Molecular Geneticist
   HOME

TheInfoList



OR:

Molecular genetics is a branch of
biology Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
that addresses how differences in the structures or expression of
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using
genetic screen A genetic screen or mutagenesis screen is an experimental technique used to identify and select individuals who possess a phenotype of interest in a mutagenized population. Hence a genetic screen is a type of phenotypic screen. Genetic screens ...
s.  The field of study is based on the merging of several sub-fields in biology: classical
Mendelian inheritance Mendelian inheritance (also known as Mendelism) is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularize ...
,
cellular biology Cell biology (also cellular biology or cytology) is a branch of biology that studies the Anatomy, structure, Physiology, function, and behavior of cell (biology), cells. All living organisms are made of cells. A cell is the basic unit of life th ...
,
molecular biology Molecular biology is a branch of biology that seeks to understand the molecule, molecular basis of biological activity in and between Cell (biology), cells, including biomolecule, biomolecular synthesis, modification, mechanisms, and interactio ...
,
biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, a ...
, and
biotechnology Biotechnology is a multidisciplinary field that involves the integration of natural sciences and Engineering Science, engineering sciences in order to achieve the application of organisms and parts thereof for products and services. Specialists ...
. It integrates these disciplines to explore things like genetic inheritance, gene regulation and expression, and the molecular mechanism behind various life processes. A key goal of molecular genetics is to identify and study genetic mutations. Researchers search for mutations in a gene or induce mutations in a gene to link a gene sequence to a specific phenotype. Therefore molecular genetics is a powerful methodology for linking mutations to genetic conditions that may aid the search for treatments of various genetics diseases.


History

The discovery of
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
as the blueprint for life and breakthroughs in molecular genetics research came from the combined works of many scientists. In 1869, chemist Johann Friedrich Miescher, who was researching the composition of white blood cells, discovered and isolated a new molecule that he named nuclein from the cell nucleus, which would ultimately be the first discovery of the molecule DNA that was later determined to be the molecular basis of life. He determined it was composed of hydrogen, oxygen, nitrogen and phosphorus. Biochemist
Albrecht Kossel Ludwig Karl Martin Leonhard Albrecht Kossel (; 16 September 1853 – 5 July 1927) was a biochemist and pioneer in the study of genetics. He was awarded the Nobel Prize for Physiology or Medicine in 1910 for his work in determining the chemical ...
identified nuclein as a
nucleic acid Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a pentose, 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nuclei ...
and provided its name deoxyribonucleic acid (DNA). He continued to build on that by isolating the basic building blocks of DNA and
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
; made up of the
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s: adenine, guanine, thymine, cytosine. and uracil. His work on nucleotides earned him a Nobel Prize in Physiology. In the early 1800s,
Gregor Mendel Gregor Johann Mendel Order of Saint Augustine, OSA (; ; ; 20 July 1822 – 6 January 1884) was an Austrian Empire, Austrian biologist, meteorologist, mathematician, Augustinians, Augustinian friar and abbot of St Thomas's Abbey, Brno, St. Thom ...
, who became known as one of the fathers of
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinians, Augustinian ...
, made great contributions to the field of genetics through his various experiments with pea plants where he was able to discover the principles of inheritance such as recessive and dominant traits, without knowing what genes where composed of. In the mid 19th century, anatomist Walther Flemming, discovered what we now know as chromosomes and the separation process they undergo through mitosis. His work along with
Theodor Boveri Theodor Heinrich Boveri (12 October 1862 – 15 October 1915) was a German zoologist, comparative anatomist and co-founder of modern cytology. He was notable for the first hypothesis regarding cellular processes that cause cancer, and for descr ...
first came up with the Chromosomal Theory of Inheritance, which helped explain some of the patterns Mendel had observed much earlier. For molecular genetics to develop as a discipline, several scientific discoveries were necessary.  The discovery of DNA as a means to transfer the genetic code of life from one cell to another and between generations was essential for identifying the molecule responsible for
heredity Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic infor ...
. Molecular genetics arose initially from studies involving genetic transformation in
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
. In 1944 Avery, McLeod and McCarthy isolated DNA from a virulent strain of ''S. pneumoniae'', and using just this DNA were able to convert a harmless strain to virulence. They called the uptake, incorporation and expression of DNA by bacteria "transformation". This finding suggested that DNA is the genetic material of bacteria. Bernstein H, Bernstein C, Michod RE (2018). Sex in microbial pathogens. Infection, Genetics and Evolution volume 57, pages 8-25. Bacterial transformation is often induced by conditions of stress, and the function of transformation appears to be repair of genomic damage. In 1950,
Erwin Chargaff Erwin Chargaff (11 August 1905 – 20 June 2002) was an Austro-Hungarian-born American biochemist, writer, and professor of biochemistry at Columbia University medical school. A Bucovinian Jew who immigrated to the United States during the Nazi ...
derived rules that offered evidence of DNA being the genetic material of life. These were "1) that the base composition of DNA varies between species and 2) in natural DNA molecules, the amount of adenine (A) is equal to the amount of thymine (T), and the amount of guanine (G) is equal to the amount of cytosine (C)." These rules, known as Chargaff's rules, helped to understand of molecular genetics. In 1953 Francis Crick and James Watson, building upon the X-ray crystallography work done by Rosalind Franklin and Maurice Wilkins, were able to derive the 3-D double helix structure of DNA. The
phage group The phage group (sometimes called the American Phage Group) was an informal network of biologists centered on Max Delbrück that contributed heavily to bacterial genetics and the origins of molecular biology in the mid-20th century. The phage g ...
was an informal network of biologists centered on
Max Delbrück Max Ludwig Henning Delbrück (; September 4, 1906 – March 9, 1981) was a German–American biophysicist who participated in launching the molecular biology research program in the late 1930s. He stimulated physical science, physical scientist ...
that contributed substantially to molecular genetics and the origins of molecular biology during the period from about 1945 to 1970. The phage group took its name from
bacteriophage A bacteriophage (), also known informally as a phage (), is a virus that infects and replicates within bacteria. The term is derived . Bacteriophages are composed of proteins that Capsid, encapsulate a DNA or RNA genome, and may have structu ...
s, the bacteria-infecting viruses that the group used as experimental model organisms. Studies by molecular geneticists affiliated with this group contributed to understanding how gene-encoded proteins function in
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all life, living organisms, acting as the most essential part of heredity, biolog ...
,
DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
and
DNA recombination Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination (such as molecular cloning) that bring together genetic material from multiple sources, creating sequences that would not otherwise be found ...
, and on how
virus A virus is a submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are ...
es are assembled from protein and nucleic acid components (molecular morphogenesis). Furthermore, the role of chain terminating codons was elucidated. One noteworthy study was performed by Sydney Brenner and collaborators using "amber" mutants defective in the gene encoding the major head protein of bacteriophage T4. This study demonstrated the co-linearity of the gene with its encoded polypeptide, thus providing strong evidence for the "sequence hypothesis" that the amino acid sequence of a protein is specified by the nucleotide sequence of the gene determining the protein.  The isolation of a
restriction endonuclease A restriction enzyme, restriction endonuclease, REase, ENase or'' restrictase '' is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class o ...
in ''E. coli'' by Arber and Linn in 1969 opened the field of
genetic engineering Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of Genetic engineering techniques, technologies used to change the genet ...
. Restriction enzymes were used to linearize DNA for separation by
electrophoresis Electrophoresis is the motion of charged dispersed particles or dissolved charged molecules relative to a fluid under the influence of a spatially uniform electric field. As a rule, these are zwitterions with a positive or negative net ch ...
and
Southern blot Southern blot is a method used for detection and quantification of a specific DNA sequence in DNA samples. This method is used in molecular biology. Briefly, purified DNA from a biological sample (such as blood or tissue) is digested with res ...
ting allowed for the identification of specific DNA segments via
hybridization probe In molecular biology, a hybridization probe (HP) is a fragment of DNA or RNA, usually 15–10000 nucleotides long, which can be radioactively or fluorescently labeled. HPs can be used to detect the presence of nucleotide sequences in analyzed ...
s. In 1971, Berg utilized restriction enzymes to create the first
recombinant DNA Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination (such as molecular cloning) that bring together genetic material from multiple sources, creating sequences that would not otherwise be fo ...
molecule and first recombinant DNA
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria and ...
.  In 1972, Cohen and Boyer created the first recombinant DNA organism by inserting recombinant DNA plasmids into ''E. coli'', now known as
bacterial transformation In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to t ...
, and paved the way for molecular cloning.  The development of
DNA sequencing DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, thymine, cytosine, and guanine. The ...
techniques in the late 1970s, first by Maxam and Gilbert, and then by
Frederick Sanger Frederick Sanger (; 13 August 1918 – 19 November 2013) was a British biochemist who received the Nobel Prize in Chemistry twice. He won the 1958 Chemistry Prize for determining the amino acid sequence of insulin and numerous other prote ...
, was pivotal to molecular genetic research and enabled scientists to begin conducting genetic screens to relate genotypic sequences to phenotypes.
Polymerase chain reaction The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA (or a part of it) sufficiently to enable detailed st ...
(PCR) using Taq polymerase, invented by Mullis in 1985, enabled scientists to create millions of copies of a specific DNA sequence that could be used for transformation or manipulated using
agarose gel Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the ...
separation. A decade later, the first whole genome was sequenced (''
Haemophilus influenzae ''Haemophilus influenzae'' (formerly called Pfeiffer's bacillus or ''Bacillus influenzae'') is a Gram-negative, Motility, non-motile, Coccobacillus, coccobacillary, facultative anaerobic organism, facultatively anaerobic, Capnophile, capnophili ...
''), followed by the eventual sequencing of the human genome via the
Human Genome Project The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a ...
in 2001. The culmination of all of those discoveries was a new field called
genomics Genomics is an interdisciplinary field of molecular biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, ...
that links the molecular structure of a gene to the protein or RNA encoded by that segment of DNA and the functional expression of that protein within an organism. Today, through the application of molecular genetic techniques, genomics is being studied in many model organisms and data is being collected in computer databases like
NCBI The National Center for Biotechnology Information (NCBI) is part of the National Library of Medicine (NLM), a branch of the National Institutes of Health (NIH). It is approved and funded by the government of the United States. The NCBI is loca ...
and
Ensembl Ensembl genome database project is a scientific project at the European Bioinformatics Institute, which provides a centralized resource for geneticists, molecular biologists and other researchers studying the genomes of our own species and other v ...
. The computer analysis and comparison of genes within and between different species is called
bioinformatics Bioinformatics () is an interdisciplinary field of science that develops methods and Bioinformatics software, software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, ...
, and links genetic mutations on an evolutionary scale.


Central dogma

The
central dogma The central dogma of molecular biology deals with the flow of genetic information within a biological system. It is often stated as "DNA makes RNA, and RNA makes protein", although this is not its original meaning. It was first stated by Francis Cr ...
plays a key role in the study of molecular genetics. The central dogma states that DNA replicates itself, DNA is transcribed into RNA, and RNA is translated into proteins. Along with the central dogma, the genetic code is used in understanding how RNA is translated into proteins. Replication of DNA and transcription from DNA to mRNA occurs in the
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
while translation from RNA to proteins occurs in the
ribosome Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
. The genetic code is made of four interchangeable parts othe DNA molecules, called "bases": adenine, cytosine, uracil (in RNA; thymine in DNA), and guanine and is redundant, meaning multiple combinations of these base pairs (which are read in triplicate) produce the same amino acid.
Proteomics Proteomics is the large-scale study of proteins. Proteins are vital macromolecules of all living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replicatio ...
and
genomics Genomics is an interdisciplinary field of molecular biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, ...
are fields in biology that come out of the study of molecular genetics and the central dogma.


Structure of DNA

An organism's
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
is made up by its entire set of
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
and is responsible for its genetic traits, function and development. The composition of DNA itself is an essential component to the field of molecular genetics; it is the basis of how DNA is able to store genetic information, pass it on, and be in a format that can be read and translated. DNA is a double stranded molecule, with each strand oriented in an antiparallel fashion.
Nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s are the building blocks of DNA, each composed of a sugar molecule, a phosphate group and one of four nitrogenous bases: adenine, guanine, cytosine, and thymine. A single strand of DNA is held together by covalent bonds, while the two antiparallel strands are held together by hydrogen bonds between the nucleotide bases. Adenine binds with thymine and cytosine binds with guanine. It is these four base sequences that form the genetic code for all biological life and contains the information for all the proteins the organism will be able to synthesize. Its unique structure allows DNA to store and pass on biological information across generations during
cell division Cell division is the process by which a parent cell (biology), cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukar ...
. At cell division, cells must be able to copy its genome and pass it on to daughter cells. This is possible due to the double-stranded structure of DNA because one strand is complementary to its partner strand, and therefore each of these strands can act as a template strand for the formation of a new complementary strand. This is why the process of DNA replication is known as a semiconservative process.


Techniques


Forward genetics

Forward genetics Forward genetics is a molecular genetics approach of determining the genetic basis responsible for a phenotype. Forward genetics provides an unbiased approach because it relies heavily on identifying the genes or genetic factors that cause a partic ...
is a molecular genetics technique used to identify genes or genetic mutations that produce a certain
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology (physical form and structure), its developmental processes, its biochemical and physiological propert ...
. In a
genetic screen A genetic screen or mutagenesis screen is an experimental technique used to identify and select individuals who possess a phenotype of interest in a mutagenized population. Hence a genetic screen is a type of phenotypic screen. Genetic screens ...
, random mutations are generated with mutagens (chemicals or radiation) or
transposons A transposable element (TE), also transposon, or jumping gene, is a type of mobile genetic element, a nucleic acid sequence in DNA that can change its position within a genome. The discovery of mobile genetic elements earned Barbara McClinto ...
and individuals are screened for the specific phenotype. Often, a secondary assay in the form of a selection may follow
mutagenesis Mutagenesis () is a process by which the genetic information of an organism is changed by the production of a mutation. It may occur spontaneously in nature, or as a result of exposure to mutagens. It can also be achieved experimentally using lab ...
where the desired phenotype is difficult to observe, for example in bacteria or cell cultures. The cells may be transformed using a gene for
antibiotic resistance Antimicrobial resistance (AMR or AR) occurs when microbes evolve mechanisms that protect them from antimicrobials, which are drugs used to treat infections. This resistance affects all classes of microbes, including bacteria (antibiotic resis ...
or a
fluorescent Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with color ...
reporter A journalist is a person who gathers information in the form of text, audio or pictures, processes it into a newsworthy form and disseminates it to the public. This is called journalism. Roles Journalists can work in broadcast, print, advertis ...
so that the mutants with the desired phenotype are selected from the non-mutants. Mutants exhibiting the phenotype of interest are isolated and a complementation test may be performed to determine if the phenotype results from more than one gene. The mutant genes are then characterized as dominant (resulting in a gain of function),
recessive In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and ...
(showing a loss of function), or
epistatic Epistasis is a phenomenon in genetics in which the effect of a gene mutation is dependent on the presence or absence of mutations in one or more other genes, respectively termed modifier genes. In other words, the effect of the mutation is depe ...
(the mutant gene masks the phenotype of another gene). Finally, the location and specific nature of the mutation is mapped via
sequencing In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succ ...
. Forward genetics is an unbiased approach and often leads to many unanticipated discoveries, but may be costly and time consuming. Model organisms like the nematode worm ''
Caenorhabditis elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a Hybrid word, blend of the Greek ''caeno-'' (recent), ''r ...
'', the fruit fly ''
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (an insect of the Order (biology), order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly", "pomace fly" ...
'', and the zebrafish ''
Danio rerio The zebrafish (''Danio rerio'') is a species of freshwater ray-finned fish belonging to the family Danionidae of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (a ...
'' have been used successfully to study phenotypes resulting from gene mutations.


Reverse genetics

Reverse genetics is the term for molecular genetics techniques used to determine the phenotype resulting from an intentional mutation in a gene of interest. The phenotype is used to deduce the function of the un-mutated version of the gene. Mutations may be random or intentional changes to the gene of interest. Mutations may be a
missense mutation In genetics, a missense mutation is a point mutation in which a single nucleotide change results in a codon that codes for a different amino acid. It is a type of nonsynonymous substitution. Missense mutations change amino acids, which in turn alt ...
caused by nucleotide substitution, a nucleotide addition or deletion to induce a
frameshift mutation A frameshift mutation (also called a framing error or a reading frame shift) is a genetic mutation caused by indels ( insertions or deletions) of a number of nucleotides in a DNA sequence that is not divisible by three. Due to the triplet natur ...
, or a complete addition/deletion of a gene or gene segment. The deletion of a particular gene creates a
gene knockout Gene knockouts (also known as gene deletion or gene inactivation) are a widely used genetic engineering technique that involves the gene targeting, targeted removal or inactivation of a specific gene within an organism's genome. This can be done t ...
where the gene is not expressed and a loss of function results (e.g.
knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or " knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
). Missense mutations may cause total loss of function or result in partial loss of function, known as a knockdown. Knockdown may also be achieved by
RNA interference RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by ...
(RNAi). Alternatively, genes may be substituted into an organism's genome (also known as a
transgene A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the ...
) to create a
gene knock-in In molecular cloning and biology, a gene knock-in (abbreviation: KI) refers to a genetic engineering method that involves the one-for-one substitution of DNA sequence information in a genetic locus or the insertion of sequence information not fou ...
and result in a gain of function by the host. Although these techniques have some inherent bias regarding the decision to link a phenotype to a particular function, it is much faster in terms of production than forward genetics because the gene of interest is already known.


Molecular genetic tools

Molecular genetics is a scientific approach that utilizes the fundamentals of genetics as a tool to better understand the molecular basis of a disease and biological processes in organisms. Below are some tools readily employed by researchers in the field.


Microsatellites

Microsatellite A microsatellite is a tract of repetitive DNA in which certain Sequence motif, DNA motifs (ranging in length from one to six or more base pairs) are repeated, typically 5–50 times. Microsatellites occur at thousands of locations within an organ ...
s or single sequence repeats (SSRS) are short repeating segment of DNA composed to 6 nucleotides at a particular location on the genome that are used as genetic marker. Researchers can analyze these microsatellites in techniques such
DNA fingerprinting DNA profiling (also called DNA fingerprinting and genetic fingerprinting) is the process of determining an individual's deoxyribonucleic acid (DNA) characteristics. DNA analysis intended to identify a species, rather than an individual, is cal ...
and paternity testing since these repeats are highly unique to individuals/families. a can also be used in constructing genetic maps and to studying genetic linkage to locate the gene or mutation responsible for specific trait or disease. Microsatellites can also be applied to
population genetics Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as Adaptation (biology), adaptation, s ...
to study comparisons between groups.


Genome-wide association studies

Genome-wide association studies In genomics, a genome-wide association study (GWA study, or GWAS), is an observational study of a genome-wide set of genetic variants in different individuals to see if any variant is associated with a trait. GWA studies typically focus on assoc ...
(GWAS) are a technique that relies on single nucleotide polymorphisms (
SNPs In genetics and bioinformatics, a single-nucleotide polymorphism (SNP ; plural SNPs ) is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in ...
) to study genetic variations in populations that can be associated with a particular disease. The
Human Genome Project The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a ...
mapped the entire human genome and has made this approach more readily available and cost effective for researchers to implement. In order to conduct a GWAS researchers use two groups, one group that has the disease researchers are studying and another that acts as the control that does not have that particular disease. DNA samples are obtained from participants and their genome can then be derived through lab machinery and quickly surveyed to compare participants and look for SNPs that can potentially be associated with the disease. This technique allows researchers to pinpoint genes and locations of interest in the human genome that they can then further study to identify that cause of the disease.


Karyotyping

Karyotyping A karyotype is the general appearance of the complete set of chromosomes in the cells of a species or in an individual organism, mainly including their sizes, numbers, and shapes. Karyotyping is the process by which a karyotype is discerned by de ...
allows researchers to analyze chromosomes during metaphase of mitosis, when they are in a condensed state. Chromosomes are stained and visualized through a microscope to look for any chromosomal abnormalities. This technique can be used to detect congenital genetic disorder such as down syndrome, identify gender in embryos, and diagnose some cancers that are caused by chromosome mutations such as translocations.


Modern applications


Genetic engineering

Genetic engineering Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of Genetic engineering techniques, technologies used to change the genet ...
is an emerging field of science, and researcher are able to leverage molecular genetic technology to modify the DNA of organisms and create genetically modified and enhanced organisms for industrial, agricultural and medical purposes. This can be done through genome editing techniques, which can involve modifying base pairings in a DNA sequence, or adding and deleting certain regions of DNA.


Gene editing

Gene editing allows scientists to alter/edit an organism's DNA. One way to due this is through the technique
Crispr/Cas9 Cas9 (CRISPR associated protein 9, formerly called Cas5, Csn1, or Csx12) is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in genetic ...
, which was adapted from the genome immune defense that is naturally occurring in bacteria. This technique relies on the protein Cas9 which allows scientists to make a cut in strands of DNA at a specific location, and it uses a specialized RNA guide sequence to ensure the cut is made in the proper location in the genome. Then scientists use DNAs repair pathways to induce changes in the genome; this technique has wide implications for disease treatment.


Personalized medicine

Molecular genetics has wide implications in medical advancement and understanding the molecular basis of a disease allows the opportunity for more effective diagnostic and therapies. One of the goals of the field is personalized medicine, where an individual's
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinians, Augustinian ...
can help determine the cause and tailor the cure for a disease they are afflicted with and potentially allow for more individualized treatment approaches which could be more effective. For example, certain genetic variations in individuals could make them more receptive to a particular drug while other could have a higher risk of adverse reaction to treatments. So this information would allow researchers and clinicals to make the most informed decisions about treatment efficacy for patients rather than the standard trial and error approach.


Forensic genetics

Forensic genetics DNA profiling (also called DNA fingerprinting and genetic fingerprinting) is the process of determining an individual's deoxyribonucleic acid (DNA) characteristics. DNA analysis intended to identify a species, rather than an individual, is cal ...
plays an essential role for criminal investigations through that use of various molecular genetic techniques. One common technique is DNA fingerprinting which is done using a combination of molecular genetic techniques like
polymerase chain reaction The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA (or a part of it) sufficiently to enable detailed st ...
(PCR) and
gel electrophoresis Gel electrophoresis is an electrophoresis method for separation and analysis of biomacromolecules (DNA, RNA, proteins, etc.) and their fragments, based on their size and charge through a gel. It is used in clinical chemistry to separate ...
. PCR is a technique that allows a target DNA sequence to be amplified, meaning even a tiny quantity of DNA from a crime scene can be extracted and replicated many times to provide a sufficient amount of material for analysis. Gel electrophoresis allows the DNA sequence to be separated based on size, and the pattern that is derived is known as DNA fingerprinting and is unique to each individual. This combination of molecular genetic techniques allows a simple DNA sequence to be extracted, amplified, analyzed and compared with others and is a standard technique used in forensics.


See also

*
Complementation (genetics) Complementation refers to a genetics, genetic process when two strain (biology), strains of an organism with different homozygous recessive mutations that produce the same mutant phenotype (for example, a change in wing structure in flies) have ...
*
DNA damage (naturally occurring) Natural DNA damage is an alteration in the chemical structure of DNA, such as a break in a strand of DNA, a nucleobase missing from the backbone of DNA, or a chemically changed base such as 8-OHdG. DNA damage can occur naturally or via environmen ...
*
DNA damage theory of aging The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of DNA damage (naturally occurring), naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although ...
*
Epigenetics In biology, epigenetics is the study of changes in gene expression that happen without changes to the DNA sequence. The Greek prefix ''epi-'' (ἐπι- "over, outside of, around") in ''epigenetics'' implies features that are "on top of" or "in ...
*
Gene mapping Gene mapping or genome mapping describes the methods used to identify the location of a gene on a chromosome and the distances between genes. Gene mapping can also describe the distances between different sites within a gene. The essence of all ...
*
Genetic code Genetic code is a set of rules used by living cell (biology), cells to Translation (biology), translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins. Translation is accomplished ...
*
Genetic recombination Genetic recombination (also known as genetic reshuffling) is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryot ...
*
Genomic imprinting Genomic imprinting is an epigenetic phenomenon that causes genes to be expressed or not, depending on whether they are inherited from the female or male parent. Genes can also be partially imprinted. Partial imprinting occurs when alleles from b ...
*
History of genetics The history of genetics dates from the classical era with contributions by Pythagoras, Hippocrates, Aristotle, Epicurus, and others. Modern genetics began with the work of the Augustinian friar Gregor Johann Mendel. Experiments on Plant Hybridis ...
*
Homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...
*
Mutagenesis Mutagenesis () is a process by which the genetic information of an organism is changed by the production of a mutation. It may occur spontaneously in nature, or as a result of exposure to mutagens. It can also be achieved experimentally using lab ...
*
Regulation of gene expression Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are wide ...
* Timeline of the history of genetics *
Transformation (genetics) In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to t ...


Sources and notes


Further reading


Sites and databases related to genetics, cytogenetics and oncology
at
Atlas of Genetics and Cytogenetics in Oncology and Haematology The Atlas of Genetics and Cytogenetics in Oncology and Haematology, created in 1997 by Jean-Loup Huret (with bioinformatics by Philippe Dessen) is a collection of resources on genes, chromosomes anomalies, leukemias, solid tumours, and cancer ...
* Jeremy W. Dale and Simon F. Park. 2010. Molecular Genetics of Bacteria, 5th Edition


External links

* {{DEFAULTSORT:Molecular Genetics