Polyhedral space is a certain
metric space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general sett ...
. A (
Euclidean) polyhedral space is a (usually finite)
simplicial complex
In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their ''n''-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial ...
in which every
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension ...
has a
flat metric. (Other spaces of interest are spherical and hyperbolic polyhedral spaces, where every simplex has a metric of constant positive or negative curvature). In the sequel all polyhedral spaces are taken to be Euclidean polyhedral spaces.
Examples
All 1-dimensional polyhedral spaces are just
metric graph In mathematics and physics, a quantum graph is a linear, network-shaped structure of vertices connected on edges (i.e., a graph) in which each edge is given a length and where a differential (or pseudo-differential) equation is posed on each edge ...
s. A good source of 2-dimensional examples constitute triangulations of 2-dimensional surfaces. The surface of a convex polyhedron in
is a 2-dimensional polyhedral space.
Any
PL-manifold (which is essentially the same as a
simplicial manifold, just with some technical assumptions for convenience) is an example of a polyhedral space. In fact, one can consider
pseudomanifolds, although it makes more sense to restrict the attention to normal manifolds.
Metric singularities
In the study of polyhedral spaces (particularly of those that are also
topological manifold In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real ''n''- dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout ma ...
s) metric singularities play a central role. Let a polyhedral space be an n-dimensional manifold. If a point in a polyhedral space that is an n-dimensional topological manifold has no neighborhood isometric to a Euclidean neighborhood in R^n, this point is said to be a metric singularity. It is a singularity of codimension k, if it has a neighborhood isometric to R^ with a
metric cone
Metric or metrical may refer to:
* Metric system, an internationally adopted decimal system of measurement
* An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement
Mathematics
In mathem ...
. Singularities of codimension 2 are of major importance; they are characterized by a single number, the conical angle.
The singularities can also studied topologically. Then, for example, there are no topological singularities of codimension 2. In a 3-dimensional polyhedral space without a boundary (faces not glued to other faces) any point has a neighborhood homeomorphic either to an open ball or to a cone over the
projective plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that ...
. In the former case, the point is necessarily a codimension 3 metric singularity. The general problem of topologically classifying singularities in polyhedral spaces is largely unresolved (apart from simple statements that e.g. any singularity is locally a cone over a spherical polyhedral space one dimension less and we can study singularities there).
Curvature
It is interesting to study the curvature of polyhedral spaces (the curvature in the sense of
Alexandrov spaces), specifically polyhedral spaces of nonnegative and nonpositive curvature. Nonnegative curvature on singularities of codimension 2 implies nonnegative curvature overall. However, this is false for nonpositive curvature. For example, consider R^3 with one octant removed. Then on the edges of this octant (singularities of codimension 2) the curvature is nonpositive (because of branching geodesics), yet it is not the case at the origin (singularity of codimension 3), where a triangle such as (0,0,e), (0,e,0), (e,0,0) has a median longer than would be in the Euclidean plane, which is characteristic of nonnegative curvature.
Additional structure
Many concepts of
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to po ...
can be applied. There is only one obvious notion of
parallel transport
In geometry, parallel transport (or parallel translation) is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on the tangent b ...
and only one natural
connection. The concept of
holonomy
In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geome ...
is strikingly simple in this case. The
restricted holonomy group
Restricted may refer to:
*R rating (disambiguation), list of subjects where "R" stands for "Restricted"
*18 rating, media rating designation sometimes called "Restricted"
*Restricted (country club), historical use of the term in country clubs in t ...
is trivial, and so there is a
homomorphism
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "sa ...
from the
fundamental group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
onto the
holonomy group. It may be especially convenient to remove all singularities to obtain a space with a flat Riemannian metric and to study the holonomies there. One concepts thus arising are polyhedral Kähler manifolds, when the holonomies are contained in a group, conjugate to the
unitary matrices
In linear algebra, a complex square matrix is unitary if its conjugate transpose is also its inverse, that is, if
U^* U = UU^* = UU^ = I,
where is the identity matrix.
In physics, especially in quantum mechanics, the conjugate transpose is ...
. In this case, the holonomies also preserve a
symplectic form In mathematics, a symplectic vector space is a vector space ''V'' over a field ''F'' (for example the real numbers R) equipped with a symplectic bilinear form.
A symplectic bilinear form is a mapping that is
; Bilinear: Linear in each argument ...
, together with a
complex structure on this polyhedral space (manifold) with the singularities removed.
All the concepts such as
differential form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many application ...
,
L2 differential form, etc. are adjusted accordingly.
Other topics
Another direction of research are developments of
dynamical billiards
A dynamical billiard is a dynamical system in which a particle alternates between free motion (typically as a straight line) and specular reflections from a boundary. When the particle hits the boundary it reflects from it without loss of spe ...
in polyhedral spaces, e.g. of nonpositive curvature (hyperbolic billiards). Positively curved polyhedral spaces arise also as
links of points (typically metric singularities) in Euclidean polyhedral spaces.
History
In full generality, polyhedral spaces were first defined by Milka
[Milka, A. D. Multidimensional spaces with polyhedral metric of nonnegative curvature. I. (Russian) Ukrain. Geometr. Sb. Vyp. 5--6 1968 103–114.]
References
*
* Dmitry Panov. "Polyhedral Kahler manifolds"
{{reflist
Metric geometry