Molecular Lesion
   HOME

TheInfoList



OR:

A molecular lesion or point lesion is damage to the structure of a biological molecule such as
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
,
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
, or
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
. This damage may result in the reduction or absence of normal function, and in rare cases the gain of a new function. Lesions in DNA may consist of breaks or other changes in chemical structure of the helix, ultimately preventing transcription. Meanwhile, lesions in proteins consist of both broken bonds and improper folding of the amino acid chain. While many nucleic acid lesions are general across DNA and RNA, some are specific to one, such as
thymine dimers Pyrimidine dimers represent molecular lesions originating from thymine or cytosine bases within DNA, resulting from photochemical reactions. These lesions, commonly linked to direct DNA damage, are induced by ultraviolet light (UV), particularly ...
being found exclusively in DNA. Several cellular repair mechanisms exist, ranging from global to specific, in order to prevent lasting damage resulting from lesions.


Causes

There are two broad causes of nucleic acid lesions, endogenous and exogenous factors. Endogenous factors, or endogeny, refer to the resulting conditions that develop within an organism. This is in contrast with exogenous factors which originate from outside the organism. DNA and RNA lesions caused by endogenous factors generally occur more frequently than damage caused by exogenous ones.


Endogenous Factors

Endogenous sources of specific DNA damage include pathways like
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
,
oxidation Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
,
alkylation Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene (or their equivalents). Alkylating agents are reagents for effecting al ...
, mismatch of DNA bases,
depurination Depurination is a chemical reaction of purine deoxyribonucleosides, deoxyadenosine and deoxyguanosine, and ribonucleosides, adenosine or guanosine, in which the β-N-glycosidic bond is hydrolytically cleaved releasing a nucleic base, adenine or ...
, depyrimidination, double-strand breaks (DSS), and cytosine deamination. DNA lesions can also naturally occur from the release of specific compounds such as
reactive oxygen species (ROS) In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (H2O2), superoxide (O2−), hydroxyl radical (OH.), and sing ...
, reactive nitrogen species (RNS), reactive carbonyl species (RCS),
lipid peroxidation Lipid peroxidation, or lipid oxidation, is a complex chemical process that leads to oxidative degradation of lipids, resulting in the formation of peroxide and hydroperoxide derivatives.{{Cite journal , last1=Ayala , first1=Antonio , last2=Muñoz ...
products,
adduct In chemistry, an adduct (; alternatively, a contraction of "addition product") is a product of a direct addition of two or more distinct molecules, resulting in a single reaction product containing all atoms of all components. The resultant is ...
s, and
alkylating agents Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene (or their equivalents). Alkylating agents are reagents for effectin ...
through metabolic processes. ROS is one of the major endogenous sources of DNA damage and the most studied oxidative DNA adduct is 8-oxo-dG. Other adducts known to form are etheno-, propano-, and malondialdehyde-derived DNA adducts. The aldehydes formed from lipid peroxidation also pose another threat to DNA. Proteins such as "damage-up" proteins (DDPs) can promote endogenous DNA lesions by either increasing the amount of reactive oxygen by transmembrane transporters, losing chromosomes by replisome binding, and stalling replication by transcription factors. For RNA lesions specifically, the most abundant types of endogenous damage include oxidation, alkylation, and chlorination. Phagocytic cells produce radical species that include
hypochlorous acid Hypochlorous acid is an inorganic compound with the chemical formula , also written as HClO, HOCl, or ClHO. Its structure is . It is an acid that forms when chlorine dissolves in water, and itself partially dissociates, forming a hypochlorite an ...
(HOCl),
nitric oxide Nitric oxide (nitrogen oxide, nitrogen monooxide, or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes den ...
(NO•), and peroxynitrite (ONOO−) to fight infections, and many cell types use nitric oxide as a signaling molecule. However, these radical species can also cause the pathways that form RNA lesions.


Exogenous Factors


Ultraviolet Radiation

UV light, specifically non-ionizing shorter-wavelength radiation such as UVC and UVB, causes
direct DNA damage Direct may refer to: Mathematics * Directed set, in order theory * Direct limit of (pre), sheaves * Direct sum of modules, a construction in abstract algebra which combines several vector spaces Computing * Direct access (disambiguation), a ...
by initiating a synthesis reaction between two thymine molecules. The resulting dimer is very stable. Although they can be removed through excision repairs, when UV damage is extensive, the entire DNA molecule breaks down and the cell dies. If the damage is not too extensive, precancerous or cancerous cells are created from healthy cells.


Chemotherapy drugs

Chemotherapeutics, by design, induce DNA damage and are targeted towards rapidly dividing cancer cells. However, these drugs can not tell the difference between sick and healthy cells, resulting in the damage of normal cells.


Alkylating agents

Alkylating agents are a type of chemotherapeutic drug which keeps the cell from undergoing mitosis by damaging its DNA. They work in all phases of the cell cycle. The use of alkylating agents may result in leukemia due to them being able to target the cells of the bone marrow.


Cancer causing agents

Carcinogens are known to cause a number of DNA lesions, such as single-strand breaks, double- strand breaks, and covalently bound chemical DNA adducts. Tobacco products are one of the most prevalent cancer-causing agents of today. Other DNA damaging, cancer-causing agents include asbestos, which can cause damage through physical interaction with DNA or by indirectly setting off a reactive oxygen species, excessive nickel exposure, which can repress the DNA damage-repair pathways, aflatoxins, which are found in food, and many more.


Lesions of Nucleic Acids


Oxidative lesions

Oxidative Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
lesions are an umbrella category of lesions caused by
reactive oxygen species In chemistry and biology, reactive oxygen species (ROS) are highly Reactivity (chemistry), reactive chemicals formed from diatomic oxygen (), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (H2O2), superoxide (O2−), hydroxyl ...
(ROS),
reactive nitrogen species Reactive nitrogen species (RNS) are a family of antimicrobial molecules derived from nitric oxide (•NO) and superoxide (O2•−) produced via the enzymatic activity of inducible nitric oxide synthase 2 (Nitric oxide synthase 2A, NOS2) and NADPH ...
(RNS), other byproducts of cellular metabolism, and exogenous factors such as ionizing or
ultraviolet radiation Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of t ...
. Byproducts of oxidative respiration are the main source of reactive species which cause a background level of oxidative lesions in the cell. DNA and RNA are both affected by this, and it has been found that RNA oxidative lesions are more abundant in humans compared to DNA. This may be due to
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
ic RNA having closer proximity to the
electron transport chain An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
. Known oxidative lesions characterized in DNA and RNA are many in number, as oxidized products are unstable and may resolve quickly. The
hydroxyl radical The hydroxyl radical, •HO, is the neutral form of the hydroxide ion (HO–). Hydroxyl radicals are highly reactive and consequently short-lived; however, they form an important part of radical chemistry. Most notably hydroxyl radicals are pr ...
and
singlet oxygen Singlet oxygen, systematically named dioxygen(singlet) and dioxidene, is a gaseous inorganic chemistry, inorganic chemical with the formula O=O (also written as or ), which is in a quantum state where all electrons are Radical (chemistry), spin p ...
are common reactive oxygen species responsible for these lesions. 8-oxo-guanine (8-oxoG) is the most abundant and well characterized oxidative lesion, found in both RNA and DNA. Accumulation of 8-oxoG may cause dire damage within the
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
and is thought to be a key player in the aging process. RNA oxidation has direct consequences in the production of proteins.
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
affected by oxidative lesions is still recognized by
ribosome Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
, but the ribosome will undergo stalling and dysfunction. This results in proteins having either decreased expression or truncation, leading to aggregation and general dysfunction.


Structural rearrangements

*
Depurination Depurination is a chemical reaction of purine deoxyribonucleosides, deoxyadenosine and deoxyguanosine, and ribonucleosides, adenosine or guanosine, in which the β-N-glycosidic bond is hydrolytically cleaved releasing a nucleic base, adenine or ...
is caused by
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
and results in loss of the purine base of a nucleic acid. DNA is more prone to this, as the
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked w ...
in the depurination reaction has much greater energy in RNA. *
Tautomer In chemistry, tautomers () are structural isomers (constitutional isomers) of chemical compounds that readily interconvert. The chemical reaction interconverting the two is called tautomerization. This conversion commonly results from the reloca ...
ization is a chemical reaction that is primarily relevant in the behavior of amino acids and nucleic acids. Both of which are correlated to DNA and RNA. The process of tautomerization of DNA bases occurs during
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all life, living organisms, acting as the most essential part of heredity, biolog ...
. The ability for the wrong tautomer of one of the standard nucleic bases to mispair causes a mutation during the process of DNA replication which can be cytotoxic or mutagenic to the cell. These mispairings can result in transition, transversion, frameshift, deletion, and/or duplication mutations. Some diseases that result from tautomerization induced DNA lesions include Kearns-Sayre syndrome,
Fragile X syndrome Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder. The average IQ in males with FXS is under 55, while affected females tend to be in the borderline to normal range, typically around 70–85. Physical features may include a lo ...
, Kennedy disease, and
Huntington's disease Huntington's disease (HD), also known as Huntington's chorea, is an incurable neurodegenerative disease that is mostly Genetic disorder#Autosomal dominant, inherited. It typically presents as a triad of progressive psychiatric, cognitive, and ...
. * Cytosine
deamination Deamination is the removal of an amino group from a molecule. Enzymes that catalysis, catalyse this reaction are called deaminases. In the human body, deamination takes place primarily in the liver; however, it can also occur in the kidney. In s ...
commonly occurs under physiological conditions and essentially is the deamination of cytosine. This process yields uracil as its product, which is not a base pair found within DNA. This process causes extensive DNA damage. The rate of this process is slowed down significantly in double-stranded DNA compared to single-stranded DNA.


Single and Double Stranded Breaks

Single-strand breaks (SSBs) occur when one strand of the DNA double helix experiences breakage of a single nucleotide accompanied by damaged 5’- and/or 3’-termini at this point. One common source of SSBs is due to oxidative attack by physiological
reactive oxygen species In chemistry and biology, reactive oxygen species (ROS) are highly Reactivity (chemistry), reactive chemicals formed from diatomic oxygen (), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (H2O2), superoxide (O2−), hydroxyl ...
(ROS) such as hydrogen peroxide. H2O2 causes SSBs three times more frequently than double-strand breaks (DSBs). Alternative methods of SSB acquisition include direct disintegration of the oxidized sugar or through DNA base-excision repair (BER) of damaged bases. Additionally, cellular enzymes may perform erroneous activity leading to SSBs or DSBs by a variety of mechanisms. One such example would be when the cleavage complex formed by DNA topoisomerase 1 (TOP1) relaxes DNA during transcription and replication through the transient formation of a
nick Nick may refer to: People and fictional characters * Nick (given name), a list of people and fictional characters * Désirée Nick, German actress and writer Places * Nick, Hungary, a village * Nick, Warmian-Masurian Voivodeship, Poland, a ...
. While TOP1 normally reseals this nick shortly after, these cleavage complexes may collide with
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
or
DNA polymerase A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create t ...
s or be proximal to other lesions, leading to TOP1-linked SSBs or TOP1-linked DSBs.


Chemical Adducts

A
DNA adduct In molecular genetics, a DNA adduct is a segment of DNA bound to a Carcinogen, cancer-causing chemical. This process could lead to the development of cancerous cells, or carcinogenesis. DNA adducts in scientific experiments are used as biomarkers ...
is a segment of DNA that binds to a chemical carcinogen. Some adducts that cause lesions to DNA included oxidatively modified bases, propano-, etheno-, and MDA-induced adducts. 5‐Hydroxymethyluracil is an example of an oxidatively modified base where oxidation of the methyl group of thymine occurs. This adduct interferes with the binding of transcription factors to DNA which can trigger
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
or result in deletion mutations. Propano adducts are derived by species generated by lipid peroxidation. For example, HNE is a major toxic product of the process. It regulates the expression of genes that are involved in cell cycle regulation and apoptosis. Some of the aldehydes from lipid peroxidation can be converted to epoxy aldehydes by oxidation reactions. These epoxy aldehydes can damage DNA by producing etheno adducts. An increase in this type of DNA lesion exhibits conditions resulting in
oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
which is known to be associated with an increased risk of cancer. Malondialdehyde (MDA) is another highly toxic product from lipid peroxidation and also in the synthesis of prostaglandin. MDA reacts with DNA to form the M1dG adduct which causes DNA lesions.


Disease Effects

Many systems are in place to repair DNA and RNA lesions but it is possible for lesions to escape these measures. This may lead to mutations or large genome abnormalities, which can threaten the cell or organism's ability to live. Several cancers are a result of DNA lesions. Even repair mechanisms to heal the damage may end up causing more damage.
Mismatch repair DNA mismatch repair (MMR) is a system for recognizing and repairing erroneous insertion, deletion, and mis-incorporation of nucleobase, bases that can arise during DNA replication and Genetic recombination, recombination, as well as DNA repair, ...
defects, for example, cause instability that predisposes to colorectal and endometrial carcinomas. DNA lesions in neurons may lead to neurodegenerative disorders such as
Alzheimer's Alzheimer's disease (AD) is a neurodegenerative disease and the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems wit ...
, Huntington's, and
Parkinson's Parkinson's disease (PD), or simply Parkinson's, is a neurodegenerative disease primarily of the central nervous system, affecting both motor and non-motor systems. Symptoms typically develop gradually and non-motor issues become more prevalen ...
diseases. These come as a result of neurons generally being associated with high mitochondrial respiration and redox species production, which can damage nuclear DNA. Since these cells often cannot be replaced after being damaged, the damage done to them leads to dire consequences. Other disorders stemming from DNA lesions and their association with neurons include but are not limited to Fragile X syndrome,
Friedreich's ataxia Friedreich's ataxia (FRDA) is a rare, inherited, autosomal recessive neurodegenerative disorder that primarily affects the nervous system, causing progressive damage to the spinal cord, peripheral nerves, and cerebellum, leading to impaired ...
, and
Spinocerebellar ataxia Spinocerebellar ataxia (SCA) is a progressive, degenerative, genetic disease with multiple types, each of which could be considered a neurological condition in its own right. An estimated 150,000 people in the United States have a diagnosis of ...
s. During replication, usually
DNA polymerase A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create t ...
s are unable to go past the lesioned area, however, some cells are equipped with special polymerases which allow for translesion synthesis (TLS). TLS polymerases allow for the replication of DNA past lesions and risk generating mutations at a high frequency. Common mutations that occur after undergoing this process are
point mutation A point mutation is a genetic mutation where a single nucleotide base is changed, inserted or deleted from a DNA or RNA sequence of an organism's genome. Point mutations have a variety of effects on the downstream protein product—consequences ...
s and
frameshift mutation A frameshift mutation (also called a framing error or a reading frame shift) is a genetic mutation caused by indels ( insertions or deletions) of a number of nucleotides in a DNA sequence that is not divisible by three. Due to the triplet natur ...
s. Several diseases come as a result of this process including several cancers and
Xeroderma pigmentosum Xeroderma pigmentosum (XP) is a genetic disorder in which there is a decreased ability to repair DNA damage such as that caused by ultraviolet (UV) light. Symptoms may include a severe sunburn after only a few minutes in the sun, freckling in su ...
. The effect of oxidatively damaged RNA has resulted in a number of human diseases and is especially associated with chronic degeneration. This type of damage has been observed in many neurodegenerative diseases such as
Amyotrophic lateral sclerosis Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or—in the United States—Lou Gehrig's disease (LGD), is a rare, Terminal illness, terminal neurodegenerative disease, neurodegenerative disorder that results i ...
, Alzheimer's, Parkinson's, dementia with Lewy bodies, and several prion diseases. It is important to note that this list is rapidly growing and data suggests that RNA oxidation occurs early in the development of these diseases, rather than as an effect of cellular decay. RNA and DNA lesions are both associated with the development of
diabetes mellitus Diabetes mellitus, commonly known as diabetes, is a group of common endocrine diseases characterized by sustained hyperglycemia, high blood sugar levels. Diabetes is due to either the pancreas not producing enough of the hormone insulin, or th ...
type 2.


Repair Mechanisms


DNA Damage Response

When DNA is damaged such as due to a lesion, a complex signal transduction pathway is activated which is responsible for recognizing the damage and instigating the cell's response for repair. Compared to the other lesion repair mechanisms, DDR is the highest level of repair and is employed for the most complex lesions. DDR consists of various pathways, the most common of which are the DDR kinase signaling cascades. These are controlled by phosphatidylinositol 3-kinase-related kinases (PIKK), and range from DNA-dependent protein kinase (DNA-PKcs) and ataxia telangiectasia-mutated (ATM) most involved in repairing DSBs to the more versatile Rad3-related (ATR). ATR is crucial to human cell viability, while ATM mutations cause the severe disorder ataxia-telangiectasia leading to neurodegeneration, cancer, and immunodeficiency. These three DDR kinases all recognize damage via protein-protein interactions which localize the kinases to the areas of damage. Next, further protein-protein interactions and
posttranslational modifications In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translate mRNA in ...
(PTMs) complete the kinase activation, and a series of phosphorylation events takes place. DDR kinases perform repair regulation at three levels - via PTMs, at the level of
chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important r ...
, and at the level of the nucleus.


Base Excision Repair

Base excision repair ( BER) is responsible for removing damaged bases in DNA. This mechanism specifically works on excising small base lesions which do not distort the DNA double helix, in contrast to the
nucleotide excision repair Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals (e.g. Intercalation (biochemistry), intercalating agents), radiation and other mutagens. Three excision repair pathways exist to repair single ...
pathway which is employed in correcting more prominent distorting lesions. DNA glycosylases initiate BER by both recognizing the faulty or incorrect bases and then removing them, forming AP sites lacking any purine or pyrimidine.
AP endonuclease Apurinic/apyrimidinic (AP) endonuclease is an enzyme that is involved in the DNA base excision repair pathway (BER). Its main role in the repair of damaged or mismatched nucleotides in DNA is to create a nick in the phosphodiester backbone of t ...
then cleaves the AP site, and the single-strand break is either processed by short-patch BER to replace a single nucleotide long-patch BER to create 2-10 replacement nucleotides.


Single Stranded Break Repair

Single stranded breaks (SSBs) can severely threaten genetic stability and cell survival if not quickly and properly repaired, so cells have developed fast and efficient SSB repair (SSBR) mechanisms. While global SSBR systems extract SSBs throughout the genome and during interphase, S-phase specific SSBR processes work together with homologous recombination at the replication forks.


Double Stranded Break Repair

Double stranded breaks (DSB) are a threat to all organisms as they can cause cell death and cancer. They can be caused exogenously as a result of radiation and endogenously from errors in replication or encounters with DNA lesions by the replication fork. DSB repair occurs through a variety of different pathways and mechanisms in order to correctly repair these errors.


Nucleotide Excision and Mismatch Repair

Nucleotide excision repair Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals (e.g. Intercalation (biochemistry), intercalating agents), radiation and other mutagens. Three excision repair pathways exist to repair single ...
  is one of the main mechanisms used to remove bulky adducts from DNA lesions caused by chemotherapy drugs, environmental mutagens, and most importantly UV radiation. This mechanism functions by releasing a short damage containing oligonucleotide from the DNA site, and then that gap is filled in and repaired by NER. NER recognizes a variety of structurally unrelated DNA lesions due to the flexibility of the mechanism itself, as NER is highly sensitive to changes in the DNA helical structure. Bulky adducts seem to trigger NER. The XPC-RAD23-CETN2 heterotrimer involved with NER has a critical role in DNA lesion recognition. In addition to other general lesions in the genome, UV damaged DNA binding protein complex (UV-DDB)  also has an important role in both recognition and repair of UV-induced DNA photolesions.
Mismatch repair DNA mismatch repair (MMR) is a system for recognizing and repairing erroneous insertion, deletion, and mis-incorporation of nucleobase, bases that can arise during DNA replication and Genetic recombination, recombination, as well as DNA repair, ...
(MMR) mechanisms within the cell correct base mispairs that occur during replication using a variety of pathways. It has a high affinity for targeting DNA lesions with specificity, as alternations in base pair stacking that occur at DNA lesion sites affect the helical structure. This is likely one of many signals that triggers MMR.


References

{{DEFAULTSORT:Molecular Lesion Molecular biology