Pi (constant)
   HOME

TheInfoList



OR:

The number (; spelled out as pi) is a
mathematical constant A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an Letter (alphabet), alphabet letter), or by mathematicians' names to facilitate using it across multiple mathem ...
, approximately equal to 3.14159, that is the
ratio In mathematics, a ratio () shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
's
circumference In geometry, the circumference () is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. More generally, the perimeter is the curve length arou ...
to its
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
. It appears in many formulae across
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
and
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, and some of these formulae are commonly used for defining , to avoid relying on the definition of the length of a curve. The number is an
irrational number In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, ...
, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as \tfrac are commonly used to approximate it. Consequently, its
decimal representation A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: r = b_k b_\cdots b_0.a_1a_2\cdots Here is the decimal separator, ...
never ends, nor enters a permanently repeating pattern. It is a
transcendental number In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are and . ...
, meaning that it cannot be a solution of an
algebraic equation In mathematics, an algebraic equation or polynomial equation is an equation of the form P = 0, where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For example, x^5-3x+1=0 is an algebraic equati ...
involving only finite sums, products, powers, and integers. The transcendence of implies that it is impossible to solve the ancient challenge of
squaring the circle Squaring the circle is a problem in geometry first proposed in Greek mathematics. It is the challenge of constructing a square (geometry), square with the area of a circle, area of a given circle by using only a finite number of steps with a ...
with a
compass and straightedge In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an Idealiz ...
. The decimal digits of appear to be randomly distributed, but no proof of this
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), ha ...
has been found. For thousands of years, mathematicians have attempted to extend their understanding of , sometimes by computing its value to a high degree of accuracy. Ancient civilizations, including the
Egyptians Egyptians (, ; , ; ) are an ethnic group native to the Nile, Nile Valley in Egypt. Egyptian identity is closely tied to Geography of Egypt, geography. The population is concentrated in the Nile Valley, a small strip of cultivable land stretchi ...
and
Babylonians Babylonia (; , ) was an ancient Akkadian-speaking state and cultural area based in the city of Babylon in central-southern Mesopotamia (present-day Iraq and parts of Kuwait, Syria and Iran). It emerged as an Akkadian-populated but Amorite-ru ...
, required fairly accurate approximations of for practical computations. Around 250BC, the Greek mathematician
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
created an algorithm to approximate with arbitrary accuracy. In the 5th century AD, Chinese mathematicians approximated to seven digits, while
Indian mathematicians Indian mathematicians have made a number of contributions to mathematics that have significantly influenced scientists and mathematicians in the modern era. One of such works is Hindu numeral system which is predominantly used today and is likely ...
made a five-digit approximation, both using geometrical techniques. The first computational formula for , based on
infinite series In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathemati ...
, was discovered a millennium later. The earliest known use of the Greek letter π to represent the ratio of a circle's circumference to its diameter was by the Welsh mathematician William Jones in 1706. The invention of
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
soon led to the calculation of hundreds of digits of , enough for all practical scientific computations. Nevertheless, in the 20th and 21st centuries, mathematicians and
computer scientists Computer science is the study of computation, information, and automation. Computer science spans theoretical disciplines (such as algorithms, theory of computation, and information theory) to applied disciplines (including the design an ...
have pursued new approaches that, when combined with increasing computational power, extended the decimal representation of to many trillions of digits. These computations are motivated by the development of efficient algorithms to calculate numeric series, as well as the human quest to break records. The extensive computations involved have also been used to test
supercomputer A supercomputer is a type of computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instruc ...
s as well as stress testing consumer computer hardware. Because it relates to a circle, is found in many formulae in
trigonometry Trigonometry () is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The fiel ...
and
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, especially those concerning circles, ellipses and spheres. It is also found in formulae from other topics in science, such as
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
,
fractal In mathematics, a fractal is a Shape, geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scale ...
s,
thermodynamics Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
,
mechanics Mechanics () is the area of physics concerned with the relationships between force, matter, and motion among Physical object, physical objects. Forces applied to objects may result in Displacement (vector), displacements, which are changes of ...
, and
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
. It also appears in areas having little to do with geometry, such as
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
and
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, and in modern
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
can be defined without any reference to geometry. The ubiquity of makes it one of the most widely known mathematical constants inside and outside of science. Several books devoted to have been published, and record-setting calculations of the digits of often result in news headlines.


Fundamentals


Name

The symbol used by mathematicians to represent the ratio of a circle's circumference to its diameter is the lowercase Greek letter , sometimes spelled out as ''pi.'' In English, is pronounced as "pie" ( ). In mathematical use, the lowercase letter is distinguished from its capitalized and enlarged counterpart , which denotes a
product of a sequence Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a '' product''. Multiplication is often d ...
, analogous to how denotes
summation In mathematics, summation is the addition of a sequence of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, pol ...
. The choice of the symbol is discussed in the section ''Adoption of the symbol ''.


Definition

is commonly defined as the
ratio In mathematics, a ratio () shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
's
circumference In geometry, the circumference () is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. More generally, the perimeter is the curve length arou ...
to its
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
: \pi = \frac The ratio \frac is constant, regardless of the circle's size. For example, if a circle has twice the diameter of another circle, it will also have twice the circumference, preserving the ratio \frac. This definition of implicitly makes use of flat (Euclidean) geometry; although the notion of a circle can be extended to any curve (non-Euclidean) geometry, these new circles will no longer satisfy the formula \pi=\frac. Here, the circumference of a circle is the
arc length Arc length is the distance between two points along a section of a curve. Development of a formulation of arc length suitable for applications to mathematics and the sciences is a problem in vector calculus and in differential geometry. In the ...
around the
perimeter A perimeter is the length of a closed boundary that encompasses, surrounds, or outlines either a two-dimensional shape or a one-dimensional line. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimet ...
of the circle, a quantity which can be formally defined independently of geometry using
limits Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2009 ...
—a concept in
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
. For example, one may directly compute the arc length of the top half of the unit circle, given in
Cartesian coordinates In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
by the equation x^2+y^2=1, as the
integral In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
: \pi = \int_^1 \frac. An integral such as this was proposed as a definition of by
Karl Weierstrass Karl Theodor Wilhelm Weierstrass (; ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the " father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school t ...
, who defined it directly as an integral in 1841. Integration is no longer commonly used in a first analytical definition because, as explains,
differential calculus In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve. ...
typically precedes integral calculus in the university curriculum, so it is desirable to have a definition of that does not rely on the latter. One such definition, due to Richard Baltzer and popularized by
Edmund Landau Edmund Georg Hermann Landau (14 February 1877 – 19 February 1938) was a German mathematician who worked in the fields of number theory and complex analysis. Biography Edmund Landau was born to a Jewish family in Berlin. His father was Leopo ...
, is the following: is twice the smallest positive number at which the
cosine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that ...
function equals 0. is also the smallest positive number at which the
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite th ...
function equals zero, and the difference between consecutive zeroes of the sine function. The cosine and sine can be defined independently of geometry as a
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a co ...
, or as the solution of a differential equation. In a similar spirit, can be defined using properties of the complex exponential, , of a
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
variable . Like the cosine, the complex exponential can be defined in one of several ways. The set of complex numbers at which is equal to one is then an (imaginary) arithmetic progression of the form: \ = \ and there is a unique positive real number with this property. A variation on the same idea, making use of sophisticated mathematical concepts of
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
and
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, is the following theorem: there is a unique (
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
) continuous
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
from the
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
R/Z of real numbers under addition
modulo In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation. Given two positive numbers and , mo ...
integers (the
circle group In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
), onto the multiplicative group of
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
of
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
one. The number is then defined as half the magnitude of the derivative of this homomorphism.


Irrationality and normality

is an
irrational number In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, ...
, meaning that it cannot be written as the ratio of two integers. Fractions such as and are commonly used to approximate , but no common fraction (ratio of whole numbers) can be its exact value. Because is irrational, it has an infinite number of digits in its
decimal representation A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: r = b_k b_\cdots b_0.a_1a_2\cdots Here is the decimal separator, ...
, and does not settle into an infinitely repeating pattern of digits. There are several proofs that is irrational; they are generally proofs by contradiction and require calculus. The degree to which can be approximated by
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s (called the
irrationality measure In mathematics, an irrationality measure of a real number x is a measure of how "closely" it can be Diophantine approximation, approximated by Rational number, rationals. If a Function (mathematics), function f(t,\lambda) , defined for t,\lambd ...
) is not precisely known; estimates have established that the irrationality measure is larger or at least equal to the measure of but smaller than the measure of
Liouville number In number theory, a Liouville number is a real number x with the property that, for every positive integer n, there exists a pair of integers (p,q) with q>1 such that :0<\left, x-\frac\<\frac. The inequality implies that Liouville numbers po ...
s. The digits of have no apparent pattern and have passed tests for
statistical randomness A numeric sequence is said to be statistically random when it contains no recognizable patterns or regularities; sequences such as the results of an ideal dice, dice roll or the digits of pi, π exhibit statistical randomness. Statistical randomne ...
, including tests for normality; a number of infinite length is called normal when all possible sequences of digits (of any given length) appear equally often. The conjecture that is normal has not been proven or disproven. Since the advent of computers, a large number of digits of have been available on which to perform statistical analysis. Yasumasa Kanada has performed detailed statistical analyses on the decimal digits of , and found them consistent with normality; for example, the frequencies of the ten digits 0 to 9 were subjected to statistical significance tests, and no evidence of a pattern was found. Any random sequence of digits contains arbitrarily long subsequences that appear non-random, by the
infinite monkey theorem The infinite monkey theorem states that a monkey hitting keys independently and at randomness, random on a typewriter keyboard for an infinity, infinite amount of time will almost surely type any given text, including the complete works of Willi ...
. Thus, because the sequence of 's digits passes statistical tests for randomness, it contains some sequences of digits that may appear non-random, such as a sequence of six consecutive 9s that begins at the 762nd decimal place of the decimal representation of . This is also called the "Feynman point" in
mathematical folklore In common mathematical parlance, a mathematical result is called folklore if it is an unpublished result with no clear originator, but which is well-circulated and believed to be true among the specialists. More specifically, folk mathematics, or ...
, after
Richard Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of t ...
, although no connection to Feynman is known.


Transcendence

In addition to being irrational, is also a
transcendental number In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are and . ...
, which means that it is not the
solution Solution may refer to: * Solution (chemistry), a mixture where one substance is dissolved in another * Solution (equation), in mathematics ** Numerical solution, in numerical analysis, approximate solutions within specified error bounds * Solu ...
of any non-constant
polynomial equation In mathematics, an algebraic equation or polynomial equation is an equation of the form P = 0, where ''P'' is a polynomial with coefficients in some field (mathematics), field, often the field of the rational numbers. For example, x^5-3x+1=0 is a ...
with
rational Rationality is the quality of being guided by or based on reason. In this regard, a person acts rationally if they have a good reason for what they do, or a belief is rational if it is based on strong evidence. This quality can apply to an ...
coefficients, such as \frac-\frac+x=0. This follows from the so-called
Lindemann–Weierstrass theorem In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following: In other words, the extension field \mathbb(e^, \dots, e^) has transc ...
, which also establishes the transcendence of the constant '. The transcendence of has two important consequences: First, cannot be expressed using any finite combination of rational numbers and square roots or ''n''-th roots (such as \sqrt /math> or \sqrt). Second, since no transcendental number can be constructed with
compass and straightedge In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an Idealiz ...
, it is not possible to " square the circle". In other words, it is impossible to construct, using compass and straightedge alone, a square whose area is exactly equal to the area of a given circle. Squaring a circle was one of the important geometry problems of the
classical antiquity Classical antiquity, also known as the classical era, classical period, classical age, or simply antiquity, is the period of cultural History of Europe, European history between the 8th century BC and the 5th century AD comprising the inter ...
. Amateur mathematicians in modern times have sometimes attempted to square the circle and claim success—despite the fact that it is mathematically impossible. An unsolved problem thus far is the question of whether or not the numbers ' and ' are
algebraically independent In abstract algebra, a subset S of a field L is algebraically independent over a subfield K if the elements of S do not satisfy any non- trivial polynomial equation with coefficients in K. In particular, a one element set \ is algebraically i ...
("relatively transcendental"). This would be resolved by Schanuel's conjecture – a currently unproven generalization of the Lindemann–Weierstrass theorem.


Continued fractions

As an irrational number, cannot be represented as a common fraction. But every number, including , can be represented by an infinite series of nested fractions, called a
simple continued fraction A simple or regular continued fraction is a continued fraction with numerators all equal one, and denominators built from a sequence \ of integer numbers. The sequence can be finite or infinite, resulting in a finite (or terminated) continued fr ...
: \pi = 3+\textstyle \cfrac Truncating the continued fraction at any point yields a rational approximation for ; the first four of these are , , , and . These numbers are among the best-known and most widely used historical approximations of the constant. Each approximation generated in this way is a best rational approximation; that is, each is closer to than any other fraction with the same or a smaller denominator. Because is transcendental, it is by definition not algebraic and so cannot be a
quadratic irrational In mathematics, a quadratic irrational number (also known as a quadratic irrational or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numb ...
. Therefore, cannot have a
periodic continued fraction In mathematics, an infinite periodic continued fraction is a simple continued fraction that can be placed in the form : x = a_0 + \cfrac where the initial block _0; a_1, \dots, a_kof ''k''+1 partial denominators is followed by a block [a_, a ...
. Although the simple continued fraction for (with numerators all 1, shown above) also does not exhibit any other obvious pattern, several non-simple continued fractions do, such as: \begin \pi &= 3+ \cfrac = \cfrac = \cfrac \end


Approximate value and digits

Some approximations of π, approximations of ''pi'' include: * Integers: 3 * Fractions: Approximate fractions include (in order of increasing accuracy) , , , , , , and . (List is selected terms from and .) * Digits: The first 50 decimal digits are (see ) Digits in other number systems * The first 48 Binary number#Representing real numbers, binary ( base 2) digits (called
bit The bit is the most basic unit of information in computing and digital communication. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented as ...
s) are (see ) * The first 36 digits in ternary (base 3) are (see ) * The first 20 digits in
hexadecimal Hexadecimal (also known as base-16 or simply hex) is a Numeral system#Positional systems in detail, positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbo ...
(base 16) are (see ) * The first five
sexagesimal Sexagesimal, also known as base 60, is a numeral system with 60 (number), sixty as its radix, base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified fo ...
(base 60) digits are 3;8,29,44,0,47 (see )


Complex numbers and Euler's identity

Any
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
, say , can be expressed using a pair of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s. In the
polar coordinate system In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are *the point's distance from a reference point called the ''pole'', and *the point's direction from ...
, one number (
radius In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...
or ) is used to represent 's distance from the origin of the
complex plane In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
, and the other (angle or ) the counter-clockwise
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
from the positive real line: z = r\cdot(\cos\varphi + i\sin\varphi), where is the
imaginary unit The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
satisfying i^2=-1. The frequent appearance of in
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
can be related to the behaviour of the exponential function of a complex variable, described by
Euler's formula Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for ...
: e^ = \cos \varphi + i\sin \varphi, where the constant is the base of the
natural logarithm The natural logarithm of a number is its logarithm to the base of a logarithm, base of the e (mathematical constant), mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approxima ...
. This formula establishes a correspondence between imaginary powers of and points on the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
centred at the origin of the complex plane. Setting \varphi=\pi in Euler's formula results in
Euler's identity In mathematics, Euler's identity (also known as Euler's equation) is the Equality (mathematics), equality e^ + 1 = 0 where :e is E (mathematical constant), Euler's number, the base of natural logarithms, :i is the imaginary unit, which by definit ...
, celebrated in mathematics due to it containing five important mathematical constants: e^ + 1 = 0. There are different complex numbers satisfying z^n=1, and these are called the "-th
roots of unity In mathematics, a root of unity is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group char ...
" and are given by the formula: e^ \qquad (k = 0, 1, 2, \dots, n - 1).


History

Surviving approximations of prior to the 2nd century AD are accurate to one or two decimal places at best. The earliest written approximations are found in
Babylon Babylon ( ) was an ancient city located on the lower Euphrates river in southern Mesopotamia, within modern-day Hillah, Iraq, about south of modern-day Baghdad. Babylon functioned as the main cultural and political centre of the Akkadian-s ...
and Egypt, both within one percent of the true value. In Babylon, a
clay tablet In the Ancient Near East, clay tablets (Akkadian language, Akkadian ) were used as a writing medium, especially for writing in cuneiform, throughout the Bronze Age and well into the Iron Age. Cuneiform characters were imprinted on a wet clay t ...
dated 1900–1600 BC has a geometrical statement that, by implication, treats as  = 3.125. In Egypt, the Rhind Papyrus, dated around 1650 BC but copied from a document dated to 1850 BC, has a formula for the area of a circle that treats as \bigl(\frac\bigr)^2\approx3.16. Although some pyramidologists have theorized that the
Great Pyramid of Giza The Great Pyramid of Giza is the largest Egyptian pyramid. It served as the tomb of pharaoh Khufu, who ruled during the Fourth Dynasty of Egypt, Fourth Dynasty of the Old Kingdom of Egypt, Old Kingdom. Built , over a period of about 26 years ...
was built with proportions related to , this theory is not widely accepted by scholars. In the
Shulba Sutras The ''Shulva Sutras'' or ''Śulbasūtras'' (Sanskrit: शुल्बसूत्र; ': "string, cord, rope") are sutra texts belonging to the Śrauta ritual and containing geometry related to vedi (altar), fire-altar construction. Purpose and ...
of
Indian mathematics Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta, ...
, dating to an oral tradition from the 1st or 2nd millennium BC, approximations are given which have been variously interpreted as approximately 3.08831, 3.08833, 3.004, 3, or 3.125.


Polygon approximation era

The first recorded algorithm for rigorously calculating the value of was a geometrical approach using polygons, devised around 250 BC by the Greek mathematician
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
, implementing the
method of exhaustion The method of exhaustion () is a method of finding the area of a shape by inscribing inside it a sequence of polygons (one at a time) whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the differ ...
. This polygonal algorithm dominated for over 1,000 years, and as a result is sometimes referred to as Archimedes's constant. Archimedes computed upper and lower bounds of by drawing a regular hexagon inside and outside a circle, and successively doubling the number of sides until he reached a 96-sided regular polygon. By calculating the perimeters of these polygons, he proved that (that is, . Archimedes' upper bound of may have led to a widespread popular belief that is equal to . Around 150 AD, Greco-Roman scientist
Ptolemy Claudius Ptolemy (; , ; ; – 160s/170s AD) was a Greco-Roman mathematician, astronomer, astrologer, geographer, and music theorist who wrote about a dozen scientific treatises, three of which were important to later Byzantine science, Byzant ...
, in his ''
Almagest The ''Almagest'' ( ) is a 2nd-century Greek mathematics, mathematical and Greek astronomy, astronomical treatise on the apparent motions of the stars and planetary paths, written by Ptolemy, Claudius Ptolemy ( ) in Koine Greek. One of the most i ...
'', gave a value for of 3.1416, which he may have obtained from Archimedes or from
Apollonius of Perga Apollonius of Perga ( ; ) was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention o ...
. Mathematicians using polygonal algorithms reached 39 digits of in 1630, a record only broken in 1699 when infinite series were used to reach 71 digits.. Grienberger achieved 39 digits in 1630; Sharp 71 digits in 1699. In
ancient China The history of China spans several millennia across a wide geographical area. Each region now considered part of the Chinese world has experienced periods of unity, fracture, prosperity, and strife. Chinese civilization first emerged in the Y ...
, values for included 3.1547 (around 1 AD), \sqrt (100 AD, approximately 3.1623), and (3rd century, approximately 3.1556). Around 265 AD, the
Cao Wei Wei () was one of the major Dynasties in Chinese history, dynastic states in China during the Three Kingdoms period. The state was established in 220 by Cao Pi based upon the foundations laid by his father Cao Cao during the end of the Han dy ...
mathematician
Liu Hui Liu Hui () was a Chinese mathematician who published a commentary in 263 CE on ''Jiu Zhang Suan Shu ( The Nine Chapters on the Mathematical Art).'' He was a descendant of the Marquis of Zixiang of the Eastern Han dynasty and lived in the state ...
created a polygon-based iterative algorithm, with which he constructed a 3,072-sided polygon to approximate as 3.1416. Liu later invented a faster method of calculating and obtained a value of 3.14 with a 96-sided polygon, by taking advantage of the fact that the differences in area of successive polygons form a geometric series with a factor of 4. Around 480 AD,
Zu Chongzhi Zu Chongzhi (; 429 – 500), courtesy name Wenyuan (), was a Chinese astronomer, inventor, mathematician, politician, and writer during the Liu Song and Southern Qi dynasties. He was most notable for calculating pi as between 3.1415926 and 3.1415 ...
calculated that 3.1415926 < \pi < 3.1415927 and suggested the approximations \pi \approx \frac = 3.14159292035... and \pi \approx \frac = 3.142857142857..., which he termed the '' milü'' ('close ratio') and ''yuelü'' ('approximate ratio') respectively, iterating with Liu Hui's algorithm up to a 12,288-sided polygon. With a correct value for its seven first decimal digits, Zu's result remained the most accurate approximation of for the next 800 years. The Indian astronomer
Aryabhata Aryabhata ( ISO: ) or Aryabhata I (476–550 CE) was the first of the major mathematician-astronomers from the classical age of Indian mathematics and Indian astronomy. His works include the '' Āryabhaṭīya'' (which mentions that in 3600 ' ...
used a value of 3.1416 in his ''
Āryabhaṭīya ''Aryabhatiya'' (IAST: ') or ''Aryabhatiyam'' ('), a Indian astronomy, Sanskrit astronomical treatise, is the ''Masterpiece, magnum opus'' and only known surviving work of the 5th century Indian mathematics, Indian mathematician Aryabhata. Philos ...
'' (499 AD). Around 1220,
Fibonacci Leonardo Bonacci ( – ), commonly known as Fibonacci, was an Italians, Italian mathematician from the Republic of Pisa, considered to be "the most talented Western mathematician of the Middle Ages". The name he is commonly called, ''Fibonacci ...
computed 3.1418 using a polygonal method devised independently of Archimedes. Italian author
Dante Dante Alighieri (; most likely baptized Durante di Alighiero degli Alighieri; – September 14, 1321), widely known mononymously as Dante, was an Italian Italian poetry, poet, writer, and philosopher. His ''Divine Comedy'', originally called ...
apparently employed the value 3+\frac \approx 3.14142. The Persian astronomer
Jamshīd al-Kāshī Ghiyāth al-Dīn Jamshīd Masʿūd al-Kāshī (or al-Kāshānī) ( ''Ghiyās-ud-dīn Jamshīd Kāshānī'') (c. 1380 Kashan, Iran – 22 June 1429 Samarkand, Transoxiana) was a Persian astronomer and mathematician during the reign of Tamerlane. ...
produced nine
sexagesimal Sexagesimal, also known as base 60, is a numeral system with 60 (number), sixty as its radix, base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified fo ...
digits, roughly the equivalent of 16 decimal digits, in 1424, using a polygon with 3\times 2^ sides, which stood as the world record for about 180 years. French mathematician
François Viète François Viète (; 1540 – 23 February 1603), known in Latin as Franciscus Vieta, was a French people, French mathematician whose work on new algebra was an important step towards modern algebra, due to his innovative use of letters as par ...
in 1579 achieved nine digits with a polygon of 3\times 2^ sides. Flemish mathematician
Adriaan van Roomen Adriaan van Roomen (29 September 1561 – 4 May 1615), also known as Adrianus Romanus, was a mathematician, professor of medicine and medical astrologer from the Duchy of Brabant in the Habsburg Netherlands who was active throughout Central Europ ...
arrived at 15 decimal places in 1593. In 1596, Dutch mathematician Ludolph van Ceulen reached 20 digits, a record he later increased to 35 digits (as a result, was called the "Ludolphian number" in Germany until the early 20th century). Dutch scientist
Willebrord Snellius Willebrord Snellius (born Willebrord Snel van Royen) (13 June 158030 October 1626) was a Dutch astronomer and mathematician, commonly known as Snell. His name is usually associated with the law of refraction of light known as Snell's law. The ...
reached 34 digits in 1621, and Austrian astronomer Christoph Grienberger arrived at 38 digits in 1630 using 1040 sides.
Christiaan Huygens Christiaan Huygens, Halen, Lord of Zeelhem, ( , ; ; also spelled Huyghens; ; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution ...
was able to arrive at 10 decimal places in 1654 using a slightly different method equivalent to
Richardson extrapolation In numerical analysis, Richardson extrapolation is a Series acceleration, sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A^\ast = \lim_ A(h). In essence, given the value of A(h) for se ...
.


Infinite series

The calculation of was revolutionized by the development of
infinite series In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathemati ...
techniques in the 16th and 17th centuries. An infinite series is the sum of the terms of an infinite
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
. Infinite series allowed mathematicians to compute with much greater precision than
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
and others who used geometrical techniques. Although infinite series were exploited for most notably by European mathematicians such as James Gregory and
Gottfried Wilhelm Leibniz Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to ...
, the approach also appeared in the Kerala school sometime in the 14th or 15th century. Around 1500, an infinite series that could be used to compute , written in the form of
Sanskrit Sanskrit (; stem form ; nominal singular , ,) is a classical language belonging to the Indo-Aryan languages, Indo-Aryan branch of the Indo-European languages. It arose in northwest South Asia after its predecessor languages had Trans-cultural ...
verse, was presented in ''
Tantrasamgraha Tantrasamgraha, or Tantrasangraha, (literally, ''A Compilation of the System'') is an important astronomy, astronomical treatise written by Nilakantha Somayaji, an astronomer/mathematician belonging to the Kerala school of astronomy and mathemat ...
'' by
Nilakantha Somayaji Keļallur Nīlakaṇṭha Somayāji (14 June 1444 – 1544), also referred to as Keļallur Comatiri, was a mathematician and astronomer of the Kerala school of astronomy and mathematics. One of his most influential works was the comprehens ...
. The series are presented without proof, but proofs are presented in the later work ''
Yuktibhāṣā ''Yuktibhāṣā'' (), also known as Gaṇita-yukti-bhāṣā and ( English: ''Compendium of Astronomical Rationale''), is a major treatise on mathematics and astronomy, written by the Indian astronomer Jyesthadeva of the Kerala school of mat ...
'', published around 1530. Several infinite series are described, including series for sine (which Nilakantha attributes to
Madhava of Sangamagrama Mādhava of Sangamagrāma (Mādhavan) Availabl/ref> () was an Indian mathematician and astronomer who is considered to be the founder of the Kerala school of astronomy and mathematics in the Late Middle Ages. Madhava made pioneering contributio ...
), cosine, and arctangent which are now sometimes referred to as Madhava series. The series for arctangent is sometimes called Gregory's series or the Gregory–Leibniz series. Madhava used infinite series to estimate to 11 digits around 1400. In 1593,
François Viète François Viète (; 1540 – 23 February 1603), known in Latin as Franciscus Vieta, was a French people, French mathematician whose work on new algebra was an important step towards modern algebra, due to his innovative use of letters as par ...
published what is now known as
Viète's formula In mathematics, Viète's formula is the following infinite product of nested radicals representing twice the Multiplicative inverse, reciprocal of the mathematical constant pi, : \frac2\pi = \frac2 \cdot \frac2 \cdot \frac2 \cdots It can also b ...
, an
infinite product In mathematics, for a sequence of complex numbers ''a''1, ''a''2, ''a''3, ... the infinite product : \prod_^ a_n = a_1 a_2 a_3 \cdots is defined to be the limit of the partial products ''a''1''a''2...''a'n'' as ''n'' increases without bound ...
(rather than an
infinite sum In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathemati ...
, which is more typically used in calculations): \frac2\pi = \frac2 \cdot \frac2 \cdot \frac2 \cdots In 1655,
John Wallis John Wallis (; ; ) was an English clergyman and mathematician, who is given partial credit for the development of infinitesimal calculus. Between 1643 and 1689 Wallis served as chief cryptographer for Parliament and, later, the royal court. ...
published what is now known as Wallis product, also an infinite product: \frac = \Big(\frac \cdot \frac\Big) \cdot \Big(\frac \cdot \frac\Big) \cdot \Big(\frac \cdot \frac\Big) \cdot \Big(\frac \cdot \frac\Big) \cdots In the 1660s, the English scientist
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
and German mathematician
Gottfried Wilhelm Leibniz Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to ...
discovered
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
, which led to the development of many infinite series for approximating . Newton himself used an arcsine series to compute a 15-digit approximation of in 1665 or 1666, writing, "I am ashamed to tell you to how many figures I carried these computations, having no other business at the time.". Newton quoted by Arndt. In 1671, James Gregory, and independently, Leibniz in 1673, discovered the
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
expansion for
arctangent In mathematics, the inverse trigonometric functions (occasionally also called ''antitrigonometric'', ''cyclometric'', or ''arcus'' functions) are the inverse functions of the trigonometric functions, under suitably restricted domains. Specific ...
: \arctan z = z - \frac +\frac -\frac +\cdots This series, sometimes called the Gregory–Leibniz series, equals \frac when evaluated with z=1. But for z=1, it converges impractically slowly (that is, approaches the answer very gradually), taking about ten times as many terms to calculate each additional digit. In 1699, English mathematician Abraham Sharp used the Gregory–Leibniz series for z=\frac to compute to 71 digits, breaking the previous record of 39 digits, which was set with a polygonal algorithm. In 1706, John Machin used the Gregory–Leibniz series to produce an algorithm that converged much faster: Reprinted in \frac = 4 \arctan \frac - \arctan \frac. Machin reached 100 digits of with this formula. Other mathematicians created variants, now known as Machin-like formulae, that were used to set several successive records for calculating digits of . Isaac Newton accelerated the convergence of the Gregory–Leibniz series in 1684 (in an unpublished work; others independently discovered the result): \arctan x = \frac + \frac23\frac + \frac\frac + \cdots
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
popularized this series in his 1755 differential calculus textbook, and later used it with Machin-like formulae, including \tfrac\pi4 = 5\arctan\tfrac17 + 2\arctan\tfrac, with which he computed 20 digits of in one hour. Machin-like formulae remained the best-known method for calculating well into the age of computers, and were used to set records for 250 years, culminating in a 620-digit approximation in 1946 by Daniel Ferguson – the best approximation achieved without the aid of a calculating device. In 1844, a record was set by Zacharias Dase, who employed a Machin-like formula to calculate 200 decimals of in his head at the behest of German mathematician
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
. In 1853, British mathematician William Shanks calculated to 607 digits, but made a mistake in the 528th digit, rendering all subsequent digits incorrect. Though he calculated an additional 100 digits in 1873, bringing the total up to 707, his previous mistake rendered all the new digits incorrect as well.


Rate of convergence

Some infinite series for converge faster than others. Given the choice of two infinite series for , mathematicians will generally use the one that converges more rapidly because faster convergence reduces the amount of computation needed to calculate to any given accuracy. . A simple infinite series for is the Gregory–Leibniz series: \pi = \frac - \frac + \frac - \frac + \frac - \frac + \frac - \cdots As individual terms of this infinite series are added to the sum, the total gradually gets closer to , and – with a sufficient number of terms – can get as close to as desired. It converges quite slowly, though – after 500,000 terms, it produces only five correct decimal digits of . An infinite series for (published by Nilakantha in the 15th century) that converges more rapidly than the Gregory–Leibniz series is: \pi = 3 + \frac - \frac + \frac - \frac + \cdots The following table compares the convergence rates of these two series: After five terms, the sum of the Gregory–Leibniz series is within 0.2 of the correct value of , whereas the sum of Nilakantha's series is within 0.002 of the correct value. Nilakantha's series converges faster and is more useful for computing digits of . Series that converge even faster include Machin's series and Chudnovsky's series, the latter producing 14 correct decimal digits per term.


Irrationality and transcendence

Not all mathematical advances relating to were aimed at increasing the accuracy of approximations. When Euler solved the
Basel problem The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 ...
in 1735, finding the exact value of the sum of the reciprocal squares, he established a connection between and the
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s that later contributed to the development and study of the
Riemann zeta function The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic c ...
: \frac = \frac + \frac + \frac + \frac + \cdots Swiss scientist
Johann Heinrich Lambert Johann Heinrich Lambert (; ; 26 or 28 August 1728 – 25 September 1777) was a polymath from the Republic of Mulhouse, at that time allied to the Switzerland, Swiss Confederacy, who made important contributions to the subjects of mathematics, phys ...
in 1768 proved that is
irrational Irrationality is cognition, thinking, talking, or acting without rationality. Irrationality often has a negative connotation, as thinking and actions that are less useful or more illogical than other more rational alternatives. The concept of ...
, meaning it is not equal to the quotient of any two integers. Lambert's proof exploited a continued-fraction representation of the tangent function. French mathematician
Adrien-Marie Legendre Adrien-Marie Legendre (; ; 18 September 1752 – 9 January 1833) was a French people, French mathematician who made numerous contributions to mathematics. Well-known and important concepts such as the Legendre polynomials and Legendre transforma ...
proved in 1794 that 2 is also irrational. In 1882, German mathematician Ferdinand von Lindemann proved that is transcendental, confirming a conjecture made by both Legendre and Euler. Hardy and Wright states that "the proofs were afterwards modified and simplified by Hilbert, Hurwitz, and other writers".


Adoption of the symbol

The first recorded use of the symbol in circle geometry is in Oughtred's ''Clavis Mathematicae'' (1648), where the
Greek letters The Greek alphabet has been used to write the Greek language since the late 9th or early 8th century BC. It was derived from the earlier Phoenician alphabet, and is the earliest known alphabetic script to systematically write vowels as we ...
and ''δ'' were combined into the fraction for denoting the ratios semiperimeter to
semidiameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid for ...
and perimeter to diameter, that is, what is presently denoted as . (Before then, mathematicians sometimes used letters such as ''c'' or ''p'' instead.) Barrow likewise used the same notation, while Gregory instead used \frac \pi \rho to represent . The earliest known use of the Greek letter alone to represent the ratio of a circle's circumference to its diameter was by Welsh mathematician William Jones in his 1706 work ''; or, a New Introduction to the Mathematics''. The Greek letter appears on p. 243 in the phrase "\tfrac12 Periphery ()", calculated for a circle with radius one. However, Jones writes that his equations for are from the "ready pen of the truly ingenious Mr. John Machin", leading to speculation that Machin may have employed the Greek letter before Jones. Jones' notation was not immediately adopted by other mathematicians, with the fraction notation still being used as late as 1767.
Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
started using the single-letter form beginning with his 1727 ''Essay Explaining the Properties of Air'', though he used , the ratio of periphery to radius, in this and some later writing. Euler first used in his 1736 work ''
Mechanica ''Mechanica'' (; 1736) is a two-volume work published by mathematician Leonhard Euler which describes analytically the mathematics governing movement. Euler both developed the techniques of analysis and applied them to numerous problems in mec ...
'', and continued in his widely read 1748 work (he wrote: "for the sake of brevity we will write this number as ; thus is equal to half the circumference of a circle of radius "). Because Euler corresponded heavily with other mathematicians in Europe, the use of the Greek letter spread rapidly, and the practice was universally adopted thereafter in the
Western world The Western world, also known as the West, primarily refers to various nations and state (polity), states in Western Europe, Northern America, and Australasia; with some debate as to whether those in Eastern Europe and Latin America also const ...
, though the definition still varied between and as late as 1761.


Modern quest for more digits


Motives for computing π

For most numerical calculations involving , a handful of digits provide sufficient precision. According to Jörg Arndt and Christoph Haenel, thirty-nine digits are sufficient to perform most
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
calculations, because that is the accuracy necessary to calculate the circumference of the
observable universe The observable universe is a Ball (mathematics), spherical region of the universe consisting of all matter that can be observation, observed from Earth; the electromagnetic radiation from these astronomical object, objects has had time to reach t ...
with a precision of one atom. Accounting for additional digits needed to compensate for computational
round-off error In computing, a roundoff error, also called rounding error, is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. Roun ...
s, Arndt concludes that a few hundred digits would suffice for any scientific application. Despite this, people have worked strenuously to compute to thousands and millions of digits. This effort may be partly ascribed to the human compulsion to break records, and such achievements with often make headlines around the world. They also have practical benefits, such as testing
supercomputer A supercomputer is a type of computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instruc ...
s, testing numerical analysis algorithms (including high-precision multiplication algorithms) and within pure mathematics itself, providing data for evaluating the randomness of the digits of .


Computer era and iterative algorithms

The development of computers in the mid-20th century again revolutionized the hunt for digits of . Mathematicians John Wrench and Levi Smith reached 1,120 digits in 1949 using a desk calculator. Using an inverse tangent (arctan) infinite series, a team led by George Reitwiesner and
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
that same year achieved 2,037 digits with a calculation that took 70 hours of computer time on the
ENIAC ENIAC (; Electronic Numerical Integrator and Computer) was the first Computer programming, programmable, Electronics, electronic, general-purpose digital computer, completed in 1945. Other computers had some of these features, but ENIAC was ...
computer. The record, always relying on an arctan series, was broken repeatedly (3089 digits in 1955, 7,480 digits in 1957; 10,000 digits in 1958; 100,000 digits in 1961) until 1 million digits was reached in 1973. Two additional developments around 1980 once again accelerated the ability to compute . First, the discovery of new iterative algorithms for computing , which were much faster than the infinite series; and second, the invention of fast multiplication algorithms that could multiply large numbers very rapidly. Such algorithms are particularly important in modern computations because most of the computer's time is devoted to multiplication. They include the
Karatsuba algorithm The Karatsuba algorithm is a fast multiplication algorithm for integers. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. Knuth D.E. (1969) '' The Art of Computer Programming. v.2.'' Addison-Wesley Publ.Co., 724 pp ...
,
Toom–Cook multiplication Toom–Cook, sometimes known as Toom-3, named after Andrei Toom, who introduced the new algorithm with its low complexity, and Stephen Cook, who cleaned the description of it, is a multiplication algorithm for large integers. Given two large in ...
, and Fourier transform-based methods. The iterative algorithms were independently published in 1975–1976 by physicist Eugene Salamin and scientist Richard Brent. These avoid reliance on infinite series. An iterative algorithm repeats a specific calculation, each iteration using the outputs from prior steps as its inputs, and produces a result in each step that converges to the desired value. The approach was actually invented over 160 years earlier by
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
, in what is now termed the arithmetic–geometric mean method (AGM method) or
Gauss–Legendre algorithm The Gauss–Legendre algorithm is an algorithm to compute the digits of . It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of . However, it has some drawbacks (for example, it is computer ...
. As modified by Salamin and Brent, it is also referred to as the Brent–Salamin algorithm. The iterative algorithms were widely used after 1980 because they are faster than infinite series algorithms: whereas infinite series typically increase the number of correct digits additively in successive terms, iterative algorithms generally ''multiply'' the number of correct digits at each step. For example, the Brent–Salamin algorithm doubles the number of digits in each iteration. In 1984, brothers
John John is a common English name and surname: * John (given name) * John (surname) John may also refer to: New Testament Works * Gospel of John, a title often shortened to John * First Epistle of John, often shortened to 1 John * Second E ...
and Peter Borwein produced an iterative algorithm that quadruples the number of digits in each step; and in 1987, one that increases the number of digits five times in each step. Iterative methods were used by Japanese mathematician Yasumasa Kanada to set several records for computing between 1995 and 2002. This rapid convergence comes at a price: the iterative algorithms require significantly more memory than infinite series.


Rapidly convergent series

Modern calculators do not use iterative algorithms exclusively. New infinite series were discovered in the 1980s and 1990s that are as fast as iterative algorithms, yet are simpler and less memory intensive. The fast iterative algorithms were anticipated in 1914, when Indian mathematician
Srinivasa Ramanujan Srinivasa Ramanujan Aiyangar (22 December 188726 April 1920) was an Indian mathematician. Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial con ...
published dozens of innovative new formulae for , remarkable for their elegance, mathematical depth and rapid convergence. One of his formulae, based on modular equations, is \frac = \frac \sum_^\infty \frac. This series converges much more rapidly than most arctan series, including Machin's formula. Bill Gosper was the first to use it for advances in the calculation of , setting a record of 17 million digits in 1985. Ramanujan's formulae anticipated the modern algorithms developed by the Borwein brothers ( Jonathan and
Peter Peter may refer to: People * List of people named Peter, a list of people and fictional characters with the given name * Peter (given name) ** Saint Peter (died 60s), apostle of Jesus, leader of the early Christian Church * Peter (surname), a su ...
) and the
Chudnovsky brothers David Volfovich Chudnovsky (born January 22, 1947) and Gregory Volfovich Chudnovsky (born April 17, 1952) are American mathematicians and engineers known for their world-record mathematical calculations and developing the Chudnovsky algorithm us ...
. The Chudnovsky formula developed in 1987 is \frac = \frac \sum_^\infty \frac. It produces about 14 digits of per term and has been used for several record-setting calculations, including the first to surpass 1 billion (109) digits in 1989 by the Chudnovsky brothers, 10 trillion (1013) digits in 2011 by Alexander Yee and Shigeru Kondo, and 100 trillion digits by Emma Haruka Iwao in 2022. For similar formulae, see also the Ramanujan–Sato series. In 2006, mathematician Simon Plouffe used the PSLQ integer relation algorithm to generate several new formulae for , conforming to the following template: \pi^k = \sum_^\infty \frac \left(\frac + \frac + \frac\right), where is (Gelfond's constant), is an
odd number In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The ...
, and are certain rational numbers that Plouffe computed.


Monte Carlo methods

Monte Carlo methods Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on Resampling (statistics), repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve pr ...
, which evaluate the results of multiple random trials, can be used to create approximations of . Buffon's needle is one such technique: If a needle of length is dropped times on a surface on which parallel lines are drawn units apart, and if of those times it comes to rest crossing a line ( > 0), then one may approximate based on the counts: \pi \approx \frac. Another Monte Carlo method for computing is to draw a circle inscribed in a square, and randomly place dots in the square. The ratio of dots inside the circle to the total number of dots will approximately equal . Another way to calculate using probability is to start with a
random walk In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some Space (mathematics), mathematical space. An elementary example of a rand ...
, generated by a sequence of (fair) coin tosses: independent
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
s such that with equal probabilities. The associated random walk is W_n = \sum_^n X_k so that, for each , is drawn from a shifted and scaled
binomial distribution In probability theory and statistics, the binomial distribution with parameters and is the discrete probability distribution of the number of successes in a sequence of statistical independence, independent experiment (probability theory) ...
. As varies, defines a (discrete)
stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Sto ...
. Then can be calculated by \pi = \lim_ \frac. This Monte Carlo method is independent of any relation to circles, and is a consequence of the
central limit theorem In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the Probability distribution, distribution of a normalized version of the sample mean converges to a Normal distribution#Standard normal distributi ...
, discussed
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor * Bottom (disambiguation) *Less than *Temperatures below freezing *Hell or underworld People with the surname * Ernst von Below (1863–1955), German World War I general * Fred Belo ...
. These Monte Carlo methods for approximating are very slow compared to other methods, and do not provide any information on the exact number of digits that are obtained. Thus they are never used to approximate when speed or accuracy is desired.


Spigot algorithms

Two algorithms were discovered in 1995 that opened up new avenues of research into . They are called spigot algorithms because, like water dripping from a spigot, they produce single digits of that are not reused after they are calculated. This is in contrast to infinite series or iterative algorithms, which retain and use all intermediate digits until the final result is produced. Mathematicians Stan Wagon and Stanley Rabinowitz produced a simple spigot algorithm in 1995. Its speed is comparable to arctan algorithms, but not as fast as iterative algorithms. Another spigot algorithm, the BBP digit extraction algorithm, was discovered in 1995 by Simon Plouffe: \pi = \sum_^\infty \frac \left( \frac - \frac - \frac - \frac\right). This formula, unlike others before it, can produce any individual
hexadecimal Hexadecimal (also known as base-16 or simply hex) is a Numeral system#Positional systems in detail, positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbo ...
digit of without calculating all the preceding digits. Individual binary digits may be extracted from individual hexadecimal digits, and
octal Octal (base 8) is a numeral system with eight as the base. In the decimal system, each place is a power of ten. For example: : \mathbf_ = \mathbf \times 10^1 + \mathbf \times 10^0 In the octal system, each place is a power of eight. For ex ...
digits can be extracted from one or two hexadecimal digits. An important application of digit extraction algorithms is to validate new claims of record computations: After a new record is claimed, the decimal result is converted to hexadecimal, and then a digit extraction algorithm is used to calculate several randomly selected hexadecimal digits near the end; if they match, this provides a measure of confidence that the entire computation is correct. Between 1998 and 2000, the
distributed computing Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers. The components of a distributed system commu ...
project
PiHex PiHex was a distributed computing project organized by Colin Percival to calculate specific bits of pi, . 1,246 contributors used idle time slices on almost two thousand computers to make its calculations. The software used for the project made use ...
used Bellard's formula (a modification of the BBP algorithm) to compute the quadrillionth (1015th) bit of , which turned out to be 0. In September 2010, a
Yahoo! Yahoo (, styled yahoo''!'' in its logo) is an American web portal that provides the search engine Yahoo Search and related services including My Yahoo, Yahoo Mail, Yahoo News, Yahoo Finance, Yahoo Sports, y!entertainment, yahoo!life, and its a ...
employee used the company's
Hadoop Apache Hadoop () is a collection of Open-source software, open-source software utilities for reliable, scalable, distributed computing. It provides a software framework for Clustered file system, distributed storage and processing of big data usin ...
application on one thousand computers over a 23-day period to compute 256
bit The bit is the most basic unit of information in computing and digital communication. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented as ...
s of at the two-quadrillionth (2×1015th) bit, which also happens to be zero. In 2022, Plouffe found a base-10 algorithm for calculating digits of .


Role and characterizations in mathematics

Because is closely related to the circle, it is found in many formulae from the fields of geometry and trigonometry, particularly those concerning circles, spheres, or ellipses. Other branches of science, such as statistics, physics,
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fo ...
, and number theory, also include in some of their important formulae.


Geometry and trigonometry

appears in formulae for areas and volumes of geometrical shapes based on circles, such as
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
s,
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
s, cones, and tori. Below are some of the more common formulae that involve . * The circumference of a circle with radius is . * The
area of a circle In geometry, the area enclosed by a circle of radius is . Here, the Greek letter represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159. One method of deriving this formula, which ori ...
with radius is . * The area of an ellipse with semi-major axis and semi-minor axis is . * The volume of a sphere with radius is . * The surface area of a sphere with radius is . Some of the formulae above are special cases of the volume of the ''n''-dimensional ball and the surface area of its boundary, the (''n''−1)-dimensional sphere, given
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor * Bottom (disambiguation) *Less than *Temperatures below freezing *Hell or underworld People with the surname * Ernst von Below (1863–1955), German World War I general * Fred Belo ...
. Apart from circles, there are other curves of constant width. By Barbier's theorem, every curve of constant width has perimeter times its width. The Reuleaux triangle (formed by the intersection of three circles with the sides of an
equilateral triangle An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the ...
as their radii) has the smallest possible area for its width and the circle the largest. There also exist non-circular smooth and even
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ...
s of constant width. Definite integrals that describe circumference, area, or volume of shapes generated by circles typically have values that involve . For example, an integral that specifies half the area of a circle of radius one is given by: \int_^1 \sqrt\,dx = \frac. In that integral, the function \sqrt represents the height over the x-axis of a
semicircle In mathematics (and more specifically geometry), a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180° (equivalently, radians, or a half-turn). It only has one line of symmetr ...
(the
square root In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
is a consequence of the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
), and the integral computes the area below the semicircle. The existence of such integrals makes an algebraic period.


Units of angle

The
trigonometric function In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
s rely on angles, and mathematicians generally use
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at ...
s as units of measurement. plays an important role in angles measured in radians, which are defined so that a complete circle spans an angle of 2 radians. The angle measure of 180° is equal to radians, and . Common trigonometric functions have periods that are multiples of ; for example, sine and cosine have period 2, so for any angle and any integer , \sin\theta = \sin\left(\theta + 2\pi k \right) \text \cos\theta = \cos\left(\theta + 2\pi k \right).


Eigenvalues

Many of the appearances of in the formulae of mathematics and the sciences have to do with its close relationship with geometry. However, also appears in many natural situations having apparently nothing to do with geometry. In many applications, it plays a distinguished role as an
eigenvalue In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
. For example, an idealized vibrating string can be modelled as the graph of a function on the unit interval , with fixed ends . The modes of vibration of the string are solutions of the differential equation f''(x) + \lambda f(x) = 0, or f''(t) = -\lambda f(x). Thus is an eigenvalue of the second derivative operator f \mapsto f'', and is constrained by
Sturm–Liouville theory In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form \frac \left (x) \frac\right+ q(x)y = -\lambda w(x) y for given functions p(x), q(x) and w(x), together with some ...
to take on only certain specific values. It must be positive, since the operator is negative definite, so it is convenient to write , where is called the
wavenumber In the physical sciences, the wavenumber (or wave number), also known as repetency, is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of ...
. Then satisfies the boundary conditions and the differential equation with . The value is, in fact, the ''least'' such value of the wavenumber, and is associated with the fundamental mode of vibration of the string. One way to show this is by estimating the
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
, which satisfies Wirtinger's inequality: for a function f :
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\to \Complex with and , both
square integrable In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value ...
, we have: \pi^2\int_0^1, f(x), ^2\,dx\le \int_0^1, f'(x), ^2\,dx, with equality precisely when is a multiple of . Here appears as an optimal constant in Wirtinger's inequality, and it follows that it is the smallest wavenumber, using the variational characterization of the eigenvalue. As a consequence, is the smallest singular value of the derivative operator on the space of functions on vanishing at both endpoints (the
Sobolev space In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of ''Lp''-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense ...
H^1_0 ,1/math>).


Inequalities

The number serves appears in similar eigenvalue problems in higher-dimensional analysis. As mentioned above, it can be characterized via its role as the best constant in the
isoperimetric inequality In mathematics, the isoperimetric inequality is a geometric inequality involving the square of the circumference of a closed curve in the plane and the area of a plane region it encloses, as well as its various generalizations. '' Isoperimetric'' ...
: the area enclosed by a plane
Jordan curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
of perimeter satisfies the inequality 4\pi A\le P^2, and equality is clearly achieved for the circle, since in that case and . Ultimately, as a consequence of the isoperimetric inequality, appears in the optimal constant for the critical
Sobolev inequality In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Re ...
in ''n'' dimensions, which thus characterizes the role of in many physical phenomena as well, for example those of classical
potential theory In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that the two fundamental forces of nature known at the time, namely g ...
. In two dimensions, the critical Sobolev inequality is 2\pi\, f\, _2 \le \, \nabla f\, _1 for ''f'' a smooth function with compact support in , \nabla f is the
gradient In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
of ''f'', and \, f\, _2 and \, \nabla f\, _1 refer respectively to the and -norm. The Sobolev inequality is equivalent to the isoperimetric inequality (in any dimension), with the same best constants. Wirtinger's inequality also generalizes to higher-dimensional Poincaré inequalities that provide best constants for the Dirichlet energy of an ''n''-dimensional membrane. Specifically, is the greatest constant such that \pi \le \frac for all
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
subsets of of diameter 1, and square-integrable functions ''u'' on of mean zero. Just as Wirtinger's inequality is the variational form of the Dirichlet eigenvalue problem in one dimension, the Poincaré inequality is the variational form of the
Neumann Neumann () is a German language, German surname, with its origins in the pre-7th-century (Old English) word ''wikt:neowe, neowe'' meaning "new", with ''wikt:mann, mann'', meaning man. The English form of the name is Newman. Von Neumann is a varian ...
eigenvalue problem, in any dimension.


Fourier transform and Heisenberg uncertainty principle

The constant also appears as a critical spectral parameter in the
Fourier transform In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
. This is the
integral transform In mathematics, an integral transform is a type of transform that maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily charac ...
, that takes a complex-valued integrable function on the real line to the function defined as: \hat(\xi) = \int_^\infty f(x) e^\,dx. Although there are several different conventions for the Fourier transform and its inverse, any such convention must involve ''somewhere''. The above is the most canonical definition, however, giving the unique unitary operator on that is also an algebra homomorphism of to . The
Heisenberg uncertainty principle The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
also contains the number . The uncertainty principle gives a sharp lower bound on the extent to which it is possible to localize a function both in space and in frequency: with our conventions for the Fourier transform, \left(\int_^\infty x^2, f(x), ^2\,dx\right) \left(\int_^\infty \xi^2, \hat(\xi), ^2\,d\xi\right) \ge \left(\frac\int_^\infty , f(x), ^2\,dx\right)^2. The physical consequence, about the uncertainty in simultaneous position and momentum observations of a
quantum mechanical Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
system, is discussed below. The appearance of in the formulae of Fourier analysis is ultimately a consequence of the Stone–von Neumann theorem, asserting the uniqueness of the Schrödinger representation of the
Heisenberg group In mathematics, the Heisenberg group H, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form : \begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end under the operation of matrix multiplication. Elements ''a, b' ...
.


Gaussian integrals

The fields of
probability Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
and
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
frequently use the
normal distribution In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is f(x) = \frac ...
as a simple model for complex phenomena; for example, scientists generally assume that the observational error in most experiments follows a normal distribution. The Gaussian function, which is the probability density function of the normal distribution with mean and standard deviation , naturally contains :. f(x) = \,e^. The factor of \tfrac makes the area under the graph of equal to one, as is required for a probability distribution. This follows from a integration by substitution, change of variables in the Gaussian integral: \int_^\infty e^ \, du=\sqrt which says that the area under the basic bell curve in the figure is equal to the square root of . The
central limit theorem In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the Probability distribution, distribution of a normalized version of the sample mean converges to a Normal distribution#Standard normal distributi ...
explains the central role of normal distributions, and thus of , in probability and statistics. This theorem is ultimately connected with the #Fourier transform and Heisenberg uncertainty principle, spectral characterization of as the eigenvalue associated with the Heisenberg uncertainty principle, and the fact that equality holds in the uncertainty principle only for the Gaussian function. Equivalently, is the unique constant making the Gaussian normal distribution equal to its own Fourier transform. Indeed, according to , the "whole business" of establishing the fundamental theorems of Fourier analysis reduces to the Gaussian integral.


Topology

The constant appears in the Gauss–Bonnet formula which relates the differential geometry of surfaces to their
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
. Specifically, if a compact space, compact surface has Gauss curvature ''K'', then \int_\Sigma K\,dA = 2\pi \chi(\Sigma) where is the Euler characteristic, which is an integer. An example is the surface area of a sphere ''S'' of curvature 1 (so that its radius of curvature, which coincides with its radius, is also 1.) The Euler characteristic of a sphere can be computed from its homology groups and is found to be equal to two. Thus we have A(S) = \int_S 1\,dA = 2\pi\cdot 2 = 4\pi reproducing the formula for the surface area of a sphere of radius 1. The constant appears in many other integral formulae in topology, in particular, those involving characteristic classes via the Chern–Weil homomorphism.


Cauchy's integral formula

One of the key tools in
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
is contour integration of a function over a positively oriented (rectifiable curve, rectifiable)
Jordan curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
. A form of Cauchy's integral formula states that if a point is interior to , then \oint_\gamma \frac = 2\pi i. Although the curve is not a circle, and hence does not have any obvious connection to the constant , a standard proof of this result uses Morera's theorem, which implies that the integral is invariant under homotopy of the curve, so that it can be deformed to a circle and then integrated explicitly in polar coordinates. More generally, it is true that if a rectifiable closed curve does not contain , then the above integral is times the winding number of the curve. The general form of Cauchy's integral formula establishes the relationship between the values of a complex analytic function on the Jordan curve and the value of at any interior point of : \oint_\gamma \,dz = 2\pi i f (z_) provided is analytic in the region enclosed by and extends continuously to . Cauchy's integral formula is a special case of the residue theorem, that if is a meromorphic function the region enclosed by and is continuous in a neighbourhood of , then \oint_\gamma g(z)\, dz =2\pi i \sum \operatorname( g, a_k ) where the sum is of the residue (mathematics), residues at the pole (complex analysis), poles of .


Vector calculus and physics

The constant is ubiquitous in vector calculus and
potential theory In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that the two fundamental forces of nature known at the time, namely g ...
, for example in Coulomb's law, Gauss's law, Maxwell's equations, and even the Einstein field equations. Perhaps the simplest example of this is the two-dimensional Newtonian potential, representing the potential of a point source at the origin, whose associated field has unit outward flux through any smooth and oriented closed surface enclosing the source: \Phi(\mathbf x) = \frac\log, \mathbf x, . The factor of 1/2\pi is necessary to ensure that \Phi is the fundamental solution of the Poisson equation in \mathbb R^2: \Delta\Phi = \delta where \delta is the Dirac delta function. In higher dimensions, factors of are present because of a normalization by the n-dimensional volume of the unit n sphere. For example, in three dimensions, the Newtonian potential is: \Phi(\mathbf x) = -\frac, which has the 2-dimensional volume (i.e., the area) of the unit 2-sphere in the denominator.


Total curvature

In the differential geometry of curves, the ''total curvature'' of a smooth plane curve is the amount it turns anticlockwise, in radians, from start to finish, computed as the integral of signed curvature with respect to arc length: \int_a^b k(s)\,ds For a closed curve, this quantity is equal to for an integer called the ''turning number'' or ''index'' of the curve. is the winding number about the origin of the hodograph of the curve parametrized by arclength, a new curve lying on the unit circle, described by the normalized tangent vector at each point on the original curve. Equivalently, is the Degree of a continuous mapping, degree of the map taking each point on the curve to the corresponding point on the hodograph, analogous to the Gauss map for surfaces.


The gamma function and Stirling's approximation

The factorial function n! is the product of all of the positive integers through . The gamma function extends the concept of factorial (normally defined only for non-negative integers) to all complex numbers, except the negative real integers, with the identity \Gamma(n)=(n-1)!. When the gamma function is evaluated at half-integers, the result contains . For example, \Gamma\bigl(\tfrac12\bigr) = \sqrt and \Gamma\bigl(\tfrac52\bigr) = \tfrac 34 \sqrt . The gamma function is defined by its Weierstrass product development: \Gamma(z) = \frac\prod_^\infty \frac where is the Euler–Mascheroni constant. Evaluated at and squared, the equation reduces to the Wallis product formula. The gamma function is also connected to the
Riemann zeta function The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic c ...
and identities for the functional determinant, in which the constant #Number theory and Riemann zeta function, plays an important role. The gamma function is used to calculate the volume of the n-ball, ''n''-dimensional ball of radius ''r'' in Euclidean ''n''-dimensional space, and the surface area of its boundary, the (''n''−1)-dimensional sphere: V_n(r) = \fracr^n, S_(r) = \fracr^. Further, it follows from the functional equation that 2\pi r = \frac. The gamma function can be used to create a simple approximation to the factorial function for large : n! \sim \sqrt \left(\frac\right)^n which is known as Stirling's approximation. Equivalently, \pi = \lim_ \frac. As a geometrical application of Stirling's approximation, let denote the simplex, standard simplex in ''n''-dimensional Euclidean space, and denote the simplex having all of its sides scaled up by a factor of . Then \operatorname((n+1)\Delta_n) = \frac \sim \frac. Ehrhart's volume conjecture is that this is the (optimal) upper bound on the volume of a convex body containing only one lattice point.


Number theory and Riemann zeta function

The
Riemann zeta function The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic c ...
is used in many areas of mathematics. When evaluated at it can be written as \zeta(2) = \frac + \frac + \frac + \cdots Finding a closed-form expression, simple solution for this infinite series was a famous problem in mathematics called the
Basel problem The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 ...
.
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
solved it in 1735 when he showed it was equal to . Euler's result leads to the
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
result that the probability of two random numbers being relatively prime (that is, having no shared factors) is equal to . This probability is based on the observation that the probability that any number is divisible by a prime is (for example, every 7th integer is divisible by 7.) Hence the probability that two numbers are both divisible by this prime is , and the probability that at least one of them is not is . For distinct primes, these divisibility events are mutually independent; so the probability that two numbers are relatively prime is given by a product over all primes: \begin \prod_p^\infty \left(1-\frac\right) &= \left( \prod_p^\infty \frac \right)^\\[4pt] &= \frac\\[4pt] &= \frac = \frac \approx 61\%. \end This probability can be used in conjunction with a random number generator to approximate using a Monte Carlo approach. The solution to the Basel problem implies that the geometrically derived quantity is connected in a deep way to the distribution of prime numbers. This is a special case of Weil's conjecture on Tamagawa numbers, which asserts the equality of similar such infinite products of ''arithmetic'' quantities, localized at each prime ''p'', and a ''geometrical'' quantity: the reciprocal of the volume of a certain locally symmetric space. In the case of the Basel problem, it is the hyperbolic 3-manifold . The zeta function also satisfies Riemann's functional equation, which involves as well as the gamma function: \zeta(s) = 2^s\pi^\ \sin\left(\frac\right)\ \Gamma(1-s)\ \zeta(1-s). Furthermore, the derivative of the zeta function satisfies \exp(-\zeta'(0)) = \sqrt. A consequence is that can be obtained from the functional determinant of the harmonic oscillator. This functional determinant can be computed via a product expansion, and is equivalent to the Wallis product formula. The calculation can be recast in quantum mechanics, specifically the Calculus of variations, variational approach to the Bohr model, spectrum of the hydrogen atom.


Fourier series

The constant also appears naturally in Fourier series of periodic functions. Periodic functions are functions on the group of fractional parts of real numbers. The Fourier decomposition shows that a complex-valued function on can be written as an infinite linear superposition of unitary characters of . That is, continuous group homomorphisms from to the
circle group In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
of unit modulus complex numbers. It is a theorem that every character of is one of the complex exponentials e_n(x)= e^. There is a unique character on , up to complex conjugation, that is a group isomorphism. Using the Haar measure on the circle group, the constant is half the magnitude of the Radon–Nikodym derivative of this character. The other characters have derivatives whose magnitudes are positive integral multiples of 2. As a result, the constant is the unique number such that the group T, equipped with its Haar measure, is Pontrjagin dual to the lattice (group), lattice of integral multiples of 2. This is a version of the one-dimensional Poisson summation formula.


Modular forms and theta functions

The constant is connected in a deep way with the theory of modular forms and theta functions. For example, the Chudnovsky algorithm involves in an essential way the j-invariant of an elliptic curve. Modular forms are holomorphic functions in the upper half plane characterized by their transformation properties under the modular group \mathrm_2(\mathbb Z) (or its various subgroups), a lattice in the group \mathrm_2(\mathbb R). An example is the Jacobi theta function \theta(z,\tau) = \sum_^\infty e^ which is a kind of modular form called a Jacobi form. This is sometimes written in terms of the nome (mathematics), nome q=e^. The constant is the unique constant making the Jacobi theta function an automorphic form, which means that it transforms in a specific way. Certain identities hold for all automorphic forms. An example is \theta(z+\tau,\tau) = e^\theta(z,\tau), which implies that transforms as a representation under the discrete
Heisenberg group In mathematics, the Heisenberg group H, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form : \begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end under the operation of matrix multiplication. Elements ''a, b' ...
. General modular forms and other theta functions also involve , once again because of the Stone–von Neumann theorem.


Cauchy distribution and potential theory

The Cauchy distribution g(x)=\frac\cdot\frac is a probability density function. The total probability is equal to one, owing to the integral: \int_^ \frac \, dx = \pi. The Shannon entropy of the Cauchy distribution is equal to , which also involves . The Cauchy distribution plays an important role in
potential theory In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that the two fundamental forces of nature known at the time, namely g ...
because it is the simplest Furstenberg boundary, Furstenberg measure, the classical Poisson kernel associated with a Brownian motion in a half-plane. Conjugate harmonic functions and so also the Hilbert transform are associated with the asymptotics of the Poisson kernel. The Hilbert transform ''H'' is the integral transform given by the Cauchy principal value of the singular integral Hf(t) = \frac\int_^\infty \frac. The constant is the unique (positive) normalizing factor such that ''H'' defines a linear complex structure on the Hilbert space of square-integrable real-valued functions on the real line. The Hilbert transform, like the Fourier transform, can be characterized purely in terms of its transformation properties on the Hilbert space : up to a normalization factor, it is the unique bounded linear operator that commutes with positive dilations and anti-commutes with all reflections of the real line. The constant is the unique normalizing factor that makes this transformation unitary.


In the Mandelbrot set

An occurrence of in the
fractal In mathematics, a fractal is a Shape, geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scale ...
called the Mandelbrot set was discovered by David Boll in 1991. He examined the behaviour of the Mandelbrot set near the "neck" at . When the number of iterations until divergence for the point is multiplied by , the result approaches as approaches zero. The point at the cusp of the large "valley" on the right side of the Mandelbrot set behaves similarly: the number of iterations until divergence multiplied by the square root of tends to .


Outside mathematics


Describing physical phenomena

Although not a physical constant, appears routinely in equations describing fundamental principles of the universe, often because of 's relationship to the circle and to spherical coordinate systems. A simple formula from the field of classical mechanics gives the approximate period of a simple pendulum of length , swinging with a small amplitude ( is the Gravity of Earth, earth's gravitational acceleration): T \approx 2\pi \sqrt\frac. One of the key formulae of quantum mechanics is Heisenberg's uncertainty principle, which shows that the uncertainty in the measurement of a particle's position (Δ) and momentum (Δ) cannot both be arbitrarily small at the same time (where is the Planck constant): \Delta x\, \Delta p \ge \frac. The fact that is approximately equal to 3 plays a role in the relatively long lifetime of orthopositronium. The inverse lifetime to lowest order in the fine-structure constant is \frac = 2\fracm_\text\alpha^, where is the mass of the electron. is present in some structural engineering formulae, such as the buckling formula derived by Euler, which gives the maximum axial load that a long, slender column of length , modulus of elasticity , and area moment of inertia can carry without buckling: F =\frac. The field of fluid dynamics contains in Stokes' law, which approximates the drag force, frictional force exerted on small, sphere, spherical objects of radius , moving with velocity in a fluid with dynamic viscosity : F =6\pi\eta Rv. In electromagnetics, the vacuum permeability constant ''μ''0 appears in Maxwell's equations, which describe the properties of Electric field, electric and Magnetic field, magnetic fields and electromagnetic radiation. Before 20 May 2019, it was defined as exactly \mu_0 = 4 \pi \times 10^\text \approx 1.2566370614 \ldots \times 10 ^ \text^2.


Memorizing digits

Piphilology is the practice of memorizing large numbers of digits of , and world-records are kept by the ''Guinness World Records''. The record for memorizing digits of , certified by Guinness World Records, is 70,000 digits, recited in India by Rajveer Meena in 9 hours and 27 minutes on 21 March 2015. In 2006, Akira Haraguchi, a retired Japanese engineer, claimed to have recited 100,000 decimal places, but the claim was not verified by Guinness World Records. One common technique is to memorize a story or poem in which the word lengths represent the digits of : The first word has three letters, the second word has one, the third has four, the fourth has one, the fifth has five, and so on. Such memorization aids are called mnemonics. An early example of a mnemonic for pi, originally devised by English scientist James Hopwood Jeans, James Jeans, is "How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics." When a poem is used, it is sometimes referred to as a ''piem''. Poems for memorizing have been composed in several languages in addition to English. Record-setting memorizers typically do not rely on poems, but instead use methods such as remembering number patterns and the method of loci. A few authors have used the digits of to establish a new form of constrained writing, where the word lengths are required to represent the digits of . The ''Cadaeic Cadenza'' contains the first 3835 digits of in this manner, and the full-length book ''Not a Wake'' contains 10,000 words, each representing one digit of .


In popular culture

Perhaps because of the simplicity of its definition and its ubiquitous presence in formulae, has been represented in popular culture more than other mathematical constructs. In the Palais de la Découverte (a science museum in Paris) there is a circular room known as the ''pi room''. On its wall are inscribed 707 digits of . The digits are large wooden characters attached to the dome-like ceiling. The digits were based on an 1873 calculation by English mathematician William Shanks, which included an error beginning at the 528th digit. The error was detected in 1946 and corrected in 1949. In Carl Sagan's 1985 novel ''Contact (novel), Contact'' it is suggested that the creator of the universe buried a message deep within the digits of . This part of the story was omitted from the Contact (1997 American film), film adaptation of the novel. The digits of have also been incorporated into the lyrics of the song "Pi" from the 2005 album ''Aerial (album), Aerial'' by Kate Bush. In the 1967 ''Star Trek: The Original Series, Star Trek'' episode "Wolf in the Fold", a computer possessed by a demonic entity is contained by being instructed to "Compute to the last digit the value of ". In the United States, Pi Day falls on 14 March (written 3/14 in the US style), and is popular among students. and its digital representation are often used by self-described "math geeks" for inside jokes among mathematically and technologically minded groups. A Cheering#Chants in North American sports, college cheer variously attributed to the Massachusetts Institute of Technology or the Rensselaer Polytechnic Institute includes "3.14159". Pi Day in 2015 was particularly significant because the date and time 3/14/15 9:26:53 reflected many more digits of pi. In parts of the world where dates are commonly noted in day/month/year format, 22 July represents "Pi Approximation Day", as 22/7 ≈ 3.142857. Some have proposed replacing by Tau (mathematical constant), , arguing that , as the number of radians in one Turn (angle), turn or the ratio of a circle's circumference to its radius, is more natural than and simplifies many formulae. This use of has not made its way into mainstream mathematics, but since 2010 this has led to people celebrating Two Pi Day or Tau Day on June 28. In 1897, an amateur mathematician attempted to persuade the Indiana General Assembly, Indiana legislature to pass the Indiana Pi Bill, which described a method to Squaring the circle, square the circle and contained text that implied various incorrect values for , including 3.2. The bill is notorious as an attempt to establish a value of mathematical constant by legislative fiat. The bill was passed by the Indiana House of Representatives, but rejected by the Senate, and thus it did not become a law. In contemporary internet culture, individuals and organizations frequently pay homage to the number . For instance, the computer scientist Donald Knuth let the version numbers of his program TeX approach . The versions are 3, 3.1, 3.14, and so forth.


See also

* List of mathematical constants


References


Explanatory notes


Citations


Sources

* * * English translation by Catriona and David Lischka. * * * * * * *


Further reading

* *


External links

* * Demonstration by Lambert (1761) of irrationality of
online
and analysed
BibNum
'' (PDF).
Search Engine
2 billion searchable digits of , and
''approximation von π by lattice points''
an
''approximation of π with rectangles and trapezoids''
(interactive illustrations) {{Authority control Pi, Complex analysis Mathematical constants Series (mathematics) Real transcendental numbers