
Curve fitting is the process of constructing a
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight.
Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
, or
mathematical function, that has the best fit to a series of
data points, possibly subject to constraints. Curve fitting can involve either
interpolation
In the mathematical field of numerical analysis, interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points.
In engineering and science, one often has a n ...
, where an exact fit to the data is required, or
smoothing, in which a "smooth" function is constructed that approximately fits the data. A related topic is
regression analysis, which focuses more on questions of
statistical inference
Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution, distribution of probability.Upton, G., Cook, I. (2008) ''Oxford Dictionary of Statistics'', OUP. . Inferential statistical ...
such as how much uncertainty is present in a curve that is fit to data observed with random errors. Fitted curves can be used as an aid for data visualization, to infer values of a function where no data are available, and to summarize the relationships among two or more variables.
Extrapolation refers to the use of a fitted curve beyond the
range of the observed data, and is subject to a
degree of uncertainty since it may reflect the method used to construct the curve as much as it reflects the observed data.
For linear-algebraic analysis of data, "fitting" usually means trying to find the curve that minimizes the vertical (''y''-axis) displacement of a point from the curve (e.g.,
ordinary least squares
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one effects of a linear function of a set of explanatory variables) by the prin ...
). However, for graphical and image applications, geometric fitting seeks to provide the best visual fit; which usually means trying to minimize the
orthogonal distance to the curve (e.g.,
total least squares
In applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalizat ...
), or to otherwise include both axes of displacement of a point from the curve. Geometric fits are not popular because they usually require non-linear and/or iterative calculations, although they have the advantage of a more aesthetic and geometrically accurate result.
Algebraic fitting of functions to data points
Most commonly, one fits a function of the form .
Fitting lines and polynomial functions to data points

The first degree
polynomial equation
:
is a line with
slope ''a''. A line will connect any two points, so a first degree polynomial equation is an exact fit through any two points with distinct x coordinates.
If the order of the equation is increased to a second degree polynomial, the following results:
:
This will exactly fit a simple curve to three points.
If the order of the equation is increased to a third degree polynomial, the following is obtained:
:
This will exactly fit four points.
A more general statement would be to say it will exactly fit four constraints. Each constraint can be a point,
angle, or
curvature
In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.
For curves, the canonic ...
(which is the reciprocal of the radius of an
osculating circle). Angle and curvature constraints are most often added to the ends of a curve, and in such cases are called end conditions. Identical end conditions are frequently used to ensure a smooth transition between polynomial curves contained within a single
spline. Higher-order constraints, such as "the change in the rate of curvature", could also be added. This, for example, would be useful in highway
cloverleaf design to understand the rate of change of the forces applied to a car (see
jerk), as it follows the cloverleaf, and to set reasonable speed limits, accordingly.
The first degree polynomial equation could also be an exact fit for a single point and an angle while the third degree polynomial equation could also be an exact fit for two points, an angle constraint, and a curvature constraint. Many other combinations of constraints are possible for these and for higher order polynomial equations.
If there are more than ''n'' + 1 constraints (''n'' being the degree of the polynomial), the polynomial curve can still be run through those constraints. An exact fit to all constraints is not certain (but might happen, for example, in the case of a first degree polynomial exactly fitting three
collinear points). In general, however, some method is then needed to evaluate each approximation. The
least squares
The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems (sets of equations in which there are more equations than unknowns) by minimizing the sum of the squares of the res ...
method is one way to compare the deviations.
There are several reasons given to get an approximate fit when it is possible to simply increase the degree of the polynomial equation and get an exact match.:
* Even if an exact match exists, it does not necessarily follow that it can be readily discovered. Depending on the algorithm used there may be a divergent case, where the exact fit cannot be calculated, or it might take too much computer time to find the solution. This situation might require an approximate solution.
* The effect of averaging out questionable data points in a sample, rather than distorting the curve to fit them exactly, may be desirable.
*
Runge's phenomenon: high order polynomials can be highly oscillatory. If a curve runs through two points ''A'' and ''B'', it would be expected that the curve would run somewhat near the midpoint of ''A'' and ''B'', as well. This may not happen with high-order polynomial curves; they may even have values that are very large in positive or negative
magnitude. With low-order polynomials, the curve is more likely to fall near the midpoint (it's even guaranteed to exactly run through the midpoint on a first degree polynomial).
* Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of
inflection points possible in a polynomial curve is ''n-2'', where ''n'' is the order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive radius to negative. We can also say this is where it transitions from "holding water" to "shedding water". Note that it is only "possible" that high order polynomials will be lumpy; they could also be smooth, but there is no guarantee of this, unlike with low order polynomial curves. A fifteenth degree polynomial could have, at most, thirteen inflection points, but could also have eleven, or nine or any odd number down to one. (Polynomials with even numbered degree could have any even number of inflection points from ''n'' - 2 down to zero.)
The degree of the polynomial curve being higher than needed for an exact fit is undesirable for all the reasons listed previously for high order polynomials, but also leads to a case where there are an infinite number of solutions. For example, a first degree polynomial (a line) constrained by only a single point, instead of the usual two, would give an infinite number of solutions. This brings up the problem of how to compare and choose just one solution, which can be a problem for software and for humans, as well. For this reason, it is usually best to choose as low a degree as possible for an exact match on all constraints, and perhaps an even lower degree, if an approximate fit is acceptable.
Fitting other functions to data points
Other types of curves, such as
trigonometric functions (such as sine and cosine), may also be used, in certain cases.
In spectroscopy, data may be fitted with
Gaussian,
Lorentzian,
Voigt Voigt (mainly written Vogt, also Voight) is a German surname, and may refer to:
*Alexander Voigt, German football player
*Angela Voigt, East German long jumper
*Christian August Voigt (1808–1890), Austrian anatomist
*Cynthia Voigt, author of bo ...
and related functions.
In biology, ecology, demography, epidemiology, and many other disciplines, the
growth of a population, the spread of infectious disease, etc. can be fitted using the
logistic function
A logistic function or logistic curve is a common S-shaped curve (sigmoid curve) with equation
f(x) = \frac,
where
For values of x in the domain of real numbers from -\infty to +\infty, the S-curve shown on the right is obtained, with the ...
.
In
agriculture the inverted logistic
sigmoid function (S-curve) is used to describe the relation between crop yield and growth factors. The blue figure was made by a sigmoid regression of data measured in farm lands. It can be seen that initially, i.e. at low soil salinity, the crop yield reduces slowly at increasing soil salinity, while thereafter the decrease progresses faster.
Geometric fitting of plane curves to data points
If a function of the form
cannot be postulated, one can still try to fit a
plane curve.
Other types of curves, such as
conic sections
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special ...
(circular, elliptical, parabolic, and hyperbolic arcs) or
trigonometric functions (such as sine and cosine), may also be used, in certain cases. For example, trajectories of objects under the influence of gravity follow a parabolic path, when air resistance is ignored. Hence, matching trajectory data points to a parabolic curve would make sense. Tides follow sinusoidal patterns, hence tidal data points should be matched to a sine wave, or the sum of two sine waves of different periods, if the effects of the Moon and Sun are both considered.
For a
parametric curve, it is effective to fit each of its coordinates as a separate function of
arc length; assuming that data points can be ordered, the
chord distance may be used.
Fitting a circle by geometric fit

Coope approaches the problem of trying to find the best visual fit of circle to a set of 2D data points. The method elegantly transforms the ordinarily non-linear problem into a linear problem that can be solved without using iterative numerical methods, and is hence much faster than previous techniques.
Fitting an ellipse by geometric fit
The above technique is extended to general ellipses
[Paul Sheer]
A software assistant for manual stereo photometrology
M.Sc. thesis, 1997 by adding a non-linear step, resulting in a method that is fast, yet finds visually pleasing ellipses of arbitrary orientation and displacement.
Fitting surfaces
Note that while this discussion was in terms of 2D curves, much of this logic also extends to 3D surfaces, each patch of which is defined by a net of curves in two parametric directions, typically called u and v. A surface may be composed of one or more surface patches in each direction.
Software
Many
statistical packages
Statistical software are specialized computer programs for analysis in statistics and econometrics.
Open-source
* ADaMSoft – a generalized statistical software with data mining algorithms and methods for data management
* ADMB – a software ...
such as
R and
numerical software
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods th ...
such as the
gnuplot,
GNU Scientific Library,
MLAB,
Maple,
MATLAB, TK Solver 6.0,
Scilab
Scilab is a free and open-source, cross-platform numerical computational package and a high-level, numerically oriented programming language. It can be used for signal processing, statistical analysis, image enhancement, fluid dynamics simulat ...
,
Mathematica
Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allow machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimizat ...
,
GNU Octave, and
SciPy include commands for doing curve fitting in a variety of scenarios. There are also programs specifically written to do curve fitting; they can be found in the
lists of statistical and
numerical-analysis programs as well as in
:Regression and curve fitting software.
See also
*
Calibration curve
*
Curve-fitting compaction
*
Estimation theory
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their valu ...
*
Function approximation
*
Goodness of fit
*
Genetic programming
*
Least-squares adjustment
*
Levenberg–Marquardt algorithm
*
Line fitting
*
Multi expression programming
*
Nonlinear regression
*
Overfitting
mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". An overfitt ...
*
Plane curve
*
Probability distribution fitting
*
Sinusoidal model
*
Smoothing
*
Splines (
interpolating
In the mathematics, mathematical field of numerical analysis, interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points.
In engineering and science, one ...
,
smoothing)
*
Time series
*
Total least squares
In applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalizat ...
*
Linear trend estimation
References
Further reading
*N. Chernov (2010), ''Circular and linear regression: Fitting circles and lines by least squares'', Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117 (256 pp.)
{{Authority control
Curve fitting,
Numerical analysis
Interpolation
Regression analysis