Nanoelectromechanical System
   HOME

TheInfoList



OR:

Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the
nanoscale Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
. NEMS form the next logical miniaturization step from so-called
microelectromechanical systems MEMS (micro-electromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices ...
, or MEMS devices. NEMS typically integrate transistor-like
nanoelectronics Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical ...
with mechanical
actuator An actuator is a machine element, component of a machine that produces force, torque, or Displacement (geometry), displacement, when an electrical, Pneumatics, pneumatic or Hydraulic fluid, hydraulic input is supplied to it in a system (called an ...
s, pumps, or motors, and may thereby form physical, biological, and
chemical sensors A sensor is often defined as a device that receives and responds to a signal or stimulus. The stimulus is the quantity, property, or condition that is sensed and converted into electrical signal. In the broadest definition, a sensor is a devi ...
. The name derives from typical device dimensions in the
nanometer 330px, Different lengths as in respect to the Molecule">molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling Despite the va ...
range, leading to low mass, high mechanical resonance frequencies, potentially large
quantum mechanical Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Applications include
accelerometer An accelerometer is a device that measures the proper acceleration of an object. Proper acceleration is the acceleration (the rate of change (mathematics), rate of change of velocity) of the object relative to an observer who is in free fall (tha ...
s and sensors to detect
chemical substance A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be com ...
s in the air.


History


Background

As noted by
Richard Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of t ...
in his famous talk in 1959, "
There's Plenty of Room at the Bottom "There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics" was a lecture given by physicist Richard Feynman at the annual American Physical Society meeting at Caltech on December 29, 1959. Feynman considered the possibi ...
," there are many potential applications of machines at smaller and smaller sizes; by building and controlling devices at smaller scales, all technology benefits. The expected benefits include greater efficiencies and reduced size, decreased power consumption and lower costs of production in electromechanical systems. The first silicon dioxide field effect transistors were built by Frosch and Derick in 1957 at Bell Labs. In 1960, Atalla and Kahng at
Bell Labs Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the compa ...
fabricated a
MOSFET upright=1.3, Two power MOSFETs in amperes">A in the ''on'' state, dissipating up to about 100 watt">W and controlling a load of over 2000 W. A matchstick is pictured for scale. In electronics, the metal–oxide–semiconductor field- ...
with a
gate oxide The gate oxide is the dielectric layer that separates the metal gate, gate terminal of a MOSFET (metal–oxide–semiconductor field-effect transistor) from the underlying source and drain terminals as well as the conductive channel that connects ...
thickness of
100 nm The following are examples of orders of magnitude for different lengths. Overview Detailed list To help compare different orders of magnitude, the following list describes various lengths between 1.6 \times 10^ metres and 10^metres. ...
. In 1962, Atalla and Kahng fabricated a nanolayer-base
metal–semiconductor junction In solid-state physics, a metal–semiconductor (M–S) junction is a type of electrical junction in which a metal comes in close contact with a semiconductor material. It is the oldest type of practical semiconductor device. M–S junctions ca ...
(M–S junction)
transistor A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
that used
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
(Au)
thin films A thin film is a layer of materials ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
with a thickness of 10 nm. In 1987,
Bijan Davari Bijan Davari (Persian: ''بیژن داوری'') is an Iranian-American electrical engineer. He is an IBM Fellow and Vice President at IBM Thomas J Watson Research Center, Yorktown Hts, NY. His pioneering work in the miniaturization of semiconduct ...
led an
IBM International Business Machines Corporation (using the trademark IBM), nicknamed Big Blue, is an American Multinational corporation, multinational technology company headquartered in Armonk, New York, and present in over 175 countries. It is ...
research team that demonstrated the first MOSFET with a 10 nm oxide thickness. Multi-gate MOSFETs enabled
scaling Scaling may refer to: Science and technology Mathematics and physics * Scaling (geometry), a linear transformation that enlarges or diminishes objects * Scale invariance, a feature of objects or laws that do not change if scales of length, energ ...
below 20 nm channel length, starting with the
FinFET A fin field-effect transistor (FinFET) is a multigate device, a MOSFET (metal–oxide–semiconductor field-effect transistor) built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the chann ...
. The FinFET originates from the research of Digh Hisamoto at Hitachi Central Research Laboratory in 1989. At
UC Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a public land-grant research university in Berkeley, California, United States. Founded in 1868 and named after the Anglo-Irish philosopher George Berkele ...
, a group led by Hisamoto and
TSMC Taiwan Semiconductor Manufacturing Company Limited (TSMC or Taiwan Semiconductor) is a Taiwanese multinational semiconductor contract manufacturing and design company. It is one of the world's most valuable semiconductor companies, the world' ...
's
Chenming Hu Chenming Hu (; born 12 July 1947), also known by his English name Calvin Hu, is a Taiwanese-American electronic engineer who specializes in microelectronics. He is TSMC Distinguished Professor Emeritus in the electronic engineering and computer ...
fabricated FinFET devices down to 17nm channel length in 1998.


NEMS

In 2000, the first very-large-scale integration (VLSI) NEMS device was demonstrated by researchers at IBM. Its premise was an array of AFM tips which can heat/sense a deformable substrate in order to function as a memory device (
Millipede memory Millipede memory is a form of non-volatile computer memory. It promised a data density of more than 1 terabit per square inch (1 gigabit per square millimeter), which is about the limit of the perpendicular recording hard drives. Millipede st ...
). Further devices have been described by Stefan de Haan. In 2007, the International Technical Roadmap for Semiconductors (ITRS) contains NEMS memory as a new entry for the Emerging Research Devices section.


Atomic force microscopy

A key application of NEMS is
atomic force microscope Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the diffr ...
tips. The increased sensitivity achieved by NEMS leads to smaller and more efficient sensors to detect stresses, vibrations, forces at the atomic level, and chemical signals. AFM tips and other detection at the nanoscale rely heavily on NEMS.


Approaches to miniaturization

Two complementary approaches to fabrication of NEMS can be found, the top-down approach and the bottom-up approach. The
top-down Top-down may refer to: Arts and entertainment * "Top Down", a 2007 song by Swizz Beatz * "Top Down", a song by Lil Yachty from ''Lil Boat 3'' * "Top Down", a song by Fifth Harmony from ''Reflection'' * "Topdown", a song by Channel Tres from the ...
approach uses the traditional
microfabrication Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" ...
methods, i.e.
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
,
electron-beam lithography Electron-beam lithography (often abbreviated as e-beam lithography or EBL) is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). The electron ...
and thermal treatments, to manufacture devices. While being limited by the resolution of these methods, it allows a large degree of control over the resulting structures. In this manner devices such as
nanowires upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm). A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 m). Mor ...
, nanorods, and patterned nanostructures are fabricated from metallic thin films or etched
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
layers. For top-down approaches, increasing surface area to volume ratio enhances the reactivity of nanomaterials. Bottom-up approaches, in contrast, use the chemical properties of single molecules to cause single-molecule components to self-organize or self-assemble into some useful conformation, or rely on positional assembly. These approaches utilize the concepts of molecular
self-assembly Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the ...
and/or
molecular recognition Supramolecular chemistry refers to the branch of chemistry concerning Chemical species, chemical systems composed of a integer, discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from w ...
. This allows fabrication of much smaller structures, albeit often at the cost of limited control of the fabrication process. Furthermore, while there are residue materials removed from the original structure for the top-down approach, minimal material is removed or wasted for the bottom-up approach. A combination of these approaches may also be used, in which nanoscale molecules are integrated into a top-down framework. One such example is the carbon
nanotube nanomotor A device generating linear or rotational motion using carbon nanotube(s) as the primary component, is termed a nanotube nanomotor. Nature already has some of the most efficient and powerful kinds of nanomotors. Some of these natural Molecular motor, ...
.


Materials


Carbon allotropes

Many of the commonly used materials for NEMS technology have been
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
based, specifically
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Diamond is tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of e ...
,
carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''S ...
s and
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
. This is mainly because of the useful properties of carbon based materials which directly meet the needs of NEMS. The mechanical properties of carbon (such as large
Young's modulus Young's modulus (or the Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Youn ...
) are fundamental to the stability of NEMS while the metallic and
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
conductivities of carbon based materials allow them to function as
transistor A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
s. Both graphene and diamond exhibit high Young's modulus, low density, low friction, exceedingly low mechanical dissipation, and large surface area. The low friction of CNTs, allow practically frictionless bearings and has thus been a huge motivation towards practical applications of CNTs as constitutive elements in NEMS, such as
nanomotor A nanomotor is a molecular or nanoscale device capable of converting energy into movement. It can typically generate forces on the order of piconewtons. While nanoparticles have been utilized by artists for centuries, such as in the famous Lycu ...
s,
switch In electrical engineering, a switch is an electrical component that can disconnect or connect the conducting path in an electrical circuit, interrupting the electric current or diverting it from one conductor to another. The most common type o ...
es, and high-frequency oscillators. Carbon nanotubes and graphene's physical strength allows carbon based materials to meet higher stress demands, when common materials would normally fail and thus further support their use as a major materials in NEMS technological development. Along with the mechanical benefits of carbon based materials, the electrical properties of carbon nanotubes and graphene allow it to be used in many electrical components of NEMS. Nanotransistors have been developed for both carbon nanotubes as well as graphene.
Transistor A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
s are one of the basic building blocks for all electronic devices, so by effectively developing usable transistors, carbon nanotubes and graphene are both very crucial to NEMS. Nanomechanical resonators are frequently made of graphene. As NEMS resonators are scaled down in size, there is a general trend for a decrease in quality factor in inverse proportion to surface area to volume ratio. However, despite this challenge, it has been experimentally proven to reach a quality factor as high as 2400.  The quality factor describes the purity of tone of the resonator's vibrations. Furthermore, it has been theoretically predicted that clamping graphene membranes on all sides yields increased quality numbers. Graphene NEMS can also function as mass, force, and position sensors.


Metallic carbon nanotubes

Carbon nanotubes A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range (nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''SWC ...
(CNTs) are allotropes of carbon with a cylindrical nanostructure. They can be considered a rolled up
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
. When rolled at specific and discrete ("
chiral Chirality () is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek language, Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is dist ...
") angles, and the combination of the rolling angle and radius decides whether the nanotube has a bandgap (semiconducting) or no bandgap (metallic).
Metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
lic carbon nanotubes have also been proposed for nanoelectronic interconnects since they can carry high current densities. This is a useful property as wires to transfer current are another basic building block of any electrical system. Carbon nanotubes have specifically found so much use in NEMS that methods have already been discovered to connect suspended carbon nanotubes to other nanostructures. This allows carbon nanotubes to form complicated nanoelectric systems. Because carbon based products can be properly controlled and act as interconnects as well as transistors, they serve as a fundamental material in the electrical components of NEMS.


CNT-based NEMS switches

A major disadvantage of MEMS switches over NEMS switches are limited microsecond range switching speeds of MEMS, which impedes performance for high speed applications. Limitations on switching speed and actuation voltage can be overcome by scaling down devices from micro to nanometer scale. A comparison of performance parameters between carbon nanotube (CNT)-based NEMS switches with its counterpart CMOS revealed that CNT-based NEMS switches retained performance at lower levels of energy consumption and had a subthreshold leakage current several orders of magnitude smaller than that of CMOS switches. CNT-based NEMS with doubly clamped structures are being further studied as potential solutions for floating gate nonvolatile memory applications.


Difficulties

Despite all of the useful properties of carbon nanotubes and graphene for NEMS technology, both of these products face several hindrances to their implementation. One of the main problems is carbon's response to real life environments. Carbon nanotubes exhibit a large change in electronic properties when exposed to
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
. Similarly, other changes to the electronic and mechanical attributes of carbon based materials must fully be explored before their implementation, especially because of their high surface area which can easily react with surrounding environments. Carbon nanotubes were also found to have varying conductivities, being either metallic or semiconducting depending on their helicity when processed. Because of this, special treatment must be given to the nanotubes during processing to assure that all of the nanotubes have appropriate conductivities. Graphene also has complicated electric conductivity properties compared to traditional semiconductors because it lacks an energy
band gap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
and essentially changes all the rules for how electrons move through a graphene based device. This means that traditional constructions of electronic devices will likely not work and completely new architectures must be designed for these new electronic devices.


Nanoelectromechanical accelerometer

Graphene's mechanical and electronic properties have made it favorable for integration into NEMS accelerometers, such as small sensors and actuators for heart monitoring systems and mobile motion capture. The atomic scale thickness of graphene provides a pathway for accelerometers to be scaled down from micro to nanoscale while retaining the system's required sensitivity levels. By suspending a silicon proof mass on a double-layer graphene ribbon, a nanoscale spring-mass and piezoresistive transducer can be made with the capability of currently produced transducers in accelerometers. The spring mass provides greater accuracy, and the piezoresistive properties of graphene converts the strain from acceleration to electrical signals for the accelerometer. The suspended graphene ribbon simultaneously forms the spring and piezoresistive transducer, making efficient use of space in while improving performance of NEMS accelerometers.


Polydimethylsiloxane (PDMS)

Failures arising from high adhesion and friction are of concern for many NEMS. NEMS frequently utilize silicon due to well-characterized micromachining techniques; however, its intrinsic stiffness often hinders the capability of devices with moving parts. A study conducted by Ohio State researchers compared the adhesion and friction parameters of a single crystal silicon with native oxide layer against PDMS coating. PDMS is a silicone elastomer that is highly mechanically tunable, chemically inert, thermally stable, permeable to gases, transparent, non-fluorescent, biocompatible, and nontoxic. Inherent to polymers, the Young's Modulus of PDMS can vary over two orders of magnitude by manipulating the extent of crosslinking of polymer chains, making it a viable material in NEMS and biological applications. PDMS can form a tight seal with silicon and thus be easily integrated into NEMS technology, optimizing both mechanical and electrical properties. Polymers like PDMS are beginning to gain attention in NEMS due to their comparatively inexpensive, simplified, and time-efficient prototyping and manufacturing. Rest time has been characterized to directly correlate with adhesive force, and increased relative humidity lead to an increase of adhesive forces for hydrophilic polymers. Contact angle measurements and Laplace force calculations support the characterization of PDMS's hydrophobic nature, which expectedly corresponds with its experimentally verified independence to relative humidity. PDMS’ adhesive forces are also independent of rest time, capable of versatilely performing under varying relative humidity conditions, and possesses a lower coefficient of friction than that of Silicon. PDMS coatings facilitate mitigation of high-velocity problems, such as preventing sliding. Thus, friction at contact surfaces remains low even at considerably high velocities. In fact, on the microscale, friction reduces with increasing velocity. The hydrophobicity and low friction coefficient of PDMS have given rise to its potential in being further incorporated within NEMS experiments that are conducted at varying relative humidities and high relative sliding velocities.


PDMS-coated piezoresistive nanoelectromechanical systems diaphragm

PDMS is frequently used within NEMS technology. For instance, PDMS coating on a diaphragm can be used for chloroform vapor detection. Researchers from the
National University of Singapore The National University of Singapore (NUS) is a national university, national Public university, public research university in Singapore. It was officially established in 1980 by the merging of the University of Singapore and Nanyang University ...
invented a
polydimethylsiloxane Polydimethylsiloxane (PDMS), also known as dimethylpolysiloxane or dimethicone, is a silicone polymer with a wide variety of uses, from cosmetics to industrial lubrication and passive daytime radiative cooling. PDMS is particularly known for its ...
(PDMS)-coated nanoelectromechanical system diaphragm embedded with
silicon nanowire Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications ...
s (SiNWs) to detect chloroform vapor at room temperature. In the presence of chloroform vapor, the PDMS film on the micro-diaphragm absorbs vapor molecules and consequently enlarges, leading to deformation of the micro-diaphragm. The SiNWs implanted within the micro-diaphragm are linked in a
Wheatstone bridge A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component. The primary benefit of the circuit is its ability to prov ...
, which translates the deformation into a quantitative output voltage. In addition, the micro-diaphragm sensor also demonstrates low-cost processing at low power consumption. It possesses great potential for scalability, ultra-compact footprint, and
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss ", , ) is a type of MOSFET, metal–oxide–semiconductor field-effect transistor (MOSFET) semiconductor device fabrication, fabrication process that uses complementary an ...
- IC process compatibility. By switching the vapor-absorption polymer layer, similar methods can be applied that should theoretically be able to detect other organic vapors. In addition to its inherent properties discussed in the Materials section, PDMS can be used to absorb chloroform, whose effects are commonly associated with swelling and deformation of the micro-diaphragm; various organic vapors were also gauged in this study. With good aging stability and appropriate packaging, the degradation rate of PDMS in response to heat, light, and radiation can be slowed.


Biohybrid NEMS

The emerging field of bio-hybrid systems combines biological and synthetic structural elements for biomedical or robotic applications. The constituting elements of bio-nanoelectromechanical systems (BioNEMS) are of nanoscale size, for example DNA, proteins or nanostructured mechanical parts. Examples include the facile top-down nanostructuring of thiol-ene polymers to create cross-linked and mechanically robust nanostructures that are subsequently functionalized with proteins.


Simulations

Computer simulations have long been important counterparts to experimental studies of NEMS devices. Through
continuum mechanics Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a ''continuous medium'' (also called a ''continuum'') rather than as discrete particles. Continuum mec ...
and
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the Motion (physics), physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamics ( ...
(MD), important behaviors of NEMS devices can be predicted via computational modeling before engaging in experiments. Additionally, combining continuum and MD techniques enables engineers to efficiently analyze the stability of NEMS devices without resorting to ultra-fine meshes and time-intensive simulations. Simulations have other advantages as well: they do not require the time and expertise associated with fabricating NEMS devices; they can effectively predict the interrelated roles of various electromechanical effects; and parametric studies can be conducted fairly readily as compared with experimental approaches. For example, computational studies have predicted the charge distributions and “pull-in” electromechanical responses of NEMS devices. Using simulations to predict mechanical and electrical behavior of these devices can help optimize NEMS device design parameters.


Reliability and Life Cycle of NEMS


Reliability and Challenges

Reliability provides a quantitative measure of the component's integrity and performance without failure for a specified product lifetime. Failure of NEMS devices can be attributed to a variety of sources, such as mechanical, electrical, chemical, and thermal factors. Identifying failure mechanisms, improving yield, scarcity of information, and reproducibility issues have been identified as major challenges to achieving higher levels of reliability for NEMS devices. Such challenges arise during both manufacturing stages (i.e. wafer processing, packaging, final assembly) and post-manufacturing stages (i.e. transportation, logistics, usage).


Packaging                                                  

Packaging challenges often account for 75–95% of the overall costs of MEMS and NEMS. Factors of wafer dicing, device thickness, sequence of final release, thermal expansion, mechanical stress isolation, power and heat dissipation, creep minimization, media isolation, and protective coatings are considered by packaging design to align with the design of the MEMS or NEMS component. Delamination analysis, motion analysis, and life-time testing have been used to assess wafer-level encapsulation techniques, such as cap to wafer, wafer to wafer, and thin film encapsulation. Wafer-level encapsulation techniques can lead to improved reliability and increased yield for both micro and nanodevices.


Manufacturing

Assessing the reliability of NEMS in early stages of the manufacturing process is essential for yield improvement. Forms of surface forces, such as adhesion and electrostatic forces, are largely dependent on surface topography and contact geometry. Selective manufacturing of nano-textured surfaces reduces contact area, improving both adhesion and friction performance for NEMS. Furthermore, the implementation of nanopost to engineered surfaces increase hydrophobicity, leading to a reduction in both adhesion and friction. Adhesion and friction can also be manipulated by nanopatterning to adjust surface roughness for the appropriate applications of the NEMS device. Researchers from Ohio State University used atomic/friction force microscopy (AFM/FFM) to examine the effects of nanopatterning on hydrophobicity, adhesion, and friction for hydrophilic polymers with two types of patterned asperities (low aspect ratio and high aspect ratio). Roughness on hydrophilic surfaces versus hydrophobic surfaces are found to have inversely correlated and directly correlated relationships respectively. Due to its large surface area to volume ratio and sensitivity, adhesion and friction can impede performance and reliability of NEMS devices. These tribological issues arise from natural down-scaling of these tools; however, the system can be optimized through the manipulation of the structural material, surface films, and lubricant. In comparison to undoped Si or polysilicon films, SiC films possess the lowest frictional output, resulting in increased scratch resistance and enhanced functionality at high temperatures. Hard diamond-like carbon (DLC) coatings exhibit low friction, high hardness and wear resistance, in addition to chemical and electrical resistances. Roughness, a factor that reduces wetting and increases hydrophobicity, can be optimized by increasing the contact angle to reduce wetting and allow for low adhesion and interaction of the device to its environment. Material properties are size-dependent. Therefore, analyzing the unique characteristics on NEMS and nano-scale material becomes increasingly important to retaining reliability and long-term stability of NEMS devices. Some mechanical properties, such as hardness, elastic modulus, and bend tests, for nano-materials are determined by using a nano indenter on a material that has undergone fabrication processes. These measurements, however, do not consider how the device will operate in industry under prolonged or cyclic stresses and strains. The theta structure is a NEMS model that exhibits unique mechanical properties. Composed of Si, the structure has high strength and is able to concentrate stresses at the nanoscale to measure certain mechanical properties of materials.


Residual stresses

To increase reliability of structural integrity, characterization of both material structure and intrinsic stresses at appropriate length scales becomes increasingly pertinent. Effects of residual stresses include but are not limited to fracture, deformation, delamination, and nanosized structural changes, which can result in failure of operation and physical deterioration of the device. Residual stresses can influence electrical and optical properties. For instance, in various photovoltaic and light emitting diodes (LED) applications, the band gap energy of semiconductors can be tuned accordingly by the effects of residual stress. Atomic force microscopy (AFM) and Raman spectroscopy can be used to characterize the distribution of residual stresses on thin films in terms of force volume imaging, topography, and force curves. Furthermore, residual stress can be used to measure nanostructures’ melting temperature by using differential scanning calorimetry (DSC) and temperature dependent X-ray Diffraction (XRD).


Future

Key hurdles currently preventing the commercial application of many NEMS devices include low-yields and high device quality variability. Before NEMS devices can actually be implemented, reasonable integrations of carbon based products must be created. A recent step in that direction has been demonstrated for diamond, achieving a processing level comparable to that of silicon. The focus is currently shifting from experimental work towards practical applications and device structures that will implement and profit from such novel devices. The next challenge to overcome involves understanding all of the properties of these carbon-based tools, and using the properties to make efficient and durable NEMS with low failure rates. Carbon-based materials have served as prime materials for NEMS use, because of their exceptional mechanical and electrical properties. Recently, nanowires of
chalcogenide glass Chalcogenide glass (pronounced hard ''ch'' as in ''chemistry'') is a glass containing one or more heavy chalcogens (sulfur, selenium or tellurium; polonium is also a heavy chalcogen but too radioactive to use). Chalcogenide materials behave rather ...
es have shown to be a key platform to design tunable NEMS owing to the availability of active modulation of Young's modulus. The global market of NEMS is projected to reach $108.88 million by 2022.


Applications

*
Nanoelectromechanical relay A nanoelectromechanical (NEM) relay is an electrically actuated switch that is built on the nanometer scale using semiconductor fabrication techniques. They are designed to operate in replacement of, or in conjunction with, traditional semiconduct ...
*
Nanoelectromechanical systems mass spectrometer A nanoelectromechanical systems mass spectrometer (NEMS-MS) is an instrument measuring the mass of analyte particles by detecting the frequency shift caused by the adsorption of the particles on a NEMS resonator. NEMS-MS was invented by Prof. Mich ...


Nanoelectromechanical-based cantilevers

Researchers from the
California Institute of Technology The California Institute of Technology (branded as Caltech) is a private research university in Pasadena, California, United States. The university is responsible for many modern scientific advancements and is among a small group of institutes ...
developed a NEM-based
cantilever A cantilever is a rigid structural element that extends horizontally and is unsupported at one end. Typically it extends from a flat vertical surface such as a wall, to which it must be firmly attached. Like other structural elements, a cantilev ...
with
mechanical resonance Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration (its '' resonance frequency'' or ''resonant frequency'') clos ...
s up to very high frequencies (VHF). It is incorporation of electronic displacement transducers based on piezoresistive thin metal film facilitates unambiguous and efficient nanodevice readout. The functionalization of the device's surface using a thin polymer coating with high
partition coefficient In the physical sciences, a partition coefficient (''P'') or distribution coefficient (''D'') is the ratio of concentrations of a chemical compound, compound in a mixture of two immiscible solvents at partition equilibrium, equilibrium. This rati ...
for the targeted species enables NEMS-based cantilevers to provide
chemisorption Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like co ...
measurements at room temperature with
mass resolution In mass spectrometry, resolution is a measure of the ability to distinguish two peaks of slightly different mass-to-charge ratios ''ΔM'', in a mass spectrum. Resolution and resolving power There are two different definitions of resolution and ...
at less than one
attogram To help compare different ''orders of magnitude'', the following lists describe various ''mass'' levels between 10−67 kg and 1052 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe ...
. Further capabilities of NEMS-based cantilevers have been exploited for the applications of sensors, scanning probes, and devices operating at very high frequency (100 MHz).


References

{{DEFAULTSORT:Nanoelectromechanical Systems Nanoelectronics Applied sciences