Radionuclide Generator
A radionuclide generator is a device which provides a local supply of a short-lived radioactive substance from the decay of a longer-lived parent radionuclide. They are commonly used in nuclear medicine to supply a radiopharmacy. The generator provides a way to separate the desired product from the parent, typically in a process that can be repeated several times over the life of the parent. Use of a generator avoids the challenge of distributing short-lived radionuclides from the original production site (typically a nuclear reactor) to individual users; the loss of Radioactive decay#Rates, activity due to decay in transit can result in too little being supplied or the need for much larger initial quantities to be sent out (incurring additional production and transport costs). An alternative to generators for on-site production of radionuclides is a cyclotron, though it is uncommon that the same radionuclide can be provided by both methods. It is feasible to have cyclotrons at larg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radioactive
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered ''radioactive''. Three of the most common types of decay are Alpha decay, alpha, Beta decay, beta, and Gamma ray, gamma decay. The weak force is the Fundamental interactions, mechanism that is responsible for beta decay, while the other two are governed by the electromagnetic force, electromagnetic and nuclear forces. Radioactive decay is a randomness, random process at the level of single atoms. According to quantum mechanics, quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as a half-life. The half-lives of radioactive atoms have a huge range: f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rubidium-82
Rubidium-82 (82Rb) is a radioactive isotope of rubidium. 82Rb is widely used in myocardial perfusion imaging. This isotope undergoes rapid uptake by myocardiocytes, which makes it a valuable tool for identifying myocardial ischemia in Positron Emission Tomography (PET) imaging. 82Rb is used in the pharmaceutical industry and is marketed as Rubidium-82 chloride under the trade names RUBY-FILL and CardioGen-82. History In 1953, it was discovered that rubidium carried a biological activity that was comparable to potassium. In 1959, preclinical trials showed in dogs that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow. In 1979, Yano et al. compared several ion-exchange columns to be used in an automated 82Sr/82Rb generator for clinical testing. Around 1980, pre-clinical trials began using 82Rb in PET. In 1982, Selwyn et al. examined the relation between myocardial perfusion and rubidium-82 uptake during acute ischemia in six dogs after corona ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tungsten-188
Naturally occurring tungsten (74W) consists of five isotopes. Four are considered stable (182W, 183W, 184W, and 186W) and one is slightly radioactive, 180W, with an extremely long half-life of . On average, two alpha decays of 180W occur per gram of natural tungsten per year, so for most practical purposes, 180W can be considered stable. Theoretically, all five naturally occurring isotopes of tungsten can decay into isotopes of hafnium (element 72) by alpha emission, but only 180W has been observed to do so. The other naturally occurring isotopes have not been observed to decay (they are observationally stable), and lower bounds for their half-lives have been established: :182W, t1/2 > 7.7×1021 years :183W, t1/2 > 4.1×1021 years :184W, t1/2 > 8.9×1021 years :186W, t1/2 > 8.2×1021 years Thirty-four artificial radioisotopes of tungsten have been characterized with mass numbers ranging from 156 to 194, the most stable of which are 181W with a half-life of 121.2 da ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Yttrium-90
Yttrium-90 () is a radioactive isotope of yttrium. Yttrium-90 has found a wide range of uses in radiation therapy to treat some forms of cancer Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po .... Along with other isotopes of yttrium, it is sometimes called radioyttrium. Decay undergoes beta particles emissions/decay (beta decay, β− decay) to zirconium-90 with a half-life of 64.1 hours and a decay energy of 2.28 MeV with an average beta energy of 0.9336 MeV. It also produces 0.01% 1.7 MeV photons during its decay process to the 0+ state of 90Zr, followed by pair production. The interaction between emitted electrons and matter can lead to the emission of Bremsstrahlung radiation. Production Yttrium-90 is produced by the nuclear decay of strontium-90 which has a half-l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strontium-90
Strontium-90 () is a radioactive isotope of strontium produced by nuclear fission, with a half-life of 28.79 years. It undergoes β− decay into yttrium-90, with a decay energy of 0.546 MeV. Strontium-90 has applications in medicine and industry and is an isotope of concern in fallout from nuclear weapons, nuclear weapons testing, and nuclear accidents. Radioactivity Naturally occurring strontium is nonradioactive and nontoxic at levels normally found in the environment, but 90Sr is a radiation hazard. 90Sr undergoes β− decay with a half-life of 28.79 years and a decay energy of 0.546 MeV distributed to an electron, an antineutrino, and the yttrium isotope 90Y, which in turn undergoes β− decay with a half-life of 64 hours and a decay energy of 2.28 MeV distributed to an electron, an antineutrino, and 90Zr (zirconium), which is stable. Note that 90Sr/Y is almost a pure beta particle source; the gamma photon emission from the decay of 90Y is so infrequen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Krypton-81m
There are 34 known isotopes of krypton (36Kr) with atomic mass numbers from 67 to 103. Naturally occurring krypton is made of five stable isotopes and one () which is slightly radioactive with an extremely long half-life, plus traces of radioisotopes that are produced by cosmic rays in the atmosphere. List of isotopes , -id=Krypton-67 , rowspan=2, 67Kr , rowspan=2 style="text-align:right" , 36 , rowspan=2 style="text-align:right" , 31 , rowspan=2, 66.98331(46)# , rowspan=2, 7.4(29) ms , β+? (63%) , 67Br , rowspan=2, 3/2-# , rowspan=2, , rowspan=2, , - , 2p (37%) , 65Se , -id=Krypton-68 , rowspan=3, 68Kr , rowspan=3 style="text-align:right" , 36 , rowspan=3 style="text-align:right" , 32 , rowspan=3, 67.97249(54)# , rowspan=3, 21.6(33) ms , β+, p (>90%) , 67Se , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , β+? (98.7%) , 70Br , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+, p (<1.3%) , 69Se , -id=Krypton-71 , rows ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rubidium-81
Rubidium (37Rb) has 36 isotopes, with naturally occurring rubidium being composed of just two isotopes; 85Rb (72.2%) and the radioactive 87Rb (27.8%). 87Rb has a half-life of . It readily substitutes for potassium in minerals, and is therefore fairly widespread. 87Rb has been used extensively in dating rocks; 87Rb decays to stable strontium-87 by emission of a beta particle (an electron ejected from the nucleus). During fractional crystallization, Sr tends to become concentrated in plagioclase, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residual magma may increase over time, resulting in rocks with increasing Rb/Sr ratios with increasing differentiation. The highest ratios (10 or higher) occur in pegmatites. If the initial amount of Sr is known or can be extrapolated, the age can be determined by measurement of the Rb and Sr concentrations and the 87Sr/86Sr ratio. The dates indicate the true age of the minerals only if the rocks have not been subsequently altere ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Copper-62
Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β− decay. 64Cu decays by both β+ and β−. There are at least 10 metastable isomers of copper, including two each for 70Cu and 75Cu. The most stable of these is 68mCu with a half-life of 3.75 minutes. The least stable is 75m2Cu with a half-life of 149 ns. List of isotopes , -id=Copper-55 , rowspan=2, 55Cu , rowspan=2 style="text-align:right" , 29 , rowspan=2 style="text-align:right" , 26 , rowspan=2, 54.96604(17) , rowspan=2, 55.9(15) ms , β+ , 55Ni , rowspan=2, 3/2−# , rowspan=2, , rowspan=2, , - , β+, p (?%) , 54Co , -id=Copper-56 , rowspan=2, 56Cu , rowspan=2 style="text-align:right ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zinc-62
Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant (48.6% natural abundance). Twenty-eight radioisotopes have been characterised with the most stable being 65Zn with a half-life of 244.26 days, and then 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states. Zinc has been proposed as a " salting" material for nuclear weapons. A jacket of isotopically enriched 64Zn, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 65Zn with a half-life of 244 days and produce approximately 1.115 MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several years. Such a weapon is not known to have ever been bu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gallium-68
Natural gallium (31Ga) consists of a mixture of two stable Isotope, isotopes: gallium-69 and gallium-71. Twenty-nine radioisotopes are known, all synthetic, with atomic masses ranging from 60 to 89; along with three nuclear isomer, nuclear isomers, 64mGa, 72mGa and 74mGa. Most of the isotopes with atomic mass numbers below 69 decay to isotopes of zinc, while most of the isotopes with masses above 71 decay to isotopes of germanium. Among them, the most commercially important radioisotopes are gallium-67 and gallium-68. Gallium-67 (half-life 3.3 days) is a gamma-emitting isotope (the gamma ray emitted immediately after electron capture) used in standard nuclear medical imaging, in procedures usually referred to as gallium scans. It is usually used as the free ion, Ga3+. It is the longest-lived radioisotope of gallium. The shorter-lived gallium-68 (half-life 68 minutes) is a positron-emitting isotope generated in very small quantities from germanium-68 in gallium-68 generators or i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Germanium-68
Germanium (32Ge) has five naturally occurring isotopes, 70Ge, 72Ge, 73Ge, 74Ge, and 76Ge. Of these, 76Ge is very slightly radioactive, decaying by double beta decay with a half-life of 1.78 × 1021 years (130 billion times the age of the universe). Stable 74Ge is the most common isotope, having a natural abundance of approximately 36%. 76Ge is the least common with a natural abundance of approximately 7%. At least 27 radioisotopes have also been synthesized ranging in atomic mass from 58 to 89. The most stable of these is 68Ge, decaying by electron capture with a half-life of 270.95 d. It decays to the medically useful positron-emitting isotope 68Ga. (See gallium-68 generator for notes on the source of this isotope, and its medical use.) The least stable known germanium isotope is 59Ge with a half-life of 13.3 ms. While most of germanium's radioisotopes decay by beta decay, 61Ge and 65Ge can also decay by β+-delayed proton emission. 84Ge through 87Ge also ha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gallium Generator
A germanium-68/gallium-68 generator is a device used to extract the positron-emitting isotope 68Ga of gallium from a source of decaying germanium-68. The parent isotope 68Ge has a half-life of 271 days and can be easily utilized for in-hospital production of generator produced 68Ga. Its decay product gallium-68 (with a half-life of only 68 minutes, inconvenient for transport) is extracted and used for certain positron emission tomography nuclear medicine diagnostic procedures, where the radioisotope's relatively short half-life and emission of positrons for creation of 3-dimensional PET scans, are useful. Parent isotope (68Ge) source The parent isotope germanium-68 is the longest-lived (271 days) of the radioisotopes of germanium. It has been produced by several methods. In the U.S., it is primarily produced in proton accelerators: At Los Alamos National Laboratory, it may be separated out as a product of proton capture, after proton irradiation of Nb-encapsulated gallium metal. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |