List Of Numbers
This is a list of notable numbers and articles about notable numbers. The list does not contain all numbers in existence as most of the number sets are infinite. Numbers may be included in the list based on their mathematical, historical or cultural notability, but all numbers have qualities that could arguably make them notable. Even the smallest "uninteresting" number is paradoxically interesting for that very property. This is known as the interesting number paradox. The definition of what is classed as a number is rather diffuse and based on historical distinctions. For example, the pair of numbers (3,4) is commonly regarded as a number when it is in the form of a complex number (3+4i), but not when it is in the form of a vector (3,4). This list will also be categorized with the standard convention of types of numbers. This list focuses on numbers as mathematical objects and is ''not'' a list of numerals, which are linguistic devices: nouns, adjectives, or adverbs that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number
A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called ''numerals''; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any Integer, non-negative integer using a combination of ten fundamental numeric symbols, called numerical digit, digits. In addition to their use in counting and measuring, numerals are often used for labels (as with telephone numbers), for ordering (as with serial numbers), and for codes (as with ISBNs). In common usage, a ''numeral'' is not clearly dist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Peano Axioms
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The axiomatization of arithmetic provided by Peano axioms is commonly called Peano arithmetic. The importance of formalizing arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
15 (number)
15 (fifteen) is the natural number following 14 (number), 14 and preceding 16 (number), 16. Mathematics 15 is: * The eighth composite number and the sixth semiprime and the first odd and fourth discrete semiprime; its proper divisors are , , and , so the first of the form (3.q), where q is a higher prime. * a deficient number, a lucky number, a bell number (i.e., the number of partitions for a set of size 4), a pentatope number, and a repdigit in Binary numeral system, binary (1111) and quaternary numeral system, quaternary (33). In hexadecimal, and higher bases, it is represented as F. * with an aliquot sum of 9 (number), 9; within an aliquot sequence of three composite numbers (15,9 (number), 9,4 (number), 4,3 (number), 3,1 (number), 1,0) to the Prime in the 3 (number), 3-aliquot tree. * the second member of the first cluster of two discrete semiprimes (14 (number), 14, 15); the next such cluster is (21 (number), 21, 22 (number), 22). * the first number to be Polygonal numbe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
14 (number)
14 (fourteen) is the natural number following 13 (number), 13 and preceding 15 (number), 15. Mathematics Fourteen is the seventh composite number. Properties 14 is the third distinct semiprime, being the third of the form 2 \times q (where q is a higher prime). More specifically, it is the first member of the second cluster of two discrete semiprimes (14, 15 (number), 15); the next such cluster is (21 (number), 21, 22 (number), 22), members whose sum is the fourteenth prime number, 43 (number), 43. 14 has an aliquot sum of 10 (number), 10, within an aliquot sequence of two composite numbers (14, 10 (number), 10, 8 (number), 8, 7 (number), 7, 1 (number), 1, 0) in the prime 7-aliquot tree. 14 is the third Pell number, companion Pell number and the fourth Catalan number. It is the lowest even n for which the Euler totient \varphi(x) = n has no solution, making it the first even nontotient. According to the Shapiro inequality, 14 is the least number n such that there exist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
13 (number)
13 (thirteen) is the natural number following 12 (number), 12 and preceding 14 (number), 14. Folklore surrounding the number 13 appears in many cultures around the world: one theory is that this is due to the cultures employing lunar-solar calendars (there are approximately 12.41 lunations per solar year, and hence 12 "true months" plus a smaller, and often portentous, thirteenth month). This can be witnessed, for example, in the "Twelve Days of Christmas" of Western European tradition. In mathematics The number 13 is a prime number, happy number and a lucky number. It is a twin prime with 11 (number), 11, as well as a cousin prime with 17 (number), 17. It is the second of only 3 Wilson prime, Wilson primes: 5, 13, and 563 (number), 563. A 13-sided regular polygon is called a tridecagon. List of basic calculations In languages Grammar * In all Germanic languages, 13 is the first Compound (linguistics), compound number; the numbers 11 and 12 have their own names. * The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
12 (number)
12 (twelve) is the natural number following 11 (number), 11 and preceding 13 (number), 13. Twelve is the 3rd superior highly composite number, the 3rd colossally abundant number, the 5th highly composite number, and is divisible by the numbers from 1 (number), 1 to 4 (number), 4, and 6 (number), 6, a large number of divisors comparatively. It is central to many systems of timekeeping, including the Gregorian calendar, Western calendar and time, units of time of day, and frequently appears in the world's major religions. Name Twelve is the largest number with a monosyllable, single-syllable name in English language, English. Early Germanic languages, Germanic numbers have been theorized to have been non-decimal: evidence includes the unusual phrasing of 11 (number), eleven and twelve, the long hundred, former use of "hundred" to refer to groups of 120 (number), 120, and the presence of glosses such as "tentywise" or "ten-count" in medieval texts showing that writers could not pres ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
11 (number)
11 (eleven) is the natural number following 10 and preceding 12 (number), 12. It is the smallest number whose name has three syllables. Name "Eleven" derives from the Old English ', which is first attested in Bede's late 9th-century ''Ecclesiastical History of the English People''. It has cognates in every Germanic language (for example, German ), whose Proto-Germanic language, Proto-Germanic ancestor has been linguistic reconstruction, reconstructed as , from the prefix (adjectival "1 (number), one") and suffix , of uncertain meaning. It is sometimes compared with the Lithuanian language, Lithuanian ', though ' is used as the suffix for all numbers from 11 to 19. The Old English form has closer cognates in Old Frisian, Old Saxon, Saxon, and Old Norse, Norse, whose ancestor has been reconstructed as . This was formerly thought to be derived from Proto-Germanic ("10 (number), ten"); it is now sometimes connected with or ("left; remaining"), with the implicit meaning that "one is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Numbers
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Numeral (linguistics)
In linguistics, a numeral in the broadest sense is a word or phrase that describes a numerical quantity. Some theories of grammar use the word "numeral" to refer to cardinal numbers that act as a determiner that specify the quantity of a noun, for example the "two" in "two hats". Some theories of grammar do not include determiners as a part of speech and consider "two" in this example to be an adjective. Some theories consider "numeral" to be a synonym for "number" and assign all numbers (including ordinal numbers like "first") to a part of speech called "numerals". Numerals in the broad sense can also be analyzed as a noun ("three is a small number"), as a pronoun ("the two went to town"), or for a small number of words as an adverb ("I rode the slide twice"). Numerals can express relationships like quantity (cardinal numbers), sequence (ordinal numbers), frequency (once, twice), and part (fraction). Identifying numerals Numerals may be attributive, as in ''two dogs'', or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinal Numbers
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter \aleph (aleph) marked with subscript indicating their rank among the infinite cardinals. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for two infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is greater ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |