Mathematical Constants And Functions
   HOME

TheInfoList



OR:

A
mathematical constant A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an Letter (alphabet), alphabet letter), or by mathematicians' names to facilitate using it across multiple mathem ...
is a key
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple
mathematical problem A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the Solar System, or a problem of a more ...
s. For example, the constant π may be defined as the ratio of the length of a circle's
circumference In geometry, the circumference () is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. More generally, the perimeter is the curve length arou ...
to its
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
. The following list includes a
decimal expansion A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: r = b_k b_\cdots b_0.a_1a_2\cdots Here is the decimal separator ...
and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.


List

{, class="wikitable sortable sticky-header sort-under" , - ! rowspan="2" , Name ! rowspan="2" , Symbol ! rowspan="2" , Decimal expansion ! rowspan="2" , Formula ! rowspan="2" , Year ! colspan="3" , Set , - ! \mathbb{Q} ! \mathbb{A} ! \mathcal{P} , - ,
One 1 (one, unit, unity) is a number, numeral, and glyph. It is the first and smallest positive integer of the infinite sequence of natural numbers. This fundamental property has led to its unique uses in other fields, ranging from science to sp ...
, 1 , 1 , Multiplicative identity of \mathbb{C}. , data-sort-value="-2000" , Prehistory , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Two , 2 , 2 , , data-sort-value="-2000" , Prehistory , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
One half One half is the multiplicative inverse of 2. It is an irreducible fraction with a numerator of 1 and a denominator of 2. It often appears in mathematical equations, recipes and measurements. As a word One half is one of the few fractions ...
, , data-sort-value="0.50000" , 0.5 , , data-sort-value="-2000" , Prehistory , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Pi , \pi , 3.14159 26535 89793 23846 , Ratio of a circle's circumference to its diameter. , data-sort-value="-1900" , 1900 to 1600 BCE , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Tau Tau (; uppercase Τ, lowercase τ or \boldsymbol\tau; ) is the nineteenth letter of the Greek alphabet, representing the voiceless alveolar plosive, voiceless dental or alveolar plosive . In the system of Greek numerals, it has a value of 300 ...
, \tau , 6.28318 53071 79586 47692 , Ratio of a circle's circumference to its radius. Equal to 2\pi , data-sort-value="-1900" , 1900 to 1600 BCE , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Square root of 2 The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written as \sqrt or 2^. It is an algebraic number, and therefore not a transcendental number. Te ...
,
Pythagoras Pythagoras of Samos (;  BC) was an ancient Ionian Greek philosopher, polymath, and the eponymous founder of Pythagoreanism. His political and religious teachings were well known in Magna Graecia and influenced the philosophies of P ...
constant , \sqrt{2} , 1.41421 35623 73095 04880 , Positive root of x^2=2 , data-sort-value="-1800" , 1800 to 1600 BCE , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Square root of 3 The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as \sqrt or 3^. It is more precisely called the principal square root of 3 to distinguish it from the negative nu ...
, Theodorus' constant , \sqrt{3} , 1.73205 08075 68877 29352 , Positive root of x^2=3 , data-sort-value="-465" , 465 to 398 BCE , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Square root of 5 The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This numbe ...
, \sqrt{5} , 2.23606 79774 99789 69640 , Positive root of x^2=5 , data-sort-value="-464" , , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Phi,
Golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \fr ...
, \varphi or \phi , 1.61803 39887 49894 84820 , \frac{1+\sqrt{5{2} , data-sort-value="-301" , ~300 BCE , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Silver ratio In mathematics, the silver ratio is a geometrical aspect ratio, proportion with exact value the positive polynomial root, solution of the equation The name ''silver ratio'' results from analogy with the golden ratio, the positive solution of ...
, \delta_S , 2.41421 35623 73095 04880 , \sqrt{2}+1 , data-sort-value="-301" , ~300 BCE , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Zero 0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
, 0 , 0 , Additive identity of \mathbb{C}. , data-sort-value="-300" , 300 to 100 BCE , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Negative one , −1 , −1 , , data-sort-value="-300" , 300 to 200 BCE , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Cube root of 2 Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related probl ...
, \sqrt 2} , 1.25992 10498 94873 16476 , Real root of x^3=2 , 46 to 120 CE , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Cube root In mathematics, a cube root of a number is a number that has the given number as its third power; that is y^3=x. The number of cube roots of a number depends on the number system that is considered. Every real number has exactly one real cub ...
of 3 , \sqrt 3} , 1.44224 95703 07408 38232 , Real root of x^3=3 , data-sort-value="47" , , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Twelfth root of 2 The twelfth root of two or \sqrt 2/math> (or equivalently 2^) is an algebraic irrational number, approximately equal to 1.0594631. It is most important in Western music theory, where it represents the frequency ratio (musical interval) of a sem ...
, \sqrt 22} , 1.05946 30943 59295 26456 , Real root of x^{12}=2 , data-sort-value="47" , , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Supergolden ratio In mathematics, the supergolden ratio is a geometrical aspect ratio, proportion, given by the unique real polynomial root, solution of the equation Its decimal expansion begins with . The name ''supergolden ratio'' is by analogy with the golde ...
, \psi , 1.46557 12318 76768 02665 , \frac{1 + \sqrt \frac{29 + 3\sqrt{93{2 + \sqrt \frac{29 - 3\sqrt{93{2}{3} Real root of x^{3} = x^{2} + 1 , data-sort-value="47" , , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Imaginary unit The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
, i , data-sort-value="0" , , Principal root of x^2=-1 , 1501 to 1576 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Connective constant In mathematics, the connective constant is a numerical quantity associated with self-avoiding walks on a lattice. It is studied in connection with the notion of universality in two-dimensional statistical physics models. While the connective cons ...
for the hexagonal lattice , \mu , 1.84775 90650 22573 51225 , \sqrt{2 + \sqrt{2, as a root of the polynomial x ^ 4-4 x ^ 2 + 2=0 , 1593 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Kepler–Bouwkamp constant In plane geometry, the Kepler–Bouwkamp constant (or polygon inscribing constant) is obtained as a limit of the following sequence. Take a circle of radius 1. Inscribe a regular triangle in this circle. Inscribe a circle in this triangle ...
, K' , 0.11494 20448 53296 20070 , \prod_{n=3}^\infty \cos\left(\frac{\pi}{n} \right) = \cos\left(\frac{\pi}{3} \right) \cos\left(\frac{\pi}{4} \right) \cos\left(\frac{\pi}{5}\right) ... , 1596 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Wallis's constant , , 2.09455 14815 42326 59148 , \sqrt \frac{45-\sqrt{1929{18+\sqrt \frac{45+\sqrt{1929{18 Real root of x^{3} - 2x - 5 = 0 , 1616 to 1703 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Euler's number The number is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function. It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can ...
, e , 2.71828 18284 59045 23536 , \lim_{n \to \infty} \left( 1 + \frac {1}{n}\right)^n = \sum_{n=0}^{\infty}\frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} \cdots , 1618 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Natural logarithm of 2 In mathematics, the natural logarithm of 2 is the unique real number argument such that the exponential function equals two. It appears frequently in various formulas and is also given by the alternating harmonic series. The decimal value of th ...
, \ln 2 , 0.69314 71805 59945 30941 , Real root of e^{x} = 2 \sum_{n=1}^\infty \frac{(-1)^{n+1{n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots , 1619 & 1668 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Lemniscate constant In mathematics, the lemniscate constant is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of for the circle. Equivalently, the perimeter of the ...
, \varpi , 2.62205 75542 92119 81046 , 2\int_{0}^1\frac{dt}{\sqrt{1-t^4 = \frac14 \sqrt{\frac{2}{\pi\,\Gamma {\left(\frac14 \right)^2} Ratio of the perimeter of Bernoulli's lemniscate to its diameter. , 1718 to 1798 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Euler's constant , \gamma , 0.57721 56649 01532 86060 , \lim_{n\to\infty}\left(-\log n + \sum_{k=1}^n \frac1{k}\right)=\int_1^\infty\left(-\frac1x+\frac1{\lfloor x\rfloor}\right)\,dx Limiting difference between the harmonic series and the
natural logarithm The natural logarithm of a number is its logarithm to the base of a logarithm, base of the e (mathematical constant), mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approxima ...
. , 1735 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Erdős–Borwein constant , E , 1.60669 51524 15291 76378 , \sum_{n=1}^{\infty}\frac{1}{2^n-1} = \frac{1}{1} \! + \! \frac{1}{3} \! + \! \frac{1}{7} \! + \! \frac{1}{15} \! + \! \cdots , 1749 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Omega constant , \Omega , 0.56714 32904 09783 87299 , W(1)=\frac{1}{\pi}\int_0^\pi\log\left(1+\frac{\sin t}{t}e^{t\cot t}\right)dt where W is the
Lambert W function In mathematics, the Lambert function, also called the omega function or product logarithm, is a multivalued function, namely the Branch point, branches of the converse relation of the function , where is any complex number and is the expone ...
, 1758 & 1783 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Apéry's constant In mathematics, Apéry's constant is the infinite sum of the reciprocals of the positive integers, cubed. That is, it is defined as the number : \begin \zeta(3) &= \sum_^\infty \frac \\ &= \lim_ \left(\frac + \frac + \cdots + \f ...
, \zeta(3) , 1.20205 69031 59594 28539 , \zeta(3)=\sum_{n=1}^\infty\frac{1}{n^3} = \frac{1}{1^3}+\frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \frac{1}{5^3} + \cdots with the
Riemann zeta function The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic c ...
\zeta(s). , 1780 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Laplace limit In mathematics, the Laplace limit is the maximum value of the eccentricity for which a solution to Kepler's equation, in terms of a power series in the eccentricity, converges. It is approximately : 0.66274 34193 49181 58097 47420 97109 25290. Ke ...
, , 0.66274 34193 49181 58097 , Real root of \frac{ x e^\sqrt{x^2+1{\sqrt{x^2+1}+1} = 1 , data-sort-value="1782" , ~1782 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Soldner constant , \mu , 1.45136 92348 83381 05028 , \mathrm{li}(x) = \int_0^x \frac{dt}{\ln t} = 0 ; root of the
logarithmic integral In mathematics, the logarithmic integral function or integral logarithm li(''x'') is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a ...
function. , 1792 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Gauss's constant , G , 0.83462 68416 74073 18628 , \frac{1}{\mathrm{agm}(1, \sqrt{2})} = \frac{1}{4\pi} \sqrt{\frac{2}{\pi\Gamma\left(\frac{1}{4}\right)^2=\frac \varpi\pi where ''agm'' is the
arithmetic–geometric mean In mathematics, the arithmetic–geometric mean (AGM or agM) of two positive real numbers and is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms f ...
and \varpi is the
lemniscate constant In mathematics, the lemniscate constant is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of for the circle. Equivalently, the perimeter of the ...
. , 1799 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Second
Hermite constant In mathematics, the Hermite constant, named after Charles Hermite, determines how long a shortest element of a lattice in Euclidean space can be. The constant ''γn'' for integers ''n'' > 0 is defined as follows. For a lattice ''L'' in Euclidea ...
, \gamma_{2} , 1.15470 05383 79251 52901 , \frac{2}{\sqrt{3 , 1822 to 1901 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Liouville's constant , L , 0.11000 10000 00000 00000 0001 , \sum_{n=1}^\infty \frac{1}{10^{n! = \frac {1}{10^{1! + \frac{1}{10^{2! + \frac{1}{10^{3! + \frac{1}{10^{4! + \cdots , data-sort-value="1844" , Before 1844 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , First
continued fraction A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, ...
constant , C_1 , 0.69777 46579 64007 98201 , C_1= ;1,2,3,4,5,...\frac{I_1(2)}{I_0(2)}, (see
Bessel functions Bessel functions, named after Friedrich Bessel who was the first to systematically study them in 1824, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex ...
). C_1\notin \mathbb A. , 1855 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Ramanujan's constant In number theory, a Heegner number (as termed by Conway and Guy) is a square-free positive integer ''d'' such that the imaginary quadratic field \Q\left sqrt\right/math> has class number 1. Equivalently, the ring of algebraic integers of \Q\left ...
, , 262 53741 26407 68743
.99999 99999 99250 073 , e^{\pi\sqrt{163 , 1859 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Glaisher–Kinkelin constant In mathematics, the Glaisher–Kinkelin constant or Glaisher's constant, typically denoted , is a mathematical constant, related to special functions like the -function and the Barnes -function. The constant also appears in a number of sums and i ...
, A , 1.28242 71291 00622 63687 , e^{\frac{1}{12}-\zeta^\prime(-1)} = e^{\frac{1}{8}-\frac{1}{2}\sum\limits_{n=0}^\infty \frac{1}{n+1} \sum\limits_{k=0}^n \left(-1\right)^k \binom{n}{k} \left(k+1\right)^2 \ln(k+1)} , 1860 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Catalan's constant In mathematics, Catalan's constant , is the alternating sum of the reciprocals of the odd square numbers, being defined by: : G = \beta(2) = \sum_^ \frac = \frac - \frac + \frac - \frac + \frac - \cdots, where is the Dirichlet beta function ...
, G , 0.91596 55941 77219 01505 , \beta(2)=\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^2} = \frac{1}{1^2}-\frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} + \cdots with the Dirichlet beta function \beta(s). , 1864 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Dottie number , , 0.73908 51332 15160 64165 , Real root of \cos x = x , 1865 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Meissel–Mertens constant , M , 0.26149 72128 47642 78375 , \lim_{n\to\infty}\left(\sum_{p\le n}\frac{1}{p}-\ln\ln n\right) = \gamma + \sum_{p}\left(\ln\left(1 - \frac{1}{p}\right) + \frac{1}{p}\right) where ''γ'' is the
Euler–Mascheroni constant Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (), defined as the limiting difference between the harmonic series and the natural logarith ...
and ''p'' is prime , 1866 & 1873 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Universal parabolic constant , P , 2.29558 71493 92638 07403 , \ln(1 + \sqrt2) + \sqrt2 \; = \; \operatorname{arsinh}(1)+\sqrt{2} , data-sort-value="1891" , Before 1891 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Cahen's constant In mathematics, Cahen's constant is defined as the value of an infinite series of unit fractions with alternating signs: :C = \sum_^\infty \frac=\frac11 - \frac12 + \frac16 - \frac1 + \frac1 - \cdots\approx 0.643410546288... Here (s_i)_ denotes ...
, C , 0.64341 05462 88338 02618 , \sum_{k=1}^{\infty} \frac{(-1)^{k{s_k-1} = \frac{1}{1} - \frac{1}{2} + \frac{1}{6} - \frac{1}{42} + \frac{1}{1806} {\,\pm \cdots} where ''sk'' is the ''k''th term of ''
Sylvester's sequence In number theory, Sylvester's sequence is an integer sequence in which each term is the product of the previous terms, plus one. Its first few terms are :2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443 . Sylvester's sequen ...
'' 2, 3, 7, 43, 1807, ... , 1891 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Gelfond's constant , e^{\pi} , 23.14069 26327 79269 0057 , (-1)^{-i} = i^{-2i} = \sum_{n=0}^\infty \frac{\pi^{n{n!} = 1 + \frac{\pi^{1{1} + \frac{\pi^{2{2} + \frac{\pi^{3{6} + \cdots , 1900 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Gelfond–Schneider constant , 2^{\sqrt{2 , 2.66514 41426 90225 18865 , 2^{\sqrt{2 , data-sort-value="1902" , Before 1902 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Second Favard constant , K_{2} , 1.23370 05501 36169 82735 , \frac{\pi^2}{8} = \sum_{n = 0}^\infty \frac{1}{(2n+1)^2} = \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\cdots , 1902 to 1965 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Golden angle In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two Arc (geometry), arcs such that the ratio of the length of the smaller arc to the ...
, g , 2.39996 32297 28653 32223 , \frac{2\pi}{\varphi^2} = \pi (3-\sqrt{5}) or 180 (3-\sqrt{5})=137.50776\ldots in degrees , 1907 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Sierpiński's constant Sierpiński's constant is a mathematical constant usually denoted as ''K''. One way of defining it is as the following limit: :K=\lim_\left sum_^ - \pi\ln n\right/math> where ''r''2(''k'') is a number of representations of ''k'' as a sum of the ...
, K , 2.58498 17595 79253 21706 , \begin{align} &\pi\left(2\gamma+\ln\frac{4\pi^3}{\Gamma(\tfrac{1}{4})^4}\right) = \pi (2 \gamma + 4 \ln\Gamma(\tfrac{3}{4}) - \ln\pi) \\ &= \pi \left(2 \ln 2+3 \ln \pi + 2 \gamma - 4 \ln \Gamma (\tfrac{1}{4})\right) \end{align} , 1907 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Landau–Ramanujan constant In mathematics and the field of number theory, the Landau–Ramanujan constant is the positive real number ''b'' that occurs in a theorem proved by Edmund Landau in 1908, stating that for large x, the number of positive integers below x that are th ...
, K , 0.76422 36535 89220 66299 , \frac1{\sqrt2}\prod_ {\left(1-\frac1{p^2}\right)^{-\frac{1}{2}\!\!=\frac\pi4\prod_ {\left(1-\frac1{p^2}\right)^\frac{1}{2 , 1908 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , First NielsenRamanujan constant , a_{1} , 0.82246 70334 24113 21823 , \frac{n^2} = \frac{1}{1^2} {-} \frac{1}{2^2} {+} \frac{1}{3^2} {-} \frac{1}{4^2} {+} \cdots , 1909 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Gieseking constant , G , 1.01494 16064 09653 62502 , \frac{3\sqrt{3{4} \left(1- \sum_{n=0}^\infty \frac{1}{(3n+2)^2}+ \sum_{n=1}^\infty\frac{1}{(3n+1)^2} \right)
=\frac{\sqrt 3}{3}\left(\frac{\psi_1(1/3)}{2}-\frac{\pi^2}{3}\right) with the trigamma function \psi_1. , 1912 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Bernstein's constant , \beta , 0.28016 94990 23869 13303 , \lim_{n\to\infty} 2n E_{2n}(f), where ''E''''n''(f) is the error of the best uniform approximation to a
real function In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers \mathbb, or a subset of \mathbb that contains an inter ...
''f''(''x'') on the interval minus;1, 1by real polynomials of no more than degree ''n'', and ''f''(''x'') = , ''x'', , 1913 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Tribonacci constant , , 1.83928 67552 14161 13255 , \frac{1+\sqrt 19+3\sqrt{33+\sqrt 19-3\sqrt{33}{3} = \frac{1+4\cosh\left(\frac{1}{3}\cosh^{-1}\left(2+\frac{3}{8}\right)\right)}{3} Real root of x^{3} - x^{2} - x - 1 = 0 , 1914 to 1963 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Brun's constant , B_{2} , 1.90216 05831 04 , \textstyle {\sum\limits_p(\frac1{p}+\frac1{p+2})} = (\frac1{3} \! + \! \frac1{5}) + (\tfrac1{5} \! + \! \tfrac1{7}) + (\tfrac1{11} \! + \! \tfrac1{13}) + \cdots where the sum ranges over all primes ''p'' such that ''p'' + 2 is also a prime , 1919 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Twin primes constant , C_{2} , 0.66016 18158 46869 57392 , \prod_{\textstyle{p\;{\rm prime}\atop p \ge 3 \left(1 - \frac{1}{(p-1)^2}\right) , 1922 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Plastic ratio In mathematics, the plastic ratio is a geometrical aspect ratio, proportion, given by the unique real polynomial root, solution of the equation Its decimal expansion begins as . The adjective ''plastic'' does not refer to Plastic, the artifici ...
, \rho , 1.32471 79572 44746 02596 , \sqrt 1 + \! \sqrt 1 + \! \sqrt 1 + \cdots} = \textstyle \sqrt \frac{1}{2}+\frac{\sqrt{69{18+\sqrt \frac{1}{2}-\frac{\sqrt{69{18 Real root of x^{3} = x + 1 , 1924 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Bloch's constant , B , data-sort-value="0.43320" , 0.4332\leq B\leq 0.4719 , The best known bounds are \frac{\sqrt{3{4}+2\times10^{-4}\leq B\leq \sqrt{\frac{\sqrt{3}-1}{2\cdot\frac{\Gamma(\frac{1}{3})\Gamma(\frac{11}{12})}{\Gamma(\frac{1}{4})} , 1925 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Z score for the 97.5 percentile point , z_{.975} , 1.95996 39845 40054 23552 , \sqrt{2}\operatorname{erf}^{-1}(0.95) where is the inverse error function Real number z such that \frac{1}{\sqrt{2\pi\int_{-\infty}^{z} e^{-x^2/2} \, \mathrm{d}x = 0.975 , 1925 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Landau's constant , L , data-sort-value="0.50000" , 0.5 < L \le 0.54326 , The best known bounds are 0.5 < L \le \frac{\Gamma(\frac{1}{3})\Gamma(\frac{5}{6})}{\Gamma(\frac{1}{6})} , 1929 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Landau's third constant , A , data-sort-value="0.50000" , 0.5 < A \le 0.7853 , , 1929 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Prouhet–Thue–Morse constant In mathematics, the Prouhet–Thue–Morse constant, named for , Axel Thue, and Marston Morse, is the number—denoted by —whose binary expansion 0.01101001100101101001011001101001... is given by the Prouhet–Thue–Morse sequence. That is, : ...
, \tau , 0.41245 40336 40107 59778 , \sum_{n=0}^{\infty} \frac{t_n}{2^{n+1 = \frac{1}{4}\left -\prod_{n=0}^{\infty}\left(1-\frac{1}{2^{2^n\right)\right/math> where {t_n} is the ''n''th term of the
Thue–Morse sequence In mathematics, the Thue–Morse or Prouhet–Thue–Morse sequence is the binary sequence (an infinite sequence of 0s and 1s) that can be obtained by starting with 0 and successively appending the Boolean complement of the sequence obtained thus ...
, 1929 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Golomb–Dickman constant In mathematics, the Golomb–Dickman constant, named after Solomon W. Golomb and Karl Dickman, is a mathematical constant, which arises in the theory of random permutations and in number theory. Its value is :\lambda = 0.62432 99885 43550 87099 ...
, \lambda , 0.62432 99885 43550 87099 , \int_{0}^{1} e^{\mathrm{Li}(t)} dt = \int_0^{\infty} \frac{\rho(t)}{t+2} dt where Li(''t'') is the logarithmic integral, and ''ρ''(''t'') is the Dickman function , 1930 & 1964 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Constant related to the asymptotic behavior of
Lebesgue constant In mathematics, the Lebesgue constants (depending on a set of nodes and of its size) give an idea of how good the interpolant of a function (at the given nodes) is in comparison with the best polynomial approximation of the function (the degree o ...
s , c , 0.98943 12738 31146 95174 , \lim_{n\to\infty}\!\! \left(\!{L_n{-}\frac{4}{\pi^2}\ln(2n{+}1)}\!\!\right)\!{=} \frac{4}{\pi^2}\!\left({-}\frac{\Gamma'(\tfrac12)}{\Gamma(\tfrac12)}{+}{\sum_{k=1}^\infty \!\frac{2\ln k}{4k^2{-}1 \right) , 1930 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Feller–Tornier constant , \mathcal{C}_{\mathrm{FT , 0.66131 70494 69622 33528 , {\frac{1}{2}\prod_{p\text{ prime \left(1-\frac{2}{p^2}\right) + \frac{1}{2 =\frac{3}{\pi^2}\prod_{p\text{ prime \left(1-\frac{1}{p^2-1}\right) + \frac{1}{2} , 1932 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Base 10 Champernowne constant , C_{10} , 0.12345 67891 01112 13141 , Defined by concatenating representations of successive integers: 0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... , 1933 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Salem constant , \sigma_{10} , 1.17628 08182 59917 50654 , Largest real root of x^{10}+x^9-x^7-x^6-x^5-x^4-x^3+x+1=0 , 1933 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Khinchin's constant , K_{0} ,   , \prod_{n=1}^\infty \left 1+{1\over n(n+2)\right{\log_2(n)} , 1934 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Lévy's constant (1) , \beta , 1.18656 91104 15625 45282 , \frac {\pi^2}{12\,\ln 2} , 1935 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Lévy's constant (2) , e^{\beta} , 3.27582 29187 21811 15978 , e^{\pi^2/(12\ln2)} , 1936 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Copeland–Erdős constant , \mathcal{C}_{CE} , 0.23571 11317 19232 93137 , Defined by concatenating representations of successive prime numbers: 0.2 3 5 7 11 13 17 19 23 29 31 37 ... , 1946 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Mills' constant In number theory, Mills' constant is defined as the smallest positive real number ''A'' such that the floor function of the double exponential function : \left\lfloor A^ \right\rfloor is a prime number for all positive natural numbers ''n''. ...
, A , 1.30637 78838 63080 69046 , Smallest positive real number ''A'' such that \lfloor A^{3^{n \rfloor is prime for all positive integers ''n'' , 1947 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Gompertz constant , \delta , 0.59634 73623 23194 07434 , \int_0^\infty \!\! \frac{e^{-x{1+x} \, dx = \!\! \int_0^1 \!\! \frac{dx}{1-\ln x} = {\tfrac 1 {1+\tfrac 1{1+\tfrac 1{1+\tfrac 2{1+\tfrac 2{1+\tfrac 3{1+3{/\cdots , data-sort-value="1948" , Before 1948 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - ,
de Bruijn–Newman constant The de Bruijn–Newman constant, denoted by \Lambda and named after Nicolaas Govert de Bruijn and Charles Michael Newman, is a mathematical constant defined via the zeros of a certain function H(\lambda,z), where \lambda is a real parameter ...
, \Lambda , data-sort-value="0" , 0\le\Lambda\le0.2 , The number Λ such that H(\lambda,z)=\int^{\infty}_0e^{\lambda u^2}\Phi(u)\cos(zu)du has real zeros if and only if λ ≥ Λ. where \Phi(u)=\sum_{n=1}^{\infty}(2\pi^2n^4e^{9u}-3\pi n^2e^{5u})e^{-\pi n^2e^{4u. , 1950 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Van der Pauw constant , \frac{\pi}{\ln 2} , 4.53236 01418 27193 80962 , \frac{\pi}{\ln 2} , data-sort-value="1958" , Before 1958 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Magic angle , \theta_{\mathrm{m , 0.95531 66181 245092 78163 , \arctan \sqrt{2} = \arccos \tfrac{1}{\sqrt 3} \approx \textstyle {54.7356} ^{ \circ } , data-sort-value="1959" , Before 1959 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Artin's constant , C_{\mathrm{Artin , 0.37395 58136 19202 28805 , \prod_{p\text{ prime \left(1-\frac{1}{p(p-1)}\right) , data-sort-value="1961" , Before 1961 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Porter's constant , C , 1.46707 80794 33975 47289 , \frac{6\ln 2}{\pi ^2} \left(3 \ln 2 + 4 \,\gamma -\frac{24}{\pi ^2} \,\zeta '(2)-2 \right)-\frac{1}{2} where ''γ'' is the
Euler–Mascheroni constant Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (), defined as the limiting difference between the harmonic series and the natural logarith ...
and is the derivative of the
Riemann zeta function The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic c ...
evaluated at ''s'' = 2 , 1961 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Lochs constant , L , 0.97027 01143 92033 92574 , \frac {6 \ln 2 \ln 10}{ \pi^2} , 1964 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , DeVicci's tesseract constant , , 1.00743 47568 84279 37609 , The largest cube that can pass through a 4D hypercube. Positive root of 4x^8{-}28x^6{-}7x^4{+}16x^2{+}16=0 , 1966 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Lieb's square ice constant , , 1.53960 07178 39002 03869 , \left(\frac{4}{3}\right)^\frac{3}{2}=\frac{8}{3\sqrt3} , 1967 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Niven's constant , C , 1.70521 11401 05367 76428 , 1+\sum_{n = 2}^\infty \left(1-\frac{1}{\zeta(n)} \right) , 1969 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Stephens' constant , , 0.57595 99688 92945 43964 , \prod_{p\text{ prime \left(1 - \frac{p}{p^3-1}\right) , 1969 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Regular paperfolding sequence In mathematics the regular paperfolding sequence, also known as the dragon curve sequence, is an infinite sequence of 0s and 1s. It is obtained from the repeating partial sequence by filling in the question marks by another copy of the whole sequen ...
, P , 0.85073 61882 01867 26036 , \sum_{n=0}^{\infty} \frac {8^{2^n{2^{2^{n+2-1} = \sum_{n=0}^{\infty} \cfrac {\tfrac {1}{2^{2^n} {1-\tfrac{1}{2^{2^{n+2 , 1970 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Reciprocal Fibonacci constant The reciprocal Fibonacci constant is the sum of the reciprocals of the Fibonacci numbers: \psi = \sum_^ \frac = \frac + \frac + \frac + \frac + \frac + \frac + \frac + \frac + \cdots. Because the ratio of successive terms tends to the reciproc ...
, \psi , 3.35988 56662 43177 55317 , \sum_{n=1}^{\infty} \frac{1}{F_n} = \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \frac{1}{13} + \cdots where ''Fn'' is the ''n''th
Fibonacci number In mathematics, the Fibonacci sequence is a Integer sequence, sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted . Many w ...
, 1974 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Chvátal–Sankoff constant for the binary alphabet , \gamma_2 , data-sort-value="0.78807" 10000 , 0.788071 \le \gamma_2 \le 0.826280 , \lim_{n\to\infty}\frac{\operatorname{E} lambda_{n,2}{n} where is the expected longest common subsequence of two random length-''n'' binary strings , 1975 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Feigenbaum constant δ , \delta , 4.66920 16091 02990 67185 , \lim_{n \to \infty}\frac {a_{n+1}-a_n}{a_{n+2}-a_{n+1 where the sequence ''an'' is given by n-th period-doubling bifurcation of
logistic map The logistic map is a discrete dynamical system defined by the quadratic difference equation: Equivalently it is a recurrence relation and a polynomial mapping of degree 2. It is often referred to as an archetypal example of how complex, ...
x_{k+1} = a x_k(1-x_k) or any other one-dimensional map with a single quadratic maximum , 1975 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Chaitin's constant In the computer science subfield of algorithmic information theory, a Chaitin constant (Chaitin omega number) or halting probability is a real number that, informally speaking, represents the probability that a randomly constructed program will ...
s , \Omega , data-sort-value="0.00787" 49969 97812 3844 , In general they are uncomputable numbers.
But one such number is 0.00787 49969 97812 3844.
, \sum_{p \in P} 2^{-, p *: Halted program *}: Size in bits of program *: Domain of all programs that stop. , 1975 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , - ,
Robbins constant In geometry, the mean line segment length is the average length of a line segment connecting two points chosen uniformly at random in a given shape. In other words, it is the expected Euclidean distance between two random points, where each point ...
, \Delta(3) , 0.66170 71822 67176 23515 , \frac{4 \! + \! 17\sqrt2 \! -6 \sqrt3 \! -7\pi}{105} \! + \! \frac{\ln(1 \! + \! \sqrt2)}{5} \! + \! \frac{2\ln(2 \! + \! \sqrt3)}{5} , 1977 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - ,
Weierstrass Karl Theodor Wilhelm Weierstrass (; ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the " father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school t ...
constant , , 0.47494 93799 87920 65033 , \frac{2^{5/4} \sqrt{\pi} \, e^{\pi/8{\Gamma(\frac{1}{4})^{2 , data-sort-value="1978" , Before 1978 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Fransén–Robinson constant , F , 2.80777 02420 28519 36522 , \int_{0}^\infty \frac{dx}{\Gamma(x)} = e + \int_0^\infty \frac{e^{-x{\pi^2 + \ln^2 x}\, dx , 1978 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Feigenbaum constant α , \alpha , 2.50290 78750 95892 82228 , Ratio between the width of a tine and the width of one of its two subtines in a
bifurcation diagram In mathematics, particularly in dynamical systems, a bifurcation diagram shows the values visited or approached asymptotically ( fixed points, periodic orbits, or chaotic attractors) of a system as a function of a bifurcation parameter in the ...
, 1979 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Second du Bois-Reymond constant , C_2 , 0.19452 80494 65325 11361 , \frac{e^2-7}{2} = \int_0^\infty \left, {\frac{d}{dt}\left(\frac{\sin t}{t}\right)^2}\\,dt-1 , 1983 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Erdős–Tenenbaum–Ford constant , \delta , 0.08607 13320 55934 20688 , 1-\frac{1+\log\log2}{\log2} , 1984 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Conway's constant , \lambda , 1.30357 72690 34296 39125 , Real root of the polynomial: \begin{smallmatrix} x^{71}-x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\\ -x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}\\ +x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}\\ -12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}\\ -10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}-7x^{21}+9x^{20}\\ +3x^{19}\!-4x^{18}\!-10x^{17}\!-7x^{16}\!+12x^{15}\!+7x^{14}\!+2x^{13}\!-12x^{12}\!-4x^{11}\!-2x^{10}\\ +5x^{9}+x^{7}-7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6\ =\ 0 \quad\quad\quad \end{smallmatrix} , 1987 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="0" style="background:#a6ffa7;, ✓ , data-sort-value="0" style="background:#a6ffa7;, ✓ , - , Hafner–Sarnak–McCurley constant , \sigma , 0.35323 63718 54995 98454 , \prod_{p\text{ prime{\left(1- \left(1-\prod_{n\ge1}\left(1-\frac{1}{p^n}\right)\right)^2 \right)} \! , 1991 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Backhouse's constant , B , 1.45607 49485 82689 67139 , \lim_{k \to \infty}\left , \frac{q_{k+1{q_k} \right \vert \quad \scriptstyle \text {where:} \displaystyle \;\; Q(x)=\frac{1}{P(x)}= \! \sum_{k=1}^\infty q_k x^k P(x) = 1+\sum_{k=1}^\infty {p_k x^k} = 1+2x+3x^2+5x^3+\cdotswhere ''pk'' is the ''k''th prime number , 1995 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Viswanath constant , , 1.13198 82487 943 , \lim_{n \to \infty}, f_n, ^\frac{1}{n}      where ''f''''n'' = ''f''''n''−1 ± ''f''''n''−2, where the signs + or − are chosen at random with equal probability 1/2 , 1997 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Komornik–Loreti constant , q , 1.78723 16501 82965 93301 , Real number q such that 1 = \sum_{k=1}^\infty \frac{t_k}{q^k}, or \prod_{n=0}^\infty\left (1-\frac{1}{q^{2^n\right )+\frac{q-2}{q-1}=0 where ''tk'' is the ''k''th term of the
Thue–Morse sequence In mathematics, the Thue–Morse or Prouhet–Thue–Morse sequence is the binary sequence (an infinite sequence of 0s and 1s) that can be obtained by starting with 0 and successively appending the Boolean complement of the sequence obtained thus ...
, 1998 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Embree–Trefethen constant , \beta^{\star} , 0.70258 , , 1999 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Heath-Brown–Moroz constant , C , 0.00131 76411 54853 17810 , \prod_{p\text{ prime \left(1-\frac{1}{p}\right)^7\left(1+\frac{7p+1}{p^2}\right) , 1999 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , MRB constant , S , 0.18785 96424 62067 12024 MRB constant , \sum_{n=1}^{\infty} (-1)^n (n^{1/n}-1) = - \sqrt 1} + \sqrt 2} - \sqrt 3} + \cdots , 1999 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Prime constant , \rho , 0.41468 25098 51111 66024 , \sum_{p\text{ prime \frac{1}{2^p}= \frac{1}{4} + \frac{1}{8} + \frac{1}{32} + \cdots , 1999 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Somos' quadratic recurrence constant , \sigma , 1.66168 79496 33594 12129 , \prod_{n=1}^\infty n^} = 1^{1/2} \; 2^{1/4} \; 3^{1/8} \cdots , 1999 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - ,
Foias constant In mathematical analysis, the Foias constant is a real number named after Ciprian Foias. It is defined in the following way: for every real number ''x''1 > 0, there is a sequence defined by the recurrence relation : x_ = \left( 1 + \ ...
, \alpha , 1.18745 23511 26501 05459 , x_{n+1} = \left( 1 + \frac{1}{x_n} \right)^n\text{ for }n=1,2,3,\ldots Foias constant is the unique real number such that if ''x''1 = ''α'' then the sequence diverges to infinity. , 2000 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , - , Logarithmic capacity of the unit disk , , 0.59017 02995 08048 11302 , \frac{\Gamma(\tfrac14)^2}{4 \pi^{3/2=\frac{\varpi}{\pi\sqrt{2 where \varpi is the
lemniscate constant In mathematics, the lemniscate constant is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of for the circle. Equivalently, the perimeter of the ...
. , data-sort-value="2003" , Before 2003 , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="2" style="background:#ffa6a6;, ✗ , data-sort-value="1" style="background:#fcffa6;, ? , - , Taniguchi constant , , 0.67823 44919 17391 97803 , \prod_{p\text{ prime \left(1 - \frac{3}{p^3}+\frac{2}{p^4}+\frac{1}{p^5}-\frac{1}{p^6}\right) , data-sort-value="2005" , Before 2005 , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ? , data-sort-value="1" style="background:#fcffa6;, ?


Mathematical constants sorted by their representations as continued fractions

The following list includes the
continued fraction A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, ...
s of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an
ellipsis The ellipsis (, plural ellipses; from , , ), rendered , alternatively described as suspension points/dots, points/periods of ellipsis, or ellipsis points, or colloquially, dot-dot-dot,. According to Toner it is difficult to establish when t ...
to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one. Decimal representations are rounded or padded to 10 places if the values are known. {, class="wikitable sortable" , - !Name ! Symbol ! Set ! Decimal expansion !
Continued fraction A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, ...
! Notes , - ,
Zero 0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
, 0 , , \mathbb{Z} , , 0.00000 00000 , , ; , , , - ,
Golomb–Dickman constant In mathematics, the Golomb–Dickman constant, named after Solomon W. Golomb and Karl Dickman, is a mathematical constant, which arises in the theory of random permutations and in number theory. Its value is :\lambda = 0.62432 99885 43550 87099 ...
, \lambda , , , , 0.62432 99885 , , ; 1, 1, 1, 1, 1, 22, 1, 2, 3, 1, 1, 11, 1, 1, 2, 22, 2, 6, 1, 1, …ref group="OEIS">
, , E. Weisstein noted that the continued fraction has an unusually large number of 1s. , - ,
Cahen's constant In mathematics, Cahen's constant is defined as the value of an infinite series of unit fractions with alternating signs: :C = \sum_^\infty \frac=\frac11 - \frac12 + \frac16 - \frac1 + \frac1 - \cdots\approx 0.643410546288... Here (s_i)_ denotes ...
, C_2 , , \mathbb{R} \setminus \mathbb{A} , , 0.64341 05463 , , ; 1, 1, 1, 22, 32, 132, 1292, 252982, 4209841472, 2694251407415154862, …ref group="OEIS">
, , All terms are squares and truncated at 10 terms due to large size. Davison and Shallit used the continued fraction expansion to prove that the constant is transcendental. , - ,
Euler–Mascheroni constant Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (), defined as the limiting difference between the harmonic series and the natural logarith ...
, \gamma , , , , 0.57721 56649 , , ; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, … , , Using the continued fraction expansion, it was shown that if is rational, its denominator must exceed 10244663. , - , First
continued fraction A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, ...
constant , C_1 , , \mathbb{R} \setminus \mathbb{A} , , 0.69777 46579 , , ; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …, , Equal to the ratio I_{1}(2)/I_{0}(2) of modified Bessel functions of the first kind evaluated at 2. , - ,
Catalan's constant In mathematics, Catalan's constant , is the alternating sum of the reciprocals of the odd square numbers, being defined by: : G = \beta(2) = \sum_^ \frac = \frac - \frac + \frac - \frac + \frac - \cdots, where is the Dirichlet beta function ...
, G , , , , 0.91596 55942 , , ; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, … , , Computed up to terms by E. Weisstein. , - ,
One half One half is the multiplicative inverse of 2. It is an irreducible fraction with a numerator of 1 and a denominator of 2. It often appears in mathematical equations, recipes and measurements. As a word One half is one of the few fractions ...
, , , \mathbb{Q} , , 0.50000 00000 , , ; 2, , , - ,
Prouhet–Thue–Morse constant In mathematics, the Prouhet–Thue–Morse constant, named for , Axel Thue, and Marston Morse, is the number—denoted by —whose binary expansion 0.01101001100101101001011001101001... is given by the Prouhet–Thue–Morse sequence. That is, : ...
, \tau , , \mathbb{R} \setminus \mathbb{A} , , 0.41245 40336 , , ; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1, …ref group="OEIS">
, , Infinitely many partial quotients are 4 or 5, and infinitely many partial quotients are greater than or equal to 50. , - , Copeland–Erdős constant , \mathcal{C}_{CE} , , \mathbb{R} \setminus \mathbb{Q} , , 0.23571 11317 , , ; 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, …ref group="OEIS">
, , Computed up to terms by E. Weisstein. He also noted that while the Champernowne constant continued fraction contains sporadic large terms, the continued fraction of the Copeland–Erdős Constant do not exhibit this property. , - , Base 10 Champernowne constant , C_{10} , , \mathbb{R} \setminus \mathbb{A} , , 0.12345 67891 , , ; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, , 6, 1, … , , Champernowne constants in any base exhibit sporadic large numbers; the 40th term in C_{10} has 2504 digits. , - ,
One 1 (one, unit, unity) is a number, numeral, and glyph. It is the first and smallest positive integer of the infinite sequence of natural numbers. This fundamental property has led to its unique uses in other fields, ranging from science to sp ...
, 1 , , \mathbb{N} , , 1.00000 00000 , , ; , , , - , Phi,
Golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \fr ...
, \varphi , , \mathbb{A} , , 1.61803 39887 , , ; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, … , , The convergents are ratios of successive
Fibonacci numbers In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted . Many writers begin the s ...
. , - , Brun's constant , B_2 , , , , 1.90216 05831 , , ; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, …, , The ''n''th roots of the denominators of the ''n''th convergents are close to Khinchin's constant, suggesting that B_2 is irrational. If true, this will prove the
twin prime conjecture A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' ...
. , - ,
Square root of 2 The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written as \sqrt or 2^. It is an algebraic number, and therefore not a transcendental number. Te ...
, \sqrt 2 , , \mathbb{A} , , 1.41421 35624 , , ; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …, , The convergents are ratios of successive Pell numbers. , - , Two , 2 , , \mathbb{N} , , 2.00000 00000 , , ; , , , - ,
Euler's number The number is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function. It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can ...
, e , , \mathbb{R} \setminus \mathbb{A} , , 2.71828 18285 , , ; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, … , , The continued fraction expansion has the pattern ; 1, 2, 1, 1, 4, 1, ..., 1, 2''n'', 1, ... , - , Khinchin's constant , K_0 , , , , 2.68545 20011 , , ; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, … , , For
almost all In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if X is a set (mathematics), set, "almost all elements of X" means "all elements of X but those in a negligible set, negligible subset of X". The meaning o ...
real numbers ''x'', the coefficients of the continued fraction of ''x'' have a finite
geometric mean In mathematics, the geometric mean is a mean or average which indicates a central tendency of a finite collection of positive real numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometri ...
known as Khinchin's constant. , - ,
Three 3 (three) is a number, numeral and digit. It is the natural number following 2 and preceding 4, and is the smallest odd prime number and the only prime preceding a square number. It has religious and cultural significance in many societies ...
, 3 , , \mathbb{N} , , 3.00000 00000 , , ; , , , - , Pi , \pi , , \mathbb{R} \setminus \mathbb{A} , , 3.14159 26536 , , ; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, … , , The first few convergents (3, 22/7, 333/106, 355/113, ...) are among the best-known and most widely used historical approximations of .


Sequences of constants

{, class="wikitable sortable" , - ! Name ! Symbol ! Formula ! Year ! Set , - ,
Harmonic number In mathematics, the -th harmonic number is the sum of the reciprocals of the first natural numbers: H_n= 1+\frac+\frac+\cdots+\frac =\sum_^n \frac. Starting from , the sequence of harmonic numbers begins: 1, \frac, \frac, \frac, \frac, \dot ...
, H_n , \sum^n_{k=1}\frac{1}{k} , data-sort-value="-400" , Antiquity , data-sort-value="3" , \mathbb{Q} , - , Gregory coefficients , G_n , \frac 1 {n!} \int_0^1 x(x-1)(x-2)\cdots(x-n+1)\, dx = \int_0^1 \binom x n \, dx , 1670 , data-sort-value="3" , \mathbb{Q} , - ,
Bernoulli number In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent function ...
, B^\pm_n , \frac{t}{2} \left( \operatorname{coth} \frac{t}{2} \pm 1 \right) = \sum_{m=0}^\infty \frac{B^{\pm{_m t^m}{m!} , 1689 , data-sort-value="3" , \mathbb{Q} , - ,
Hermite constant In mathematics, the Hermite constant, named after Charles Hermite, determines how long a shortest element of a lattice in Euclidean space can be. The constant ''γn'' for integers ''n'' > 0 is defined as follows. For a lattice ''L'' in Euclidea ...
s , \gamma_{n} , For a lattice L in Euclidean space R''n'' with unit covolume, i.e. vol(R''n''/''L'') = 1, let λ(''L'') denote the least length of a nonzero element of L. Then √γn is the maximum of λ(L) over all such lattices L. , data-sort-value="1822" , 1822 to 1901 , data-sort-value="7" , \mathbb{R} , - , Hafner–Sarnak–McCurley constant , D(n) , D(n)= \prod^\infty_{k=1}\left\{1-\left -\prod^n_{j=1}(1-p_k^{-j}) \right2 \right\} , data-sort-value="1883" , 1883 , data-sort-value="7" , \mathbb{R} , - , Stieltjes constants , \gamma_n , {\frac {(-1)^{n}n!}{2\pi \int _{0}^e^\zeta \left(e^+1\right)dx. , data-sort-value="1894", before 1894 , data-sort-value="7" , \mathbb{R} , - , Favard constants , K_{r} , \frac{4}{\pi}\sum_{n = 0}^\infty \left(\frac{(-1)^n}{2n+1} \right)^{\!r+1}=\frac{4}{\pi}\left( \frac{(-1)^{0(r+1){1^r}+\frac{(-1)^{1(r+1){3^r}+\frac{(-1)^{2(r+1){5^r}+\frac{(-1)^{3(r+1){7^r}+\cdots\right) , data-sort-value="1902" , 1902 to 1965 , data-sort-value="7" , \mathbb{R} , - , Generalized Brun's Constant , B_{n} , {\sum\limits_p(\frac1{p}+\frac1{p+n})}where the sum ranges over all primes ''p'' such that ''p'' + n is also a prime , data-sort-value="1919" , 1919 , data-sort-value="7" , \mathbb{R} , - , Champernowne constants , C_{b} , Defined by concatenating representations of successive integers in base b. C_b=\sum^\infty_{n=1}\frac{n}{b^{\left(\sum^n_{k=1}\lceil\log_b(k+1)\rceil\right) , 1933 , data-sort-value="5" , \mathbb{R} \setminus \mathbb{A} , - , Lagrange number , L(n) , \sqrt{9-\frac{4} where m_n is the nth smallest number such that m^2+x^2+y^2=3mxy\, has positive (x,y). , data-sort-value="1957", before 1957 , data-sort-value="4" , \mathbb{A} , - , Feller's coin-tossing constants , \alpha_k,\beta_k , \alpha_k is the smallest positive real root of x^{k+1}=2^{k+1}(x-1),\beta_k=\frac{2-\alpha_k}{k+1-k\alpha_k} , 1968 , data-sort-value="4" , \mathbb{A} , - , Stoneham number , \alpha_{b,c} , \sum_{n=c^k>1} \frac{1}{b^nn} = \sum_{k=1}^\infty \frac{1}{b^{c^k}c^k} where b,c are coprime integers. , 1973 , data-sort-value="6" , \mathbb{R} \setminus \mathbb{A} , - , Beraha constants , B(n) , 2+2\cos\left(\frac{2\pi}{n}\right) , 1974 , data-sort-value="7" , \mathbb{A} , - , Chvátal–Sankoff constants , \gamma_k , \lim_{n\to\infty}\frac{E lambda_{n,k}{n} , 1975 , data-sort-value="7" , \mathbb{R} , - , Hyperharmonic number , H^{(r)}_n , \sum^n_{k=1}H^{(r-1)}_k and H^{(0)}_n=\frac{1}{n} , 1995 , data-sort-value="3" , \mathbb{Q} , - , Gregory number , G_x , \sum _{n=0}^{\infty }(-1)^{n}{\frac {1}{(2n+1)x^{2n+1}=\arccot(x) for rational x greater than or equal to one. , data-sort-value="1996", before 1996 , data-sort-value="7" , \mathbb{R} \setminus \mathbb{A} , - , Metallic mean , , \frac{n+\sqrt{n^2+4{2} , data-sort-value="1998" , before 1998 , data-sort-value="4" , \mathbb{A}


See also

*
Invariant (mathematics) In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objec ...
*
Glossary of mathematical symbols A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula ...
* List of mathematical symbols by subject *
List of numbers This is a list of notable numbers and articles about notable numbers. The list does not contain all numbers in existence as most of the number sets are infinite. Numbers may be included in the list based on their mathematical, historical or cult ...
*
List of physical constants The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Man ...
* Particular values of the Riemann zeta function *
Physical constant A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that cannot be explained by a theory and therefore must be measured experimentally. It is distinct from a mathematical constant, which has a ...


Notes


References


Site MathWorld Wolfram.com


Site OEIS.org


Site OEIS Wiki


Bibliography

* English translation by Catriona and David Lischka. * * *


Further reading

*


External links


Inverse Symbolic Calculator, Plouffe's Inverter



On-Line Encyclopedia of Integer Sequences (OEIS)

Steven Finch's page of mathematical constants


{{DEFAULTSORT:Mathematical Constants and Functions *
mathematical constants A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. ...
Constants Constant or The Constant may refer to: Mathematics * Constant (mathematics), a non-varying value * Mathematical constant, a special number that arises naturally in mathematics, such as or Other concepts * Control variable or scientific const ...
Articles containing video clips
constants Constant or The Constant may refer to: Mathematics * Constant (mathematics), a non-varying value * Mathematical constant, a special number that arises naturally in mathematics, such as or Other concepts * Control variable or scientific const ...
Continued fractions