HOME

TheInfoList



OR:

A
mathematical constant A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Cons ...
is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple
mathematical problem A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more ...
s. For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.


List

{, class="wikitable sortable" , - ! Name ! Symbol ! Decimal expansion ! Formula ! Year ! Set , - ,
One 1 (one, unit, unity) is a number representing a single or the only entity. 1 is also a numerical digit and represents a single unit of counting or measurement. For example, a line segment of ''unit length'' is a line segment of length 1. I ...
, 1 , 1 , , data-sort-value="-2000", Prehistory , data-sort-value="1", \mathbb{N} , - , Two , 2 , 2 , , data-sort-value="-2000", Prehistory , data-sort-value="1", \mathbb{N} , - ,
One half One half ( : halves) is the irreducible fraction resulting from dividing one by two or the fraction resulting from dividing any number by its double. Multiplication by one half is equivalent to division by two, or "halving"; conversely, d ...
, 1/2 , data-sort-value="0.50000", 0.5 , , data-sort-value="-2000", Prehistory , data-sort-value="3", \mathbb{Q} , - , Pi , \pi , 3.14159 26535 89793 23846 , Ratio of a circle's circumference to its diameter. , data-sort-value="-1900", 1900 to 1600 BCE , data-sort-value="5", \mathbb{T} , - ,
Square root of 2 The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as \sqrt or 2^, and is an algebraic number. Technically, it should be called the princip ...
, Pythagoras constant. , \sqrt{2} , 1.41421 35623 73095 04880 , Positive root of x^2=2 , data-sort-value="-1800", 1800 to 1600 BCE , data-sort-value="4", \mathbb{A} , - , Square root of 3, Theodorus' constant , \sqrt{3} , 1.73205 08075 68877 29352 , Positive root of x^2=3 , data-sort-value="-465", 465 to 398 BCE , data-sort-value="4", \mathbb{A} , - , Square root of 5 , \sqrt{5} , 2.23606 79774 99789 69640 , Positive root of x^2=5 , data-sort-value="-464", , data-sort-value="4", \mathbb{A} , - , Phi, Golden ratio , \varphi or \phi , 1.61803 39887 49894 84820 , \frac{1+\sqrt{5{2} , data-sort-value="-301", ~300 BCE , data-sort-value="4", \mathbb{A} , - , Silver ratio , \delta_S , 2.41421 35623 73095 04880 , \sqrt{2}+1 , data-sort-value="-301", ~300 BCE , data-sort-value="4", \mathbb{A} , - , Zero , 0 , 0 , , data-sort-value="-300", 300 to 100 BCE , data-sort-value="2", \mathbb{Z} , - , Negative one , −1 , −1 , , data-sort-value="-300", 300 to 200 BCE , data-sort-value="2", \mathbb{Z} , - , Cube root of 2 , \sqrt 2} , 1.25992 10498 94873 16476 , Real root of x^3=2 , 46 to 120 CE , data-sort-value="4", \mathbb{A} , - ,
Cube root In mathematics, a cube root of a number is a number such that . All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. Fo ...
of 3 , \sqrt 3} , 1.44224 95703 07408 38232 , Real root of x^3=3 , data-sort-value="47", , data-sort-value="4", \mathbb{A} , - , Twelfth root of 2 , \sqrt 22} , 1.05946 30943 59295 26456 , Real root of x^{12}=2 , data-sort-value="47", , data-sort-value="4", \mathbb{A} , - , Supergolden ratio , \psi , 1.46557 12318 76768 02665 , \frac{1 + \sqrt \frac{29 + 3\sqrt{93{2 + \sqrt \frac{29 - 3\sqrt{93{2}{3} Real root of x^{3} = x^{2} + 1 , data-sort-value="47", , data-sort-value="4", \mathbb{A} , - , Imaginary unit , i , data-sort-value="0", , Either of the two roots of x^2=-1 , 1501 to 1576 , data-sort-value="8", \mathbb{C} , - , Connective constant for the hexagonal lattice , \mu , 1.84775 90650 22573 51225 , \sqrt{2 + \sqrt{2, as a root of the polynomial x ^ 4-4 x ^ 2 + 2=0 , 1593 , data-sort-value="4", \mathbb{A} , - , Kepler–Bouwkamp constant , K' , 0.11494 20448 53296 20070 , \prod_{n=3}^\infty \cos\left(\frac{\pi}{n} \right) = \cos\left(\frac{\pi}{3} \right) \cos\left(\frac{\pi}{4} \right) \cos\left(\frac{\pi}{5}\right) ... , 1596 , data-sort-value="7", , - , Wallis's constant , , 2.09455 14815 42326 59148 , \sqrt \frac{45-\sqrt{1929{18+\sqrt \frac{45+\sqrt{1929{18 Real root of x^{3} - 2x - 5 = 0 , 1616 to 1703 , data-sort-value="4", \mathbb{A} , - , Euler's number , e , 2.71828 18284 59045 23536 , \lim_{n \to \infty} \left( 1 + \frac {1}{n}\right)^n = \sum_{n=0}^{\infty}\frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} \cdots , 1618 , data-sort-value="5", \mathbb{T} , - ,
Natural logarithm of 2 The decimal value of the natural logarithm of 2 is approximately :\ln 2 \approx 0.693\,147\,180\,559\,945\,309\,417\,232\,121\,458. The logarithm of 2 in other bases is obtained with the formula :\log_b 2 = \frac. The common logarithm in particu ...
, \ln 2 , 0.69314 71805 59945 30941 , Real root of e^{x} = 2 \sum_{n=1}^\infty \frac{(-1)^{n+1{n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots , 1619 & 1668 , data-sort-value="5", \mathbb{T} , - , Lemniscate constant , \varpi , 2.62205 75542 92119 81046 , \pi \, {G} = 4 \sqrt{\tfrac2\pi}\,\Gamma{\left(\tfrac54 \right)^2} = \tfrac14 \sqrt{\tfrac{2}{\pi\,\Gamma {\left(\tfrac14 \right)^2} where G is
Gauss's constant In mathematics, the lemniscate constant p. 199 is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of for the circle. Equivalently, the perimete ...
, 1718 to 1798 , data-sort-value="5", \mathbb{T} , - , Euler's constant , \gamma , 0.57721 56649 01532 86060 , \lim_{n\to\infty}\left(-\log n + \sum_{k=1}^n \frac1{k}\right)=\int_1^\infty\left(-\frac1x+\frac1{\lfloor x\rfloor}\right)\,dx , 1735 , data-sort-value="7", , - ,
ErdƑs–Borwein constant The ErdƑs–Borwein constant is the sum of the Reciprocal (mathematics), reciprocals of the Mersenne prime, Mersenne numbers. It is named after Paul ErdƑs and Peter Borwein. By definition it is: :E=\sum_^\frac\approx1.606695152415291763\dots Eq ...
, E , 1.60669 51524 15291 76378 , \sum_{n=1}^{\infty}\frac{1}{2^n-1} = \frac{1}{1} \! + \! \frac{1}{3} \! + \! \frac{1}{7} \! + \! \frac{1}{15} \! + \! \cdots , 1749 , data-sort-value="6", \mathbb{R} \setminus \mathbb{Q} , - ,
Omega constant The omega constant is a mathematical constant defined as the unique real number that satisfies the equation :\Omega e^\Omega = 1. It is the value of , where is Lambert's function. The name is derived from the alternate name for Lambert's fu ...
, \Omega , 0.56714 32904 09783 87299 , W(1)=\frac{1}{\pi}\int_0^\pi\log\left(1+\frac{\sin t}{t}e^{t\cot t}\right)dt where W is the Lambert W function , 1758 & 1783 , data-sort-value="5", \mathbb{T} , - , Apéry's constant , \zeta(3) , 1.20205 69031 59594 28539 , \sum_{n=1}^\infty\frac{1}{n^3} = \frac{1}{1^3}+\frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \frac{1}{5^3} + \cdots , 1780 , data-sort-value="6", \mathbb{R} \setminus \mathbb{Q} , - , Laplace limit , , 0.66274 34193 49181 58097 , Real root of \frac{ x e^\sqrt{x^2+1{\sqrt{x^2+1}+1} = 1 , data-sort-value="1782", ~1782 , data-sort-value="5", \mathbb{T} , - ,
Ramanujan–Soldner constant In mathematics, the Ramanujan–Soldner constant (also called the Soldner constant) is a mathematical constant defined as the unique positive zero of the logarithmic integral function. It is named after Srinivasa Ramanujan and Johann Georg von Sol ...
, \mu , 1.45136 92348 83381 05028 , \mathrm{li}(x) = \int_0^x \frac{dt}{\ln t} = 0 ; root of the logarithmic integral function. , 1792 , data-sort-value="7", , - ,
Gauss's constant In mathematics, the lemniscate constant p. 199 is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of for the circle. Equivalently, the perimete ...
, G , 0.83462 68416 74073 18628 , \frac{1}{\mathrm{agm}(1, \sqrt{2})} = \frac{\Gamma(\frac{1}{4})^2}{2\sqrt{2 \pi^3 = \frac{2}{\pi}\int_0^1\frac{dx}{\sqrt{1 - x^4 where ''agm'' is the arithmetic–geometric mean , 1799 , data-sort-value="5", \mathbb{T} , - , Second Hermite constant , \gamma_{2} , 1.15470 05383 79251 52901 , \frac{2}{\sqrt{3 , 1822 to 1901 , data-sort-value="4", \mathbb{A} , - ,
Liouville's constant In number theory, a Liouville number is a real number ''x'' with the property that, for every positive integer ''n'', there exists a pair of integers (''p, q'') with ''q'' > 1 such that :0 1 + \log_2(d) ~) no pair of integers ~(\,p,\,q\,)~ exists ...
, L , 0.11000 10000 00000 00000 0001 , \sum_{n=1}^\infty \frac{1}{10^{n! = \frac {1}{10^{1! + \frac{1}{10^{2! + \frac{1}{10^{3! + \frac{1}{10^{4! + \cdots , data-sort-value="1844", Before 1844 , data-sort-value="5", \mathbb{T} , - , First continued fraction constant , C_1 , 0.69777 46579 64007 98201 , \tfrac 1 {1+\tfrac 1{2+\tfrac 1{3+\tfrac 1{4+\tfrac 1{5+\cdots } \frac{I_1(2)}{I_0(2)}, where I_{\alpha}(x) is the modified Bessel function , 1855 , data-sort-value="6", \mathbb{R} \setminus \mathbb{Q} , - , Ramanujan's constant , , 262 53741 26407 68743
.99999 99999 99250 073 , e^{\pi\sqrt{163 , 1859 , data-sort-value="5", \mathbb{T} , - , Glaisher–Kinkelin constant , A , 1.28242 71291 00622 63687 , e^{\frac{1}{12}-\zeta^\prime(-1)} = e^{\frac{1}{8}-\frac{1}{2}\sum\limits_{n=0}^\infty \frac{1}{n+1} \sum\limits_{k=0}^n \left(-1\right)^k \binom{n}{k} \left(k+1\right)^2 \ln(k+1)} , 1860 , data-sort-value="7", , - , Catalan's constant , G , 0.91596 55941 77219 01505 , \int_0^1 \!\! \int_0^1 \!\! \frac{dx \, dy}{1{+}x^2 y^2} = \! \sum_{n = 0}^\infty \! \frac{(-1)^n}{(2n{+}1)^2} \! = \! \frac{1}{1^2}{-}\frac{1}{3^2}{+}{\cdots} , 1864 , data-sort-value="7", , - , Dottie number , , 0.73908 51332 15160 64165 , Real root of \cos x = x , 1865 , data-sort-value="5", \mathbb{T} , - , Meissel–Mertens constant , M , 0.26149 72128 47642 78375 , \lim_{n\to\infty}\left(\sum_{p\le n}\frac{1}{p}\ln\ln n\right) = \gamma + \sum_{p}\left(\ln\left(1 - \frac{1}{p}\right) + \frac{1}{p}\right) where ''γ'' is the Euler–Mascheroni constant and ''p'' is prime , 1866 & 1873 , data-sort-value="7", , - , Universal parabolic constant , P , 2.29558 71493 92638 07403 , \ln(1 + \sqrt2) + \sqrt2 \; = \; \operatorname{arsinh}(1)+\sqrt{2} , data-sort-value="1891", Before 1891 , data-sort-value="5", \mathbb{T} , - ,
Cahen's constant In mathematics, Cahen's constant is defined as the value of an infinite series of unit fractions with alternating signs: :C = \sum_^\infty \frac=\frac11 - \frac12 + \frac16 - \frac1 + \frac1 - \cdots\approx 0.64341054629. Here (s_i)_ denotes Sylves ...
, C , 0.64341 05462 88338 02618 , \sum_{k=1}^{\infty} \frac{(-1)^{k{s_k-1} = \frac{1}{1} - \frac{1}{2} + \frac{1}{6} - \frac{1}{42} + \frac{1}{1806} {\,\pm \cdots} where ''sk'' is the ''k''th term of '' Sylvester's sequence'' 2, 3, 7, 43, 1807, ... , 1891 , data-sort-value="5", \mathbb{T} , - , Gelfond's constant , e^{\pi} , 23.14069 26327 79269 0057 , (-1)^{-i} = i^{-2i} = \sum_{n=0}^\infty \frac{\pi^{n{n!} = 1 + \frac{\pi^{1{1} + \frac{\pi^{2{2} + \frac{\pi^{3{6} + \cdots , 1900 , data-sort-value="5", \mathbb{T} , - ,
Gelfond–Schneider constant The Gelfond–Schneider constant or Hilbert number is two to the power of the square root of two: :2 = ... which was proved to be a transcendental number by Rodion Kuzmin in 1930. In 1934, Aleksandr Gelfond and Theodor Schneider independently prov ...
, 2^{\sqrt{2 , 2.66514 41426 90225 18865 , , data-sort-value="1902", Before 1902 , data-sort-value="5", \mathbb{T} , - , Second
Favard constant In mathematics, the Favard constant, also called the Akhiezer–Krein–Favard constant, of order ''r'' is defined as :K_r = \frac \sum\limits_^ \left \frac \right. This constant is named after the French mathematician Jean Favard, and a ...
, K_{2} , 1.23370 05501 36169 82735 , \frac{\pi^2}{8} = \sum_{n = 0}^\infty \frac{1}{(2n-1)^2} = \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\cdots , 1902 to 1965 , data-sort-value="5", \mathbb{T} , - ,
Golden angle In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the l ...
, g , 2.39996 32297 28653 32223 , \frac{2\pi}{\varphi^2} = \pi (3-\sqrt{5}) or 180 (3-\sqrt{5})=137.50776\ldots in degrees , 1907 , data-sort-value="5", \mathbb{T} , - ,
SierpiƄski's constant SierpiƄski's constant is a mathematical constant usually denoted as ''K''. One way of defining it is as the following limit: :K=\lim_\left sum_^ - \pi\ln n\right/math> where ''r''2(''k'') is a number of representations of ''k'' as a sum of the ...
, K , 2.58498 17595 79253 21706 , \begin{align} &\pi\left(2\gamma+\ln\frac{4\pi^3}{\Gamma(\tfrac{1}{4})^4}\right) = \pi (2 \gamma + 4 \ln\Gamma(\tfrac{3}{4}) - \ln\pi) \\ &= \pi \left(2 \ln 2+3 \ln \pi + 2 \gamma - 4 \ln \Gamma (\tfrac{1}{4})\right) \end{align} , 1907 , data-sort-value="7", , - , Landau–Ramanujan constant , K , 0.76422 36535 89220 66299 , \frac1{\sqrt2}\prod_ {\left(1-\frac1{p^2}\right)^{-\frac{1}{2}\!\!=\frac\pi4\prod_ {\left(1-\frac1{p^2}\right)^\frac{1}{2 , 1908 , data-sort-value="7", , - , First Nielsen– Ramanujan constant , a_{1} , 0.82246 70334 24113 21823 , \frac{n^2} = \frac{1}{1^2} {-} \frac{1}{2^2} {+} \frac{1}{3^2} {-} \frac{1}{4^2} {+} \cdots , 1909 , data-sort-value="5", \mathbb{T} , - , Gieseking constant , G , 1.01494 16064 09653 62502 , \frac{3\sqrt{3{4} \left(1- \sum_{n=0}^\infty \frac{1}{(3n+2)^2}+ \sum_{n=1}^\infty\frac{1}{(3n+1)^2} \right)=
\textstyle \frac{3\sqrt{3{4} \left( 1 - \frac{1}{2^2} + \frac{1}{4^2}-\frac{1}{5^2}+\frac{1}{7^2}-\frac{1}{8^2}+\frac{1}{10^2} \pm \cdots \right). , 1912 , data-sort-value="7", , - , Bernstein's constant , \beta , 0.28016 94990 23869 13303 , \lim_{n\to\infty} 2n E_{2n}(f), where ''E''''n''(f) is the error of the best uniform approximation to a real function ''f''(''x'') on the interval minus;1, 1by real polynomials of no more than degree ''n'', and ''f''(''x'') = , ''x'', , 1913 , data-sort-value="7", , - ,
Tribonacci constant In mathematics, the Fibonacci numbers form a sequence defined recursively by: :F_n = \begin 0 & n = 0 \\ 1 & n = 1 \\ F_ + F_ & n > 1 \end That is, after two starting values, each number is the sum of the two preceding numbers. The Fibonacci seque ...
, , 1.83928 67552 14161 13255 , \frac{1+\sqrt 19+3\sqrt{33+\sqrt 19-3\sqrt{33}{3} = \frac{1+4\cosh\left(\frac{1}{3}\cosh^{-1}\left(2+\frac{3}{8}\right)\right)}{3} Real root of x^{3} - x^{2} - x - 1 = 0 , 1914 to 1963 , data-sort-value="4", \mathbb{A} , - , Brun's constant , B_{2} , 1.90216 05831 04 , \textstyle {\sum\limits_p(\frac1{p}+\frac1{p+2})} = (\frac1{3} \! + \! \frac1{5}) + (\tfrac1{5} \! + \! \tfrac1{7}) + (\tfrac1{11} \! + \! \tfrac1{13}) + \cdots where the sum ranges over all primes ''p'' such that ''p'' + 2 is also a prime , 1919 , data-sort-value="7", , - , Twin primes constant , C_{2} , 0.66016 18158 46869 57392 , \prod_{\textstyle{p\;{\rm prime}\atop p \ge 3 \left(1 - \frac{1}{(p-1)^2}\right) , 1922 , data-sort-value="7", , - , Plastic number , \rho , 1.32471 79572 44746 02596 , \sqrt 1 + \! \sqrt 1 + \! \sqrt 1 + \cdots} = \textstyle \sqrt \frac{1}{2}+\frac{\sqrt{69{18+\sqrt \frac{1}{2}-\frac{\sqrt{69{18 Real root of x^{3} = x + 1 , 1924 , data-sort-value="4", \mathbb{A} , - ,
Bloch's constant In complex analysis, a branch of mathematics, Bloch's theorem describes the behaviour of holomorphic functions defined on the unit disk. It gives a lower bound on the size of a disk in which an inverse to a holomorphic function exists. It is named ...
, B , data-sort-value=0.43320, 0.4332\leq B\leq 0.4719 , The best known bounds are \frac{\sqrt{3{4}+2\times10^{-4}\leq B\leq \sqrt{\frac{\sqrt{3}-1}{2\cdot\frac{\Gamma(\frac{1}{3})\Gamma(\frac{11}{12})}{\Gamma(\frac{1}{4})} , 1925 , data-sort-value="7", , - , Z score for the 97.5 percentile point , z_{.975} , 1.95996 39845 40054 23552 , \sqrt{2}\operatorname{erf}^{-1}(0.95) where is the
inverse error function In mathematics, the error function (also called the Gauss error function), often denoted by , is a complex function of a complex variable defined as: :\operatorname z = \frac\int_0^z e^\,\mathrm dt. This integral is a special function, speci ...
Real number z such that \frac{1}{\sqrt{2\pi\int_{-\infty}^{z} e^{-x^2/2} \, \mathrm{d}x = 0.975 , 1925 , data-sort-value="7", , - , Landau's constant , L , data-sort-value=0.50000, 0.5 < L \le 0.54326 , The best known bounds are 0.5 < L \le \frac{\Gamma(\frac{1}{3})\Gamma(\frac{5}{6})}{\Gamma(\frac{1}{6})} , 1929 , data-sort-value="7", , - , Landau's third constant , A , data-sort-value=0.50000, 0.5 < A \le 0.7853 , , 1929 , data-sort-value="7", , - , Prouhet–Thue–Morse constant , \tau , 0.41245 40336 40107 59778 , \sum_{n=0}^{\infty} \frac{t_n}{2^{n+1 = \frac{1}{4}\left -\prod_{n=0}^{\infty}\left(1-\frac{1}{2^{2^n\right)\right/math> where {t_n} is the ''n''th term of the Thue–Morse sequence , 1929 , data-sort-value="5", \mathbb{T} , - , Golomb–Dickman constant , \lambda , 0.62432 99885 43550 87099 , \int_{0}^{1} e^{\mathrm{Li}(t)} dt = \int_0^{\infty} \frac{\rho(t)}{t+2} dt where Li(''t'') is the logarithmic integral, and ''ρ''(''t'') is the Dickman function , 1930 & 1964 , data-sort-value="7", , - , Constant related to the asymptotic behavior of Lebesgue constants , c , 0.98943 12738 31146 95174 , \lim_{n\to\infty}\!\! \left(\!{L_n{-}\frac{4}{\pi^2}\ln(2n{+}1)}\!\!\right)\!{=} \frac{4}{\pi^2}\!\left({\sum_{k=1}^\infty \!\frac{2\ln k}{4k^2{-}1 {-}\frac{\Gamma'(\tfrac12)}{\Gamma(\tfrac12)}\!\!\right) , 1930 , data-sort-value="7", , - ,
Feller–Tornier constant In mathematics, the Feller–Tornier constant ''C''FT is the density of the set of all positive integers that have an even number of distinct prime factors raised to a power larger than one (ignoring any prime factors which appear only to the first ...
, \mathcal{C}_{\mathrm{FT , 0.66131 70494 69622 33528 , {\frac{1}{2}\prod_{p\text{ prime \left(1-\frac{2}{p^2}\right) + \frac{1}{2 =\frac{3}{\pi^2}\prod_{p\text{ prime \left(1-\frac{1}{p^2-1}\right) + \frac{1}{2} , 1932 , data-sort-value="7", , - , Base 10 Champernowne constant , C_{10} , 0.12345 67891 01112 13141 , Defined by concatenating representations of successive integers: 0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... , 1933 , data-sort-value="5", \mathbb{T} , - , Salem constant , \sigma_{10} , 1.17628 08182 59917 50654 , Largest real root of x^{10}+x^9-x^7-x^6-x^5-x^4-x^3+x+1=0 , 1933 , data-sort-value="4", \mathbb{A} , - ,
Khinchin's constant In number theory, Aleksandr Yakovlevich Khinchin proved that for almost all real numbers ''x'', coefficients ''a'i'' of the continued fraction expansion of ''x'' have a finite geometric mean that is independent of the value of ''x'' and is kno ...
, K_{0} ,   , \prod_{n=1}^\infty \left 1+{1\over n(n+2)\right{\log_2(n)} , 1934 , data-sort-value="7", , - , LĂ©vy's constant (1) , \beta , 1.18656 91104 15625 45282 , \frac {\pi^2}{12\,\ln 2} , 1935 , data-sort-value="7", , - , LĂ©vy's constant (2) , e^{\beta} , 3.27582 29187 21811 15978 , e^{\pi^2/(12\ln2)} , 1936 , data-sort-value="7", , - , Copeland–ErdƑs constant , \mathcal{C}_{CE} , 0.23571 11317 19232 93137 , Defined by concatenating representations of successive prime numbers: 0.2 3 5 7 11 13 17 19 23 29 31 37 ... , 1946 , data-sort-value="6", \mathbb{R} \setminus \mathbb{Q} , - , Mills' constant , A , 1.30637 78838 63080 69046 , Smallest positive real number ''A'' such that \lfloor A^{3^{n \rfloor is prime for all positive integers ''n'' , 1947 , data-sort-value="7", , - ,
Gompertz constant In mathematics, the Gompertz constant or Euler–Gompertz constant, denoted by \delta, appears in integral evaluations and as a value of special functions. It is named after Benjamin Gompertz. It can be defined by the continued fraction : \delta ...
, \delta , 0.59634 73623 23194 07434 , \int_0^\infty \!\! \frac{e^{-x{1+x} \, dn = \!\! \int_0^1 \!\! \frac{dx}{1-\ln x} = {\tfrac 1 {1+\tfrac 1{1+\tfrac 1{1+\tfrac 2{1+\tfrac 2{1+\tfrac 3{1+3{/\cdots , data-sort-value="1948", Before 1948 , data-sort-value="7", , - ,
de Bruijn–Newman constant The de Bruijn–Newman constant, denoted by Λ and named after Nicolaas Govert de Bruijn and Charles M. Newman, is a mathematical constant defined via the zero of a function, zeros of a certain function (mathematics), function ''H''(''λ'',  ...
, \Lambda , data-sort-value="0", 0\le\Lambda\le0.2 , The number Λ where for where H(\lambda,z)=\int^{\infty}_0e^{\lambda u^2}\Phi(u)\cos(zu)du has real zeros if and only if λ ≄ Λ. where \Phi(u)=\sum_{n=1}^{\infty}(2\pi^2n^4e^{9u}-3\pi n^2e^{5u})e^{-\pi n^2e^{4u. , 1950 , data-sort-value="7", , - , Van der Pauw constant , \frac{\pi}{\ln 2} , 4.53236 01418 27193 80962 , , data-sort-value="1958", Before 1958 , data-sort-value="6", \mathbb{R} \setminus \mathbb{Q} , - , Magic angle , \theta_{\mathrm{m , 0.95531 66181 245092 78163 , \arctan \sqrt{2} = \arccos \tfrac{1}{\sqrt 3} \approx \textstyle {54.7356} ^{ \circ } , data-sort-value="1959", Before 1959 , data-sort-value="5", \mathbb{T} , - , Artin's constant , C_{\mathrm{Artin , 0.37395 58136 19202 28805 , \prod_{p\text{ prime \left(1-\frac{1}{p(p-1)}\right) , data-sort-value="1961", Before 1961 , data-sort-value="7", , - ,
Porter's constant In mathematics, Porter's constant ''C'' arises in the study of the efficiency of the Euclidean algorithm.. It is named after J. W. Porter of University College, Cardiff. Euclid's algorithm finds the greatest common divisor of two positive integer ...
, C , 1.46707 80794 33975 47289 , \frac{6\ln 2}{\pi ^2} \left(3 \ln 2 + 4 \,\gamma -\frac{24}{\pi ^2} \,\zeta '(2)-2 \right)-\frac{1}{2} where ''γ'' is the Euler–Mascheroni constant and is the derivative of the
Riemann zeta function The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > ...
evaluated at ''s'' = 2 , 1961 , data-sort-value="7", , - , Lochs constant , L , 0.97027 01143 92033 92574 , \frac {6 \ln 2 \ln 10}{ \pi^2} , 1964 , data-sort-value="7", , - , DeVicci's tesseract constant , , 1.00743 47568 84279 37609 , The largest cube that can pass through in an 4D hypercube. Positive root of 4x^8{-}28x^6{-}7x^4{+}16x^2{+}16=0 , 1966 , data-sort-value="4", \mathbb{A} , - ,
Lieb's square ice constant Lieb's square ice constant is a mathematical constant used in the field of combinatorics to quantify the number of Eulerian orientations of grid graphs. It was introduced by Elliott H. Lieb in 1967. Definition An ''n'' × ''n'' grid ...
, , 1.53960 07178 39002 03869 , \left(\frac{4}{3}\right)^\frac{3}{2}=\frac{8}{3\sqrt3} , 1967 , data-sort-value="4", \mathbb{A} , - ,
Niven's constant In number theory, Niven's constant, named after Ivan Niven, is the largest exponent appearing in the prime factorization of any natural number ''n'' "on average". More precisely, if we define ''H''(1) = 1 and ''H''(''n'') = the largest exponent a ...
, C , 1.70521 11401 05367 76428 , 1+\sum_{n = 2}^\infty \left(1-\frac{1}{\zeta(n)} \right) , 1969 , data-sort-value="7", , - ,
Stephens' constant Stephens' constant expresses the density of certain subsets of the prime numbers. Let a and b be two multiplicatively independent integers, that is, a^m b^n \neq 1 except when both m and n equal zero. Consider the set T(a,b) of prime numbers p such ...
, , 0.57595 99688 92945 43964 , \prod_{p\text{ prime \left(1 - \frac{p}{p^3-1}\right) , 1969 , data-sort-value="7", , - , Regular paperfolding sequence , P , 0.85073 61882 01867 26036 , \sum_{n=0}^{\infty} \frac {8^{2^n{2^{2^{n+2-1} = \sum_{n=0}^{\infty} \cfrac {\tfrac {1}{2^{2^n} {1-\tfrac{1}{2^{2^{n+2 , 1970 , data-sort-value="5", \mathbb{T} , - , Reciprocal Fibonacci constant , \psi , 3.35988 56662 43177 55317 , \sum_{n=1}^{\infty} \frac{1}{F_n} = \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \frac{1}{13} + \cdots where ''Fn'' is the ''n''th Fibonacci number , 1974 , data-sort-value="6", \mathbb{R} \setminus \mathbb{Q} , - , Chvátal–Sankoff constant for the binary alphabet , \gamma_2 , data-sort-value=0.78807 10000, 0.788071 \le \gamma_2 \le 0.826280 , \lim_{n\to\infty}\frac{\operatorname{E}
lambda_{n,2} Lambda (}, ''lĂĄm(b)da'') is the 11th letter of the Greek alphabet, representing the voiced alveolar lateral approximant . In the system of Greek numerals, lambda has a value of 30. Lambda is derived from the Phoenician Lamed . Lambda gave ri ...
{n} where is the expected longest common subsequence of two random length-''n'' binary strings , 1975 , data-sort-value="7", , - , Feigenbaum constant ÎŽ , \delta , 4.66920 16091 02990 67185 , \lim_{n \to \infty}\frac {x_{n+1}-x_n}{x_{n+2}-x_{n+1 where the sequence ''xn'' is given by x_{n+1} = ax_n(1-x_n) , 1975 , data-sort-value="7", , - , Chaitin's constants , \Omega , data-sort-value=0.00787 49969 97812 3844, In general they are uncomputable numbers.
But one such number is 0.00787 49969 97812 3844.
, \sum_{p \in P} 2^{-, p *: Halted program *}: Size in bits of program *: Domain of all programs that stop. , 1975 , data-sort-value="5", \mathbb{T} , - , Robbins constant , \Delta(3) , 0.66170 71822 67176 23515 , \frac{4 \! + \! 17\sqrt2 \! -6 \sqrt3 \! -7\pi}{105} \! + \! \frac{\ln(1 \! + \! \sqrt2)}{5} \! + \! \frac{2\ln(2 \! + \! \sqrt3)}{5} , 1977 , data-sort-value="5", \mathbb{T} , - , Weierstrass constant , , 0.47494 93799 87920 65033 , \frac{2^{5/4} \sqrt{\pi} \, e^{\pi/8{\Gamma(\frac{1}{4})^{2 , data-sort-value="1978", Before 1978 , data-sort-value="5", \mathbb{T} , - , FransĂ©n–Robinson constant , F , 2.80777 02420 28519 36522 , \int_{0}^\infty \frac{dx}{\Gamma(x)} = e + \int_0^\infty \frac{e^{-x{\pi^2 + \ln^2 x}\, dx , 1978 , data-sort-value="7", , - , Feigenbaum constant α , \alpha , 2.50290 78750 95892 82228 , Ratio between the width of a tine and the width of one of its two subtines in a
bifurcation diagram In mathematics, particularly in dynamical systems, a bifurcation diagram shows the values visited or approached asymptotically (fixed points, periodic orbits, or chaotic attractors) of a system as a function of a bifurcation parameter in the syst ...
, 1979 , data-sort-value="7" , , - , Second du Bois-Reymond constant , C_2 , 0.19452 80494 65325 11361 , \frac{e^2-7}{2} = \int_0^\infty \left, {\frac{d}{dt}\left(\frac{\sin t}{t}\right)^2}\\,dt-1 , 1983 , data-sort-value="5" , \mathbb{T} , - ,
ErdƑs–Tenenbaum–Ford constant The ErdƑs–Tenenbaum–Ford constant is a mathematical constant that appears in number theory. Named after mathematicians Paul ErdƑs, GĂ©rald Tenenbaum, and Kevin Ford, it is defined as :\delta := 1 - \frac = 0.0860713320\dots where \log is the ...
, \delta , 0.86071 33205 59342 06887 , 1-\frac{1+\log\log2}{\log2} , 1984 , data-sort-value="7" , , - , Conway's constant , \lambda , 1.30357 72690 34296 39125 , Real root of the polynomial: \begin{smallmatrix} x^{71}-x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\\ -x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}\\ +x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}\\ -12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}\\ -10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}-7x^{21}+9x^{20}\\ +3x^{19}\!-4x^{18}\!-10x^{17}\!-7x^{16}\!+12x^{15}\!+7x^{14}\!+2x^{13}\!-12x^{12}\!-4x^{11}\!-2x^{10}\\ +5x^{9}+x^{7}-7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6\ =\ 0 \quad\quad\quad \end{smallmatrix} , 1987 , data-sort-value="4" , \mathbb{A} , - , Hafner–Sarnak–McCurley constant , \sigma , 0.35323 63718 54995 98454 , \prod_{p\text{ prime{\left(1- \left(1-\prod_{n\ge1}\left(1-\frac{1}{p^n}\right)\right)^2 \right)} \! , 1991 , data-sort-value="7" , , - ,
Backhouse's constant Backhouse's constant is a mathematical constant named after Nigel Backhouse. Its value is approximately 1.456 074 948. It is defined by using the power series such that the coefficients of successive terms are the prime numbers, : P(x)=1+\sum_ ...
, B , 1.45607 49485 82689 67139 , \lim_{k \to \infty}\left , \frac{q_{k+1{q_k} \right \vert \quad \scriptstyle \text {where:} \displaystyle \;\; Q(x)=\frac{1}{P(x)}= \! \sum_{k=1}^\infty q_k x^k P(x) = 1+\sum_{k=1}^\infty {p_k x^k} = 1+2x+3x^2+5x^3+\cdotswhere ''pk'' is the ''k''th prime number , 1995 , data-sort-value="7" , , - , Viswanath constant , , 1.13198 82487 943 , \lim_{n \to \infty}, f_n, ^\frac{1}{n}      where ''f''''n'' = ''f''''n''−1 ± ''f''''n''−2, where the signs + or − are chosen at random with equal probability 1/2 , 1997 , data-sort-value="7" , , - ,
Komornik–Loreti constant In the mathematical theory of Non-integer representation, non-standard positional numeral systems, the Komornik–Loreti constant is a mathematical constant that represents the smallest base ''q'' for which the number 1 has a unique representation, ...
, q , 1.78723 16501 82965 93301 , Real number q such that 1 = \sum_{n=1}^\infty \frac{t_k}{q^k}, or \prod_{n=0}^\infty\left (1-\frac{1}{q^{2^n\right )+\frac{q-2}{q-1}=0 where ''tk'' is the ''k''th term of the Thue–Morse sequence , 1998 , data-sort-value="5" , \mathbb{T} , - ,
Embree–Trefethen constant In mathematics, the random Fibonacci sequence is a stochastic analogue of the Fibonacci sequence defined by the recurrence relation f_n=f_\pm f_, where the signs + or − are chosen at random with equal probability \tfrac12, independently for d ...
, \beta^{\star} , 0.70258 , , 1999 , data-sort-value="7" , , - ,
Heath-Brown–Moroz constant The Heath-Brown–Moroz constant ''C'', named for Roger Heath-Brown and Boris Moroz, is defined as :C=\prod_p\left(1-\frac\right)^7\left(1+\frac\right) = 0.001317641... where ''p'' runs over the primes.Finch, S. R (2003). Mathematical Constants ...
, C , 0.00131 76411 54853 17810 , \prod_{p\text{ prime \left(1-\frac{1}{p}\right)^7\left(1+\frac{7p+1}{p^2}\right) , 1999 , data-sort-value="7" , , - , MRB constant , S , 0.18785 96424 62067 12024 MRB constant , \sum_{n=1}^{\infty} (-1)^n (n^{1/n}-1) = - \sqrt 1} + \sqrt 2} - \sqrt 3} + \cdots , 1999 , data-sort-value="7" , , - , Prime constant , \rho , 0.41468 25098 51111 66024 , \sum_{p\text{ prime \frac{1}{2^p}= \frac{1}{4} + \frac{1}{8} + \frac{1}{32} + \cdots , 1999 , data-sort-value="6" , \mathbb{R} \setminus \mathbb{Q} , - , Somos' quadratic recurrence constant , \sigma , 1.66168 79496 33594 12129 , \prod_{n=1}^\infty n^} = 1^{1/2} \; 2^{1/4} \; 3^{1/8} \cdots , 1999 , data-sort-value="7" , , - ,
Foias constant In mathematical analysis, the Foias constant is a real number named after Ciprian Foias. It is defined in the following way: for every real number ''x''1 > 0, there is a sequence defined by the recurrence relation In mathematics, a re ...
, \alpha , 1.18745 23511 26501 05459 , x_{n+1} = \left( 1 + \frac{1}{x_n} \right)^n\text{ for }n=1,2,3,\ldots Foias constant is the unique real number such that if ''x''1 = ''α'' then the sequence diverges to infinity , 2000 , data-sort-value="7" , , - ,
Logarithmic capacity In mathematics, the conformal radius is a way to measure the size of a simply connected planar domain ''D'' viewed from a point ''z'' in it. As opposed to notions using Euclidean distance (say, the radius of the largest inscribed disk with center '' ...
of the unit disk , , 0.59017 02995 08048 11302 , \frac{\Gamma(\tfrac14)^2}{4 \pi^{3/2 , data-sort-value="2003" , Before 2003 , data-sort-value="5" , \mathbb{T} , - , Taniguchi constant , , 0.67823 44919 17391 97803 , \prod_{p\text{ prime \left(1 - \frac{3}{p^3}+\frac{2}{p^4}+\frac{1}{p^5}-\frac{1}{p^6}\right) , data-sort-value="2005" , Before 2005 , data-sort-value="7" ,


Mathematical constants sorted by their representations as continued fractions

The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one. Decimal representations are
rounded Round or rounds may refer to: Mathematics and science * The contour of a closed curve or surface with no sharp corners, such as an ellipse, circle, rounded rectangle, cant, or sphere * Rounding, the shortening of a number to reduce the num ...
or padded to 10 places if the values are known. {, class="wikitable sortable" , - !Name ! Symbol ! Set ! Decimal expansion ! Continued fraction ! Notes , - , Zero , 0 , , \mathbb{Z} , , 0.00000 00000 , , ; , , , - , Golomb–Dickman constant , \lambda , , , , 0.62432 99885 , ,
; 1, 1, 1, 1, 1, 22, 1, 2, 3, 1, 1, 11, 1, 1, 2, 22, 2, 6, 1, 1, 
 The semicolon or semi-colon is a symbol commonly used as orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thought. When a ...
, , E. Weisstein noted that the continued fraction has an unusually large number of 1s. , - ,
Cahen's constant In mathematics, Cahen's constant is defined as the value of an infinite series of unit fractions with alternating signs: :C = \sum_^\infty \frac=\frac11 - \frac12 + \frac16 - \frac1 + \frac1 - \cdots\approx 0.64341054629. Here (s_i)_ denotes Sylves ...
, C_2 , , \mathbb{T} , , 0.64341 05463 , , ; 1, 1, 1, 22, 32, 132, 1292, 252982, 4209841472, 2694251407415154862, 
 , , All terms are squares and truncated at 10 terms due to large size. Davison and Shallit used the continued fraction expansion to prove that the constant is transcendental. , - , Euler–Mascheroni constant , \gamma , , , , 0.57721 56649 , , ; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 
 , , Using the continued fraction expansion, it was shown that if is rational, its denominator must exceed 10244663. , - , First continued fraction constant , C_1 , , \mathbb{R} \setminus \mathbb{Q} , , 0.69777 46579 , , ; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
, , Equal to the ratio I_{1}(2)/I_{0}(2) of modified Bessel functions of the first kind evaluated at 2. , - , Catalan's constant , G , , , , 0.91596 55942 , , ; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, 
 , , Computed up to terms by E. Weisstein. , - ,
One half One half ( : halves) is the irreducible fraction resulting from dividing one by two or the fraction resulting from dividing any number by its double. Multiplication by one half is equivalent to division by two, or "halving"; conversely, d ...
, 1/2 , , \mathbb{Q} , , 0.50000 00000 , , ; 2, , , - , Prouhet–Thue–Morse constant , \tau , , \mathbb{T} , , 0.41245 40336 , ,
; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1, 
 The semicolon or semi-colon is a symbol commonly used as orthography, orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thou ...
, , Infinitely many partial quotients are 4 or 5, and infinitely many partial quotients are greater than or equal to 50. , - , Copeland–ErdƑs constant , \mathcal{C}_{CE} , , \mathbb{R} \setminus \mathbb{Q} , , 0.23571 11317 , , ; 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, 
 , , Computed up to terms by E. Weisstein. He also noted that while the Champernowne constant continued fraction contains sporadic large terms, the continued fraction of the Copeland-ErdƑs Constant do not exhibit this property. , - , Base 10 Champernowne constant , C_{10} , , \mathbb{T} , , 0.12345 67891 , ,
; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, , 6, 1, 
 The semicolon or semi-colon is a symbol commonly used as orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thought. When ...
, , Champernowne constants in any base exhibit sporadic large numbers; the 40th term in C_{10} has 2504 digits. , - ,
One 1 (one, unit, unity) is a number representing a single or the only entity. 1 is also a numerical digit and represents a single unit of counting or measurement. For example, a line segment of ''unit length'' is a line segment of length 1. I ...
, 1 , , \mathbb{N} , , 1.00000 00000 , , ; , , , - , Phi, Golden ratio , \varphi , , \mathbb{A} , , 1.61803 39887 , ,
; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
 The semicolon or semi-colon is a symbol commonly used as orthography, orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thou ...
, , The convergents are ratios of successive Fibonacci numbers. , - , Brun's constant , B_2 , , , , 1.90216 05831 , ,
; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, 
 The semicolon or semi-colon is a symbol commonly used as orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thought. When ...
, , The ''n''th roots of the denominators of the ''n''th convergents are close to
Khinchin's constant In number theory, Aleksandr Yakovlevich Khinchin proved that for almost all real numbers ''x'', coefficients ''a'i'' of the continued fraction expansion of ''x'' have a finite geometric mean that is independent of the value of ''x'' and is kno ...
, suggesting that B_2 is irrational. If true, this will prove the twin prime conjecture. , - ,
Square root of 2 The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as \sqrt or 2^, and is an algebraic number. Technically, it should be called the princip ...
, \sqrt 2 , , \mathbb{A} , , 1.41421 35624 , ,
; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
 The semicolon or semi-colon is a symbol commonly used as orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thought. When ...
, , The convergents are ratios of successive Pell numbers. , - , Two , 2 , , \mathbb{N} , , 2.00000 00000 , , ; , , , - , Euler's number , e , , \mathbb{T} , , 2.71828 18285 , ,
; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 
 The semicolon or semi-colon is a symbol commonly used as orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thought. When ...
, , The continued fraction expansion has the pattern ; 1, 2, 1, 1, 4, 1, ..., 1, 2''n'', 1, ... , - ,
Khinchin's constant In number theory, Aleksandr Yakovlevich Khinchin proved that for almost all real numbers ''x'', coefficients ''a'i'' of the continued fraction expansion of ''x'' have a finite geometric mean that is independent of the value of ''x'' and is kno ...
, K_0 , , , , 2.68545 20011 , ,
; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, 
 The semicolon or semi-colon is a symbol commonly used as orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thought. When ...
, , For
almost all In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the math ...
real numbers ''x'', the coefficients of the continued fraction of ''x'' have a finite
geometric mean In mathematics, the geometric mean is a mean or average which indicates a central tendency of a set of numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometric mean is defined as the ...
known as Khinchin's constant. , - , Three , 3 , , \mathbb{N} , , 3.00000 00000 , , ; , , , - , Pi , \pi , , \mathbb{T} , , 3.14159 26536 , , ; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 
 , , The first few convergents (3, 22/7, 333/106, 355/113, ...) are among the best-known and most widely used historical approximations of .


Sequences from constants

{, class="wikitable sortable" , - ! Name ! Symbol ! Formula ! Year ! Set , - , Harmonic number , H_n , \sum^n_{k=1}\frac{1}{k} , data-sort-value="-400" , Antiquity , data-sort-value="3" , \mathbb{Q} , - ,
Gregory coefficients Gregory coefficients , also known as reciprocal logarithmic numbers, Bernoulli numbers of the second kind, or Cauchy numbers of the first kind,Ch. Jordan. ''The Calculus of Finite Differences'' Chelsea Publishing Company, USA, 1947.L. Comtet. ''Adva ...
, G_n , \frac 1 {n!} \int_0^1 x(x-1)(x-2)\cdots(x-n+1)\, dx = \int_0^1 \binom x n \, dx , 1670 , data-sort-value="3" , \mathbb{Q} , - , Bernoulli number , B^\pm_n , \frac{t}{2} \left( \operatorname{coth} \frac{t}{2} \pm 1 \right) = \sum_{m=0}^\infty \frac{B^{\pm{_m t^m}{m!} , 1689 , data-sort-value="3" , \mathbb{Q} , - , Hermite constants , \gamma_{n} , For a lattice L in Euclidean space R''n'' with unit covolume, i.e. vol(R''n''/''L'') = 1, let λ(''L'') denote the least length of a nonzero element of L. Then √γn is the maximum of λ(L) over all such lattices L. , data-sort-value="1822" , 1822 to 1901 , data-sort-value="7" , \mathbb{R} , - , Hafner–Sarnak–McCurley constant , D(n) , D(n)= \prod^\infty_{k=1}\left\{1-\left -\prod^n_{j=1}(1-p_k^{-j}) \right2 \right\} , data-sort-value="1883" , 1883 , data-sort-value="7" , \mathbb{R} , - ,
Stieltjes constants In mathematics, the Stieltjes constants are the numbers \gamma_k that occur in the Laurent series expansion of the Riemann zeta function: :\zeta(s)=\frac+\sum_^\infty \frac \gamma_n (s-1)^n. The constant \gamma_0 = \gamma = 0.577\dots is known a ...
, \gamma_n , {\frac {(-1)^{n}n!}{2\pi \int _{0}^e^\zeta \left(e^+1\right)dx. , data-sort-value="1894", before 1894 , data-sort-value="7" , \mathbb{R} , - ,
Favard constant In mathematics, the Favard constant, also called the Akhiezer–Krein–Favard constant, of order ''r'' is defined as :K_r = \frac \sum\limits_^ \left \frac \right. This constant is named after the French mathematician Jean Favard, and a ...
s , K_{r} , \frac{4}{\pi}\sum_{n = 0}^\infty \left(\frac{(-1)^n}{2n+1} \right)^{\!r+1}=\frac{4}{\pi}\left( \frac{(-1)^{0(r+1){1^r}+\frac{(-1)^{1(r+1){3^r}+\frac{(-1)^{2(r+1){5^r}+\frac{(-1)^{3(r+1){7^r}+\cdots\right) , data-sort-value="1902" , 1902 to 1965 , data-sort-value="7" , \mathbb{R} , - , Generalized Brun's Constant , B_{n} , {\sum\limits_p(\frac1{p}+\frac1{p+n})}where the sum ranges over all primes ''p'' such that ''p'' + n is also a prime , data-sort-value="1919" , 1919 , data-sort-value="7" , \mathbb{R} , - , Champernowne constants , C_{b} , Defined by concatenating representations of successive integers in base b. C_b=\sum^\infty_{n=1}\frac{n}{b^{\left(\sum^n_{k=1}\lceil\log_b(k+1)\rceil\right) , 1933 , data-sort-value="5" , \mathbb{T} , - , Lagrange number , L(n) , \sqrt{9-\frac{4} where m_n is the nth smallest number such that m^2+x^2+y^2=3mxy\, has positive (x,y). , data-sort-value="1957", before 1957 , data-sort-value="4" , \mathbb{A} , - , Feller's coin-tossing constants , \alpha_k,\beta_k , \alpha_k is the smallest positive real root of x^{k+1}=2^{k+1}(x-1),\beta_k=\frac{2-\alpha_k}{k+1-k\alpha_k} , 1968 , data-sort-value="7" , \mathbb{A} , - ,
Stoneham number In mathematics, the Stoneham numbers are a certain class of real numbers, named after mathematician Richard G. Stoneham (1920–1996). For coprime numbers ''b'', ''c'' > 1, the Stoneham number α''b'',''c'' is defined as :\alpha_ = \sum_ \ ...
, \alpha_{b,c} , \sum_{n=c^k>1} \frac{1}{b^nn} = \sum_{k=1}^\infty \frac{1}{b^{c^k}c^k} where b,c are coprime integers. , 1973 , data-sort-value="7" , \mathbb{R} \setminus \mathbb{Q} , - ,
Beraha constants The Beraha constants are a series of mathematical constant A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to faci ...
, B(n) , 2+2\cos\left(\frac{2\pi}{n}\right) , 1974 , data-sort-value="7" , \mathbb{A} , - , Chvátal–Sankoff constants , \gamma_k , \lim_{n\to\infty}\frac{E lambda_{n,k}{n} , 1975 , data-sort-value="7" , \mathbb{R} , - ,
Hyperharmonic number In mathematics, the ''n''-th hyperharmonic number of order ''r'', denoted by H_n^, is recursively defined by the relations: : H_n^ = \frac , and : H_n^ = \sum_^n H_k^\quad(r>0). In particular, H_n=H_n^ is the ''n''-th harmonic number. The hy ...
, H^{(r))}_n , \sum^n_{k=1}H^{(r-1)}_k and H^{(0)}_n=\frac{1}{n} , 1995 , data-sort-value="3" , \mathbb{Q} , - , Gregory number , G_x , \sum _{n=0}^{\infty }(-1)^{n}{\frac {1}{(2n+1)x^{2n+1} for rational x greater than one. , data-sort-value="1996", before 1996 , data-sort-value="7" , \mathbb{R} , - , Metallic mean , , \frac{n+\sqrt{n^2+4{2} , data-sort-value="1998" , before 1998 , data-sort-value="4" , \mathbb{A}


See also

* Invariant (mathematics) * List of mathematical symbols *
List of mathematical symbols by subject The following list of mathematical symbols by subject features a selection of the most common symbols used in modern mathematical notation within formulas, grouped by mathematical topic. As it is impossible to know if a complete list existing toda ...
* List of numbers * List of physical constants *
Particular values of the Riemann zeta function In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than o ...
*
Physical constant A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that is generally believed to be both universal in nature and have constant value in time. It is contrasted with a mathematical constant, ...


Notes


References


Site MathWorld Wolfram.com


Site OEIS.org


Site OEIS Wiki


Bibliography

* English translation by Catriona and David Lischka. * * *


Further reading

*


External links


Inverse Symbolic Calculator, Plouffe's Inverter



On-Line Encyclopedia of Integer Sequences (OEIS)

Steven Finch's page of mathematical constants


{{DEFAULTSORT:Mathematical Constants and Functions * mathematical constants
Constants Constant or The Constant may refer to: Mathematics * Constant (mathematics), a non-varying value * Mathematical constant, a special number that arises naturally in mathematics, such as or Other concepts * Control variable or scientific const ...
Articles containing video clips
constants Constant or The Constant may refer to: Mathematics * Constant (mathematics), a non-varying value * Mathematical constant, a special number that arises naturally in mathematics, such as or Other concepts * Control variable or scientific const ...
Continued fractions