radionuclides production simulator – IAEA
{{Authority control
Radioactivity
Isotopes
Nuclear physics
Nuclear chemistry