Osculating Circle
An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus. More formally, in differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point ''p'' on the curve has been traditionally defined as the circle passing through ''p'' and a pair of additional points on the curve infinitesimally close to ''p''. Its center lies on the inner Normal (geometry), normal line, and its curvature defines the curvature of the given curve at that point. This circle, which is the one among all ''tangent circles'' at the given point that approaches the curve most tightly, was named ''circulus osculans'' (Latin for "kissing circle") by Gottfried Wilhelm Leibniz, Leibniz. The cent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differentiable Curve
Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus. One of the most important tools used to analyze a curve is the Frenet frame, a moving frame that provides a coordinate system at each point of the curve that is "best adapted" to the curve near that point. The theory of curves is much simpler and narrower in scope than the theory of surfaces and its higher-dimensional generalizations because a regular curve in a Euclidean space has no intrinsic geometry. Any regular curve may be parametrized by the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lissajous Curve
A Lissajous curve , also known as Lissajous figure or Bowditch curve , is the graph of a system of parametric equations : x=A\sin(at+\delta),\quad y=B\sin(bt), which describe the superposition of two perpendicular oscillations in x and y directions of different angular frequency (''a'' and ''b).'' The resulting family of curves was investigated by Nathaniel Bowditch in 1815, and later in more detail in 1857 by Jules Antoine Lissajous (for whom it has been named). Such motions may be considered as a particular kind of complex harmonic motion. The appearance of the figure is sensitive to the ratio . For a ratio of 1, when the frequencies match a=b, the figure is an ellipse, with special cases including circles (, radians) and lines (). A small change to one of the frequencies will mean the x oscillation after one cycle will be slightly out of synchronization with the y motion and so the ellipse will fail to close and trace a curve slightly adjacent during the next orbit sho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parabola Circle
In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exactly the same curves. One description of a parabola involves a Point (geometry), point (the Focus (geometry), focus) and a Line (geometry), line (the Directrix (conic section), directrix). The focus does not lie on the directrix. The parabola is the locus (mathematics), locus of points in that plane that are equidistant from the directrix and the focus. Another description of a parabola is as a conic section, created from the intersection of a right circular conical surface and a plane (geometry), plane Parallel (geometry), parallel to another plane that is tangential to the conical surface. The graph of a function, graph of a quadratic function y=ax^2+bx+ c (with a\neq 0 ) is a parabola with its axis parallel to the -axis. Conversely, every ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Evolute
In the differential geometry of curves, the evolute of a curve is the locus (mathematics), locus of all its Center of curvature, centers of curvature. That is to say that when the center of curvature of each point on a curve is drawn, the resultant shape will be the evolute of that curve. The evolute of a circle is therefore a single point at its center. Equivalently, an evolute is the envelope (mathematics), envelope of the perpendicular, normals to a curve. The evolute of a curve, a surface, or more generally a submanifold, is the caustic (mathematics), caustic of the normal map. Let be a smooth, regular submanifold in . For each point in and each vector , based at and normal to , we associate the point . This defines a Lagrangian map, called the normal map. The caustic of the normal map is the evolute of . Evolutes are closely connected to involutes: A curve is the evolute of any of its involutes. History Apollonius of Perga, Apollonius ( 200 BC) discussed evolut ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Envelope (mathematics)
In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two " infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions. To have an envelope, it is necessary that the individual members of the family of curves are differentiable curves as the concept of tangency does not apply otherwise, and there has to be a smooth transition proceeding through the members. But these conditions are not sufficient – a given family may fail to have an envelope. A simple example of this is given by a family of concentric circles of expanding radius. Envelope of a family of curves Let each curve ''C''''t'' in the family be given as the solution of an equation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Local Maximum
In mathematical analysis, the maximum and minimum of a function (mathematics), function are, respectively, the greatest and least value taken by the function. Known generically as extremum, they may be defined either within a given Interval (mathematics), range (the ''local'' or ''relative'' extrema) or on the entire domain of a function, domain (the ''global'' or ''absolute'' extrema) of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set (mathematics), set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum. In statistics, the corresponding concept is the sample maximum and minimum. Definition A real-valued Function (mathematics), function ''f'' defined on a Domain of a function, domain ''X'' has a global (or absolute) m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vertex (curve)
In the geometry of plane curves, a vertex is a point of where the first derivative of curvature is zero. This is typically a local maximum or minimum of curvature, and some authors define a vertex to be more specifically a local extremum of curvature. However, other special cases may occur, for instance when the second derivative is also zero, or when the curvature is constant. For space curves, on the other hand, a vertex is a point where the torsion vanishes. Examples A hyperbola has two vertices, one on each branch; they are the closest of any two points lying on opposite branches of the hyperbola, and they lie on the principal axis. On a parabola, the sole vertex lies on the axis of symmetry and in a quadratic of the form: :ax^2 + bx + c\,\! it can be found by completing the square or by differentiation., p. 127. On an ellipse, two of the four vertices lie on the major axis and two lie on the minor axis. For a circle, which has constant curvature, every point is a ver ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Contact (mathematics)
In mathematics, two functions have a contact of order if, at a point , they have the same value and their first derivatives are equal. This is an equivalence relation, whose equivalence classes are generally called jets. The point of osculation is also called the double cusp. Contact is a geometric notion; it can be defined algebraically as a valuation. One speaks also of curves and geometric objects having -th order contact at a point: this is also called ''osculation'' (i.e. kissing), generalising the property of being tangent. (Here the derivatives are considered with respect to arc length.) An osculating curve from a given family of curves is a curve that has the highest possible order of contact with a given curve at a given point; for instance a tangent line is an osculating curve from the family of lines, and has first-order contact with the given curve; an osculating circle is an osculating curve from the family of circles, and has second-order contact (same tang ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tangent Lines To Circles
In Euclidean geometry, Euclidean plane geometry, a tangent line to a circle is a Line (geometry), line that touches the circle at exactly one Point (geometry), point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical Compass and straightedge constructions, constructions and Mathematical proof, proofs. Since the tangent, tangent line to a circle at a Point (geometry), point is perpendicular to the radius to that point, theorems involving tangent lines often involve radial lines and orthogonality, orthogonal circles. Tangent lines to one circle A tangent line to a circle Line-line intersection, intersects the circle at a single point . For comparison, secant lines intersect a circle at two points, whereas another line may not intersect a circle at all. This property of tangent lines is preserved under many geometrical Transformation (geometry), transformations, such as scaling (g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |