Nitrogen Group
   HOME

TheInfoList



OR:

, - ! colspan=2 style="text-align:left;" , ↓  Period , - ! 2 , , - ! 3 , , - ! 4 , , - ! 5 , , - ! 6 , , - ! 7 , , - , colspan="2", ---- ''Legend'' A pnictogen ( or ; from "to choke" and -gen, "generator") is any of the
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s in group 15 of the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
. Group 15 is also known as the nitrogen group or nitrogen family. Group 15 consists of the elements
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
(N),
phosphorus Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
(P),
arsenic Arsenic is a chemical element; it has Symbol (chemistry), symbol As and atomic number 33. It is a metalloid and one of the pnictogens, and therefore shares many properties with its group 15 neighbors phosphorus and antimony. Arsenic is not ...
(As),
antimony Antimony is a chemical element; it has chemical symbol, symbol Sb () and atomic number 51. A lustrous grey metal or metalloid, it is found in nature mainly as the sulfide mineral stibnite (). Antimony compounds have been known since ancient t ...
(Sb), bismuth (Bi), and
moscovium Moscovium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Resea ...
(Mc). The
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
has called it Group 15 Since 1988. Before that, in America it was called Group VA, owing to a text by H. C. Deming and the Sargent-Welch Scientific Company, while in Europe it was called ecommended that in 1970. (Pronounced "group five A" and "group five B"; "V" is the
Roman numeral Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, ea ...
5). In
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
physics, it is still usually called Group V. The "five" ("V") in the historical names comes from the " pentavalency" of nitrogen, reflected by the
stoichiometry Stoichiometry () is the relationships between the masses of reactants and Product (chemistry), products before, during, and following chemical reactions. Stoichiometry is based on the law of conservation of mass; the total mass of reactants must ...
of compounds such as N2O5. They have also been called the pentels.


Characteristics


Chemical

Like other groups, the members of this family manifest similar patterns in electron configuration, notably in their valence shells, resulting in trends in chemical behavior. This group has the defining characteristic whereby each component element has 5 electrons in their valence
shell Shell may refer to: Architecture and design * Shell (structure), a thin structure ** Concrete shell, a thin shell of concrete, usually with no interior columns or exterior buttresses Science Biology * Seashell, a hard outer layer of a marine ani ...
, that is, 2 electrons in the s sub-shell and 3 unpaired electrons in the p sub-shell. They are therefore 3 electrons shy of filling their valence shell in their non- ionized state. The Russell-Saunders
term symbol In atomic physics, a term symbol is an abbreviated description of the total spin and orbital angular momentum quantum numbers of the electrons in a multi-electron atom. So while the word ''symbol'' suggests otherwise, it represents an actual ''valu ...
of the ground state in all elements in the group is 4S. The most important elements of this group to life on Earth are
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
(N), which in its diatomic form is the principal component of air, and
phosphorus Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
(P), which, like nitrogen, is essential to all known forms of life.


Compounds

Binary compounds of the group can be referred to collectively as pnictides. Magnetic properties of pnictide compounds span the cases of diamagnetic systems (such as BN or GaN) and magnetically ordered systems (MnSb is paramagnetic at elevated temperatures and ferromagnetic at room temperature); the former compounds are usually transparent and the latter metallic. Other pnictides include the ternary rare-earth (RE) main-group variety of pnictides. These are in the form of , where M is a
carbon group The carbon group is a group (periodic table), periodic table group consisting of carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), and flerovium (Fl). It lies within the p-block. In modern International Union of Pure and Applied Ch ...
or
boron group The boron group are the chemical elements in periodic table group, group 13 of the periodic table, consisting of boron (B), aluminium (Al), gallium (Ga), indium (In), thallium (Tl) and nihonium (Nh). This group lies in the p-block of the perio ...
element and Pn is any pnictogen except nitrogen. These compounds are between ionic and covalent compounds and thus have unusual bonding properties."Pnicogen – Molecule of the Month"
University of Bristol
These elements are also noted for their stability in compounds due to their tendency to form covalent double bonds and triple bonds. This property of these elements leads to their potential
toxicity Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacteria, bacterium, or plant, as well as the effect o ...
, most evident in phosphorus, arsenic, and antimony. When these substances react with various chemicals of the body, they create strong free radicals that are not easily processed by the liver, where they accumulate. Paradoxically, this same strong bonding causes nitrogen's and bismuth's reduced toxicity (when in molecules), because these strong bonds with other atoms are difficult to split, creating very unreactive molecules. For example, , the
diatomic Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear mol ...
form of nitrogen, is used as an inert gas in situations where using
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
or another
noble gas The noble gases (historically the inert gases, sometimes referred to as aerogens) are the members of Group (periodic table), group 18 of the periodic table: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn) and, in some ...
would be too expensive. Formation of multiple bonds is facilitated by their ''five'' valence electrons whereas the octet rule permits a pnictogen for accepting three electrons on covalent bonding. Because 5  3, it leaves unused two electrons in a lone pair unless there is a positive charge around (like in ). When a pnictogen forms only three single bonds, effects of the lone pair typically result in trigonal pyramidal molecular geometry.


Oxidation states

The light pnictogens (nitrogen, phosphorus, and arsenic) tend to form −3 charges when reduced, completing their octet. When oxidized or ionized, pnictogens typically take an oxidation state of +3 (by losing all three p-shell electrons in the valence shell) or +5 (by losing all three p-shell and both s-shell electrons in the valence shell). However heavier pnictogens are more likely to form the +3 oxidation state than lighter ones due to the s-shell electrons becoming more stabilized.Boudreaux, Kevin A
"Group 5A — The Pnictogens"
Department of Chemistry, Angelo State University, Texas


=−3 oxidation state

= Pnictogens can react with
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
to form pnictogen hydrides such as
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
. Going down the group, to phosphane (phosphine), arsane (arsine), stibane (stibine), and finally bismuthane (bismuthine), each pnictogen hydride becomes progressively less stable (more unstable), more toxic, and has a smaller hydrogen-hydrogen angle (from 107.8° in ammonia to 90.48° in bismuthane). (Also, technically, only ammonia and phosphane have the pnictogen in the −3 oxidation state because, for the rest, the pnictogen is less electronegative than hydrogen.) Crystal solids featuring pnictogens fully reduced include yttrium nitride, calcium phosphide, sodium arsenide, indium antimonide, and even double salts like aluminum gallium indium phosphide. These include III-V semiconductors, including
gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
, the second-most widely used semiconductor after silicon.


=+3 oxidation state

= Nitrogen forms a limited number of stable III compounds. Nitrogen(III) oxide can only be isolated at low temperatures, and nitrous acid is unstable. Nitrogen trifluoride is the only stable nitrogen trihalide, with nitrogen trichloride, nitrogen tribromide, and nitrogen triiodide being explosive—nitrogen triiodide being so shock-sensitive that the touch of a feather detonates it (the last three actually feature nitrogen in the -3 oxidation state). Phosphorus forms a +III oxide which is stable at room temperature,
phosphorous acid Phosphorous acid (or phosphonic acid) is the Compound (chemistry), compound described by the chemical formula, formula . It is diprotic (readily ionizes two protons), not triprotic as might be suggested by its formula. Phosphorous acid is an in ...
, and several trihalides, although the triiodide is unstable. Arsenic forms +III compounds with oxygen as arsenites, arsenous acid, and arsenic(III) oxide, and it forms all four trihalides. Antimony forms antimony(III) oxide and antimonite but not oxyacids. Its trihalides, antimony trifluoride, antimony trichloride, antimony tribromide, and antimony triiodide, like all pnictogen trihalides, each have trigonal pyramidal molecular geometry. The +3 oxidation state is bismuth's most common oxidation state because its ability to form the +5 oxidation state is hindered by relativistic properties on heavier elements, effects that are even more pronounced concerning moscovium. Bismuth(III) forms an oxide, an oxychloride, an oxynitrate, and a sulfide. Moscovium(III) is predicted to behave similarly to bismuth(III). Moscovium is predicted to form all four trihalides, of which all but the trifluoride are predicted to be soluble in water. It is also predicted to form an oxychloride and oxybromide in the +III oxidation state.


=+5 oxidation state

= For nitrogen, the +5 state is typically serves as only a formal explanation of molecules like N2O5, as the high electronegativity of nitrogen causes the electrons to be shared almost evenly. Pnictogen compounds with coordination number 5 are hypervalent. Nitrogen(V) fluoride is only theoretical and has not been synthesized. The "true" +5 state is more common for the essentially non-relativistic typical pnictogens
phosphorus Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
,
arsenic Arsenic is a chemical element; it has Symbol (chemistry), symbol As and atomic number 33. It is a metalloid and one of the pnictogens, and therefore shares many properties with its group 15 neighbors phosphorus and antimony. Arsenic is not ...
, and
antimony Antimony is a chemical element; it has chemical symbol, symbol Sb () and atomic number 51. A lustrous grey metal or metalloid, it is found in nature mainly as the sulfide mineral stibnite (). Antimony compounds have been known since ancient t ...
, as shown in their oxides, phosphorus(V) oxide, arsenic(V) oxide, and antimony(V) oxide, and their fluorides, phosphorus(V) fluoride, arsenic(V) fluoride, antimony(V) fluoride. They also form related fluoride-anions, hexafluorophosphate, hexafluoroarsenate, hexafluoroantimonate, that function as non-coordinating anions. Phosphorus even forms mixed oxide-halides, known as oxyhalides, like phosphorus oxychloride, and mixed pentahalides, like phosphorus trifluorodichloride. Pentamethylpnictogen(V) compounds exist for
arsenic Arsenic is a chemical element; it has Symbol (chemistry), symbol As and atomic number 33. It is a metalloid and one of the pnictogens, and therefore shares many properties with its group 15 neighbors phosphorus and antimony. Arsenic is not ...
,
antimony Antimony is a chemical element; it has chemical symbol, symbol Sb () and atomic number 51. A lustrous grey metal or metalloid, it is found in nature mainly as the sulfide mineral stibnite (). Antimony compounds have been known since ancient t ...
, and bismuth. However, for bismuth, the +5 oxidation state becomes rare due to the relativistic stabilization of the 6s orbitals known as the inert-pair effect, so that the 6s electrons are reluctant to bond chemically. This causes bismuth(V) oxide to be unstable and bismuth(V) fluoride to be more reactive than the other pnictogen pentafluorides, making it an extremely powerful fluorinating agent. This effect is even more pronounced for moscovium, prohibiting it from attaining a +5 oxidation state.


=Other oxidation states

= * Nitrogen forms a variety of compounds with oxygen in which the nitrogen can take on a variety of oxidation states, including +II, +IV, and even some mixed-valence compounds and very unstable +VI oxidation state. * In hydrazine, diphosphane, and organic derivatives of the two, the nitrogen or phosphorus atoms have the −2 oxidation state. Likewise, diimide, which has two nitrogen atoms double-bonded to each other, and its organic derivatives have nitrogen in the oxidation state of −1. ** Similarly, realgar has arsenic–arsenic bonds, so the arsenic's oxidation state is +II. ** A corresponding compound for antimony is Sb2(C6H5)4, where the antimony's oxidation state is +II. * Phosphorus has the +1 oxidation state in hypophosphorous acid and the +4 oxidation state in hypophosphoric acid. * Antimony tetroxide is a mixed-valence compound, where half of the antimony atoms are in the +3 oxidation state, and the other half are in the +5 oxidation state. * It is expected that moscovium will have an inert-pair effect for both the 7s and the 7p1/2 electrons, as the
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
of the lone 7p3/2 electron is noticeably lower than that of the 7p1/2 electrons. This is predicted to cause +I to be a common oxidation state for moscovium, although it also occurs to a lesser extent for bismuth and nitrogen.


Physical

The pnictogens exemplify the transition from nonmetal to metal going down the periodic table: a gaseous diatomic nonmetal (N), two elements displaying many allotropes of varying conductivities and structures (P and As), and then at least two elements that only form metallic structures in bulk (Sb and Bi; probably Mc as well). All the elements in the group are
solid Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
s at room temperature, except for nitrogen which is gaseous at room temperature. Nitrogen and bismuth, despite both being pnictogens, are very different in their physical properties. For instance, at STP nitrogen is a transparent non-metallic gas, while bismuth is a silvery-white metal. The densities of the pnictogens increase towards the heavier pnictogens. Nitrogen's density is 0.001251 g/cm3 at STP. Phosphorus's density is 1.82 g/cm3 at STP, arsenic's is 5.72 g/cm3, antimony's is 6.68 g/cm3, and bismuth's is 9.79 g/cm3. Nitrogen's
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
is −210 °C and its boiling point is −196 °C. Phosphorus has a melting point of 44 °C and a boiling point of 280 °C. Arsenic is one of only two elements to sublimate at standard pressure; it does this at 603 °C. Antimony's melting point is 631 °C and its boiling point is 1587 °C. Bismuth's melting point is 271 °C and its boiling point is 1564 °C. Nitrogen's crystal structure is
hexagonal In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is d ...
. Phosphorus's crystal structure is
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
. Arsenic, antimony, and bismuth all have
rhombohedral In geometry, a rhombohedron (also called a rhombic hexahedron or, inaccurately, a rhomboid) is a special case of a parallelepiped in which all six faces are congruent rhombus, rhombi. It can be used to define the rhombohedral lattice system, a Ho ...
crystal structures.


Nuclear

All pnictogens up to antimony have at least one
stable isotope Stable nuclides are Isotope, isotopes of a chemical element whose Nucleon, nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The Atomic nucleus, nuclei of such isotopes are no ...
; bismuth has no stable isotopes, but has a primordial radioisotope with a half-life much longer than the age of the universe ( 209Bi); and all known isotopes of moscovium are synthetic and highly radioactive. In addition to these isotopes, traces of 13N, 32P, and 33P occur in nature, along with various bismuth isotopes (other than 209Bi) in the decay chains of thorium and uranium.


History

The nitrogen compound sal ammoniac (ammonium chloride) has been known since the time of the Ancient Egyptians. In the 1760s two scientists, Henry Cavendish and
Joseph Priestley Joseph Priestley (; 24 March 1733 – 6 February 1804) was an English chemist, Unitarian, Natural philosophy, natural philosopher, English Separatist, separatist theologian, Linguist, grammarian, multi-subject educator and Classical libera ...
, isolated nitrogen from air, but neither realized the presence of an undiscovered element. It was not until several years later, in 1772, that Daniel Rutherford realized that the gas was indeed nitrogen. The alchemist Hennig Brandt first discovered phosphorus in Hamburg in 1669. Brandt produced the element by heating evaporated urine and condensing the resulting phosphorus vapor in water. Brandt initially thought that he had discovered the Philosopher's Stone, but eventually realized that this was not the case. Arsenic compounds have been known for at least 5000 years, and the ancient Greek
Theophrastus Theophrastus (; ; c. 371 – c. 287 BC) was an ancient Greek Philosophy, philosopher and Natural history, naturalist. A native of Eresos in Lesbos, he was Aristotle's close colleague and successor as head of the Lyceum (classical), Lyceum, the ...
recognized the arsenic minerals called realgar and
orpiment Orpiment, also known as ″yellow arsenic blende″ is a deep-colored, orange-yellow arsenic sulfide mineral with formula . It is found in volcanic fumaroles, low-temperature hydrothermal veins, and hot springs and may be formed through sublimatio ...
. Elemental arsenic was discovered in the 13th century by Albertus Magnus. Antimony was well known to the ancients. A 5000-year-old vase made of nearly pure antimony exists in the
Louvre The Louvre ( ), or the Louvre Museum ( ), is a national art museum in Paris, France, and one of the most famous museums in the world. It is located on the Rive Droite, Right Bank of the Seine in the city's 1st arrondissement of Paris, 1st arron ...
. Antimony compounds were used in dyes in the Babylonian times. The antimony mineral stibnite may have been a component of Greek fire. Bismuth was first discovered by an alchemist in 1400. Within 80 years of bismuth's discovery, it had applications in
printing Printing is a process for mass reproducing text and images using a master form or template. The earliest non-paper products involving printing include cylinder seals and objects such as the Cyrus Cylinder and the Cylinders of Nabonidus. The ...
and decorated caskets. The Incas were also using bismuth in knives by 1500. Bismuth was originally thought to be the same as lead, but in 1753, Claude François Geoffroy proved that bismuth was different from lead. Moscovium was successfully produced in 2003 by bombarding americium-243 atoms with calcium-48 atoms.


Names and etymology

The term "pnictogen" (or "pnigogen") is derived from the
ancient Greek Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek ...
word () meaning "to choke", referring to the choking or stifling property of nitrogen gas. It can also be used as a
mnemonic A mnemonic device ( ), memory trick or memory device is any learning technique that aids information retention or retrieval in the human memory, often by associating the information with something that is easier to remember. It makes use of e ...
for the two most common members, P and N. The term "pnictogen" was suggested by the Dutch chemist Anton Eduard van Arkel in the early 1950s. It is also spelled "pnicogen" or "pnigogen". The term "pnicogen" is rarer than the term "pnictogen", and the ratio of academic research papers using "pnictogen" to those using "pnicogen" is 2.5 to 1. It comes from the Greek
root In vascular plants, the roots are the plant organ, organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often bel ...
(choke, strangle), and thus the word "pnictogen" is also a reference to the Dutch and German names for nitrogen ( and '','' respectively, "suffocating substance": i.e., substance in air, unsupportive of breathing). Hence, "pnictogen" could be translated as "suffocation maker". The word "pnictide" also comes from the same root. The name pentels (from Greek , , five) also at one time stood for this group.


Occurrence

Nitrogen makes up 25 parts per million of the
Earth's crust Earth's crust is its thick outer shell of rock, referring to less than one percent of the planet's radius and volume. It is the top component of the lithosphere, a solidified division of Earth's layers that includes the crust and the upper ...
, 5 parts per million of soil on average, 100 to 500 parts per trillion of seawater, and 78% of dry air. Most nitrogen on Earth is in nitrogen gas, but some nitrate minerals exist. Nitrogen makes up 2.5% of a typical human by weight. Phosphorus is 0.1% of the earth's crust, making it the 11th most abundant element. Phosphorus comprises 0.65 parts per million of soil and 15 to 60 parts per billion of seawater. There are 200 Mt of accessible
phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
s on earth. Phosphorus makes up 1.1% of a typical human by weight. Phosphorus occurs in minerals of the
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of Hydroxide, OH−, Fluoride, F− and Chloride, Cl− ion, respectively, in the crystal. The formula of the admixture of ...
family, which are the main components of the phosphate rocks. Arsenic constitutes 1.5 parts per million of the Earth's crust, making it the 53rd most abundant element. The soils hold 1 to 10 parts per million of arsenic, and seawater carries 1.6 parts per billion of arsenic. Arsenic comprises 100 parts per billion of a typical human by weight. Some arsenic exists in elemental form, but most arsenic is found in the arsenic minerals
orpiment Orpiment, also known as ″yellow arsenic blende″ is a deep-colored, orange-yellow arsenic sulfide mineral with formula . It is found in volcanic fumaroles, low-temperature hydrothermal veins, and hot springs and may be formed through sublimatio ...
, realgar, arsenopyrite, and enargite. Antimony makes up 0.2 parts per million of the earth's crust, making it the 63rd most abundant element. The soils contain 1 part per million of antimony on average, and seawater contains 300 parts per trillion on average. A typical human has 28 parts per billion of antimony by weight. Some elemental antimony occurs in silver deposits. Bismuth makes up 48 parts per billion of the earth's crust, making it the 70th most abundant element. The soils contain approximately 0.25 parts per million of bismuth, and seawater contains 400 parts per trillion of bismuth. Bismuth most commonly occurs as the mineral bismuthinite, but bismuth also occurs in elemental form or sulfide ores. Moscovium is produced several atoms at a time in particle accelerators.


Production


Nitrogen

Nitrogen can be produced by fractional distillation of air.


Phosphorus

The principal method for producing phosphorus is to reduce phosphates with carbon in an electric arc furnace.


Arsenic

Most arsenic is prepared by heating the mineral arsenopyrite in the presence of air. This forms As4O6, from which arsenic can be extracted via carbon reduction. However, it is also possible to make metallic arsenic by heating arsenopyrite at 650 to 700 °C without oxygen.


Antimony

With sulfide ores, the method by which antimony is produced depends on the amount of antimony in the raw ore. If the ore contains 25% to 45% antimony by weight, then crude antimony is produced by smelting the ore in a blast furnace. If the ore contains 45% to 60% antimony by weight, antimony is obtained by heating the ore, also known as liquidation. Ores with more than 60% antimony by weight are chemically displaced with iron shavings from the molten ore, resulting in impure metal. If an oxide ore of antimony contains less than 30% antimony by weight, the ore is reduced in a blast furnace. If the ore contains closer to 50% antimony by weight, the ore is instead reduced in a reverberatory furnace. Antimony ores with mixed sulfides and oxides are smelted in a blast furnace.Butterman, C.; Carlin, Jr., J.F. (2003)
Mineral Commodity Profiles: Antimony
United States Geological Survey.


Bismuth

Bismuth minerals do occur, in particular in the form of sulfides and oxides, but it is more economic to produce bismuth as a by-product of the smelting of lead ores or, as in China, of tungsten and zinc ores.


Moscovium

Moscovium is produced a few atoms at a time in
particle accelerators A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
by firing a beam of calcium-48 ions at americium-243 until the nuclei fuse.


Applications

*
Liquid nitrogen Liquid nitrogen (LN2) is nitrogen in a liquid state at cryogenics, low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, mobile liquid whose vis ...
is a commonly used cryogenic liquid. *Nitrogen in the form of
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
is a nutrient critical to most plants' survival. Synthesis of ammonia accounts for about 1–2% of the world's energy consumption and the majority of reduced nitrogen in food. *Phosphorus is used in matches and incendiary bombs. * Phosphate fertilizer helps feed much of the world. *Arsenic was historically used as a Paris green pigment, but is not used this way anymore due to its extreme toxicity. *Arsenic in the form of organoarsenic compounds is sometimes used in chicken feed. *Antimony is alloyed with lead to produce some bullets. *Antimony currency was briefly used in the 1930s in parts of China, but this use was discontinued as antimony is both soft and toxic. * Bismuth subsalicylate is the active ingredient in Pepto-Bismol. *Bismuth chalcogenides are being studied in cancerous mice as a candidate for use in improving
radiation therapy Radiation therapy or radiotherapy (RT, RTx, or XRT) is a therapy, treatment using ionizing radiation, generally provided as part of treatment of cancer, cancer therapy to either kill or control the growth of malignancy, malignant cell (biology), ...
in human cancer patients. *Moscovium is too unstable and scarce to have any known practical application.


Biological role

Nitrogen is a component of molecules critical to life on earth, such as DNA and
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the Proteinogenic amino acid, 22 α-amino acids incorporated into p ...
.
Nitrate Nitrate is a polyatomic ion with the chemical formula . salt (chemistry), Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are solubility, soluble in wa ...
s occur in some plants, due to bacteria present in the nodes of the plant. This is seen in leguminous plants such as peas or spinach and lettuce. A typical 70 kg human contains 1.8 kg of nitrogen. Phosphorus in the form of
phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
s occur in compounds important to life, such as DNA and ATP. Humans consume approximately 1 g of phosphorus per day. Phosphorus is found in foods such as fish, liver, turkey, chicken, and eggs. Phosphate deficiency is a problem known as hypophosphatemia. A typical 70 kg human contains 480 g of phosphorus. Arsenic promotes growth in chickens and rats, and may be essential for humans in small quantities. Arsenic has been shown to be helpful in metabolizing the amino acid
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidinium, guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) a ...
. There are 7 mg of arsenic in a typical 70 kg human. Antimony is not known to have a biological role. Plants take up only trace amounts of antimony. There are approximately 2 mg of antimony in a typical 70 kg human. Bismuth is not known to have a biological role. Humans ingest on average less than 20 μg of bismuth per day. There is less than 500 μg of bismuth in a typical 70 kg human. Moscovium is too unstable to occur in nature or have a known biological role. Moscovium does not typically occur in organisms in any meaningful amount.


Toxicity

Nitrogen gas is completely
non-toxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacteria, bacterium, or plant, as well as the effect o ...
, but breathing in pure nitrogen gas is deadly, because it causes nitrogen asphyxiation. The build-up of nitrogen bubbles in the blood, such as those that may occur during scuba diving, can cause a condition known as the "bends" (
decompression sickness Decompression sickness (DCS; also called divers' disease, the bends, aerobullosis, and caisson disease) is a medical condition caused by dissolved gases emerging from Solution (chemistry), solution as bubbles inside the body tissues during D ...
). Many nitrogen compounds such as
hydrogen cyanide Hydrogen cyanide (formerly known as prussic acid) is a chemical compound with the chemical formula, formula HCN and structural formula . It is a highly toxic and flammable liquid that boiling, boils slightly above room temperature, at . HCN is ...
and nitrogen-based
explosive An explosive (or explosive material) is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An ex ...
s are also highly dangerous. White phosphorus, an allotrope of phosphorus, is toxic, with 1 mg per kg bodyweight being a lethal dose. White phosphorus usually kills humans within a week of ingestion by attacking the
liver The liver is a major metabolic organ (anatomy), organ exclusively found in vertebrates, which performs many essential biological Function (biology), functions such as detoxification of the organism, and the Protein biosynthesis, synthesis of var ...
. Breathing in phosphorus in its gaseous form can cause an industrial disease called " phossy jaw", which eats away at the jawbone. White phosphorus is also highly flammable. Some organophosphorus compounds can fatally block certain
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s in the human body. Elemental arsenic is toxic, as are many of its
inorganic compound An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds⁠that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as ''inorganic chemistry''. Inorgan ...
s; however some of its organic compounds can promote growth in chickens. The lethal dose of arsenic for a typical adult is 200 mg and can cause diarrhea, vomiting, colic, dehydration, and coma. Death from arsenic poisoning typically occurs within a day. Antimony is mildly toxic. Additionally,
wine Wine is an alcoholic drink made from Fermentation in winemaking, fermented fruit. Yeast in winemaking, Yeast consumes the sugar in the fruit and converts it to ethanol and carbon dioxide, releasing heat in the process. Wine is most often made f ...
steeped in antimony containers can induce vomiting. When taken in large doses, antimony causes
vomiting Vomiting (also known as emesis, puking and throwing up) is the forceful expulsion of the contents of one's stomach through the mouth and sometimes the nose. Vomiting can be the result of ailments like food poisoning, gastroenteritis, pre ...
in a victim, who then appears to recover before dying several days later. Antimony attaches itself to certain enzymes and is difficult to dislodge. Stibine, or SbH3, is far more toxic than pure antimony. Bismuth itself is largely
non-toxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacteria, bacterium, or plant, as well as the effect o ...
, although consuming too much of it can damage the liver. Only one person has ever been reported to have died from bismuth poisoning. However, consumption of soluble bismuth salts can turn a person's gums black. Moscovium is too unstable to conduct any toxicity chemistry.


See also

* Oxypnictide, including superconductors discovered in 2008 * Iron-based superconductor, ferropnictide and oxypnictide superconductors


References

{{Authority control Periodic table Groups (periodic table)