HOME

TheInfoList



OR:

This is a list of
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
topics. See also glossary of differential and metric geometry and list of Lie group topics.


Differential geometry of curves and surfaces


Differential geometry of curves Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the ...

* List of curves topics *
Frenet–Serret formulas In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space \R^3, or the geometric properties of the curve itself irrespective o ...
* Curves in differential geometry *
Line element In geometry, the line element or length element can be informally thought of as a line segment associated with an infinitesimal displacement vector in a metric space. The length of the line element, which may be thought of as a differential arc ...
*
Curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
*
Radius of curvature In differential geometry, the radius of curvature, , is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius ...
*
Osculating circle An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to unders ...
*
Curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
* Fenchel's theorem


Differential geometry of surfaces In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth manifold, smooth Surface (topology), surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensiv ...

* Theorema egregium * Gauss–Bonnet theorem *
First fundamental form In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of . It permits the calculation of curvature and ...
* Second fundamental form * Gauss–Codazzi–Mainardi equations * Dupin indicatrix * Asymptotic curve *
Curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
** Principal curvatures ** Mean curvature **
Gauss curvature In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For ...
** Elliptic point *Types of
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
s ** Minimal surface **
Ruled surface In geometry, a Differential geometry of surfaces, surface in 3-dimensional Euclidean space is ruled (also called a scroll) if through every Point (geometry), point of , there is a straight line that lies on . Examples include the plane (mathemat ...
** Conical surface ** Developable surface ** Nadirashvili surface


Foundations


Calculus on manifolds

''See also
multivariable calculus Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables ('' mult ...
, list of multivariable calculus topics'' *
Manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
**
Differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
**
Smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
** Banach manifold ** Fréchet manifold *
Tensor analysis In mathematics and physics, a tensor field is a function (mathematics), function assigning a tensor to each point of a region (mathematics), region of a mathematical space (typically a Euclidean space or manifold) or of the physical space. Tens ...
**
Tangent vector In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R''n''. More generally, tangent vectors are ...
**
Tangent space In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be ...
**
Tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
**
Cotangent space In differential geometry, the cotangent space is a vector space associated with a point x on a smooth (or differentiable) manifold \mathcal M; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, T ...
**
Cotangent bundle In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This m ...
**
Tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
** Tensor bundle **
Vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
**
Tensor field In mathematics and physics, a tensor field is a function assigning a tensor to each point of a region of a mathematical space (typically a Euclidean space or manifold) or of the physical space. Tensor fields are used in differential geometry, ...
**
Differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications ...
**
Exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The re ...
** Lie derivative **
pullback (differential geometry) Let \phi:M\to N be a smooth map between smooth manifolds M and N. Then there is an associated linear map from the space of 1-forms on N (the linear space of sections of the cotangent bundle) to the space of 1-forms on M. This linear map is k ...
**
pushforward (differential) In differential geometry, pushforward is a linear approximation of smooth maps (formulating manifold) on tangent spaces. Suppose that \varphi\colon M\to N is a smooth map between smooth manifolds; then the differential of \varphi at a point x, ...
* jet (mathematics) ** Contact (mathematics) ** jet bundle *
Frobenius theorem (differential topology) In mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first-order homogeneous linear partial differential equations. In modern differential ...
*
Integral curve In mathematics, an integral curve is a parametric curve that represents a specific solution to an ordinary differential equation or system of equations. Name Integral curves are known by various other names, depending on the nature and interpre ...


Differential topology In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...

*
Diffeomorphism In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definit ...
** Large diffeomorphism *
Orientability In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". A space is o ...
* characteristic class **
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches ...
** Pontrjagin class ** spin structure * differentiable map ** submersion **
immersion Immersion may refer to: The arts * "Immersion", a 2012 story by Aliette de Bodard * ''Immersion'', a French comic book series by Léo Quievreux * ''Immersion'' (album), the third album by Australian group Pendulum * ''Immersion'' (film), a 2021 ...
**
Embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup. When some object X is said to be embedded in another object Y ...
*** Whitney embedding theorem *
Critical value Critical value or threshold value can refer to: * A quantitative threshold in medicine, chemistry and physics * Critical value (statistics), boundary of the acceptance region while testing a statistical hypothesis * Value of a function at a crit ...
**
Sard's theorem In mathematics, Sard's theorem, also known as Sard's lemma or the Morse–Sard theorem, is a result in mathematical analysis that asserts that the set of critical values (that is, the image of the set of critical points) of a smooth function ' ...
**
Saddle point In mathematics, a saddle point or minimax point is a Point (geometry), point on the surface (mathematics), surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a Critical point (mathematics), ...
**
Morse theory In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differenti ...
* Lie derivative *
Hairy ball theorem The hairy ball theorem of algebraic topology (sometimes called the hedgehog theorem in Europe) states that there is no nonvanishing continuous function, continuous tangent vector field on even-dimensional n‑sphere, ''n''-spheres. For the ord ...
* Poincaré–Hopf theorem *
Stokes' theorem Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls, or simply the curl theorem, is a theorem in vector calculus on \R^3. Given a vector field, the theorem relates th ...
*
De Rham cohomology In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapte ...
*
Sphere eversion In differential topology, sphere eversion is a theoretical process of turning a sphere inside out in a three-dimensional space (the word ''wikt:eversion#English, eversion'' means "turning inside out"). It is possible to smoothly and continuou ...
*
Frobenius theorem (differential topology) In mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first-order homogeneous linear partial differential equations. In modern differential ...
**
Distribution (differential geometry) In differential geometry, a discipline within mathematics, a distribution on a differentiable manifold, manifold M is an assignment x \mapsto \Delta_x \subseteq T_x M of vector subspaces satisfying certain properties. In the most common situations ...
**
integral curve In mathematics, an integral curve is a parametric curve that represents a specific solution to an ordinary differential equation or system of equations. Name Integral curves are known by various other names, depending on the nature and interpre ...
**
foliation In mathematics (differential geometry), a foliation is an equivalence relation on an topological manifold, ''n''-manifold, the equivalence classes being connected, injective function, injectively immersed submanifolds, all of the same dimension ...
**
integrability conditions for differential systems In mathematics, certain systems of partial differential equations are usefully formulated, from the point of view of their underlying geometric and algebraic structure, in terms of a system of differential forms. The idea is to take advantage of th ...


Fiber bundles

*
Fiber bundle In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a pr ...
*
Principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
**
Frame bundle In mathematics, a frame bundle is a principal fiber bundle F(E) associated with any vector bundle ''E''. The fiber of F(E) over a point ''x'' is the set of all ordered bases, or ''frames'', for ''E_x''. The general linear group acts naturally on ...
** Hopf bundle * Associated bundle *
Vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
**
Tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
**
Cotangent bundle In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This m ...
**
Line bundle In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the ''tangent bundle'' is a way of organis ...
* Jet bundle


Fundamental structures

*
Sheaf (mathematics) In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the ...
*
Pseudogroup In mathematics, a pseudogroup is a set of homeomorphisms between open sets of a space, satisfying group-like and sheaf-like properties. It is a generalisation of the concept of a transformation group, originating however from the geometric approac ...
*
G-structure In differential geometry, a ''G''-structure on an ''n''-manifold ''M'', for a given structure group ''G'', is a principal ''G''- subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''. The notion of ''G''-structures includes vario ...
* synthetic differential geometry


Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...


Fundamental notions

*
Metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
*
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
**
Pseudo-Riemannian manifold In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
*
Levi-Civita connection In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the ( pseudo-) Riemannian ...


Non-Euclidean geometry

*
Non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
*
Elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
**
Spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres. Long studied for its practical applicati ...
** Sphere-world **
Angle excess Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the edge (geometry), sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, ge ...
*
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
**
hyperbolic space In mathematics, hyperbolic space of dimension ''n'' is the unique simply connected, ''n''-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symme ...
**
hyperboloid model In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of ''n''-dimensional hyperbolic geometry in which points are represented by points on the forward sheet ''S''+ of a two-sheeted hyperboloi ...
**
Poincaré disc model Poincaré is a French surname. Notable people with the surname include: * Henri Poincaré (1854–1912), French physicist, mathematician and philosopher of science * Henriette Poincaré (1858–1943), wife of Prime Minister Raymond Poincaré * ...
** Poincaré half-plane model ** Poincaré metric **
Angle of parallelism In hyperbolic geometry, angle of parallelism \Pi(a) is the angle at the non-right angle vertex of a right hyperbolic triangle having two limiting parallel, asymptotic parallel sides. The angle depends on the segment length ''a'' between the ri ...


Geodesic In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...

* Prime geodesic * Geodesic flow *
Exponential map (Lie theory) In the theory of Lie groups, the exponential map is a map from the Lie algebra \mathfrak g of a Lie group G to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one o ...
* Exponential map (Riemannian geometry) * Injectivity radius * Geodesic deviation equation ** Jacobi field


Symmetric spaces (and related topics)

* Riemannian symmetric space ** Margulis lemma * Space form ** Constant curvature ** taut submanifold *
Uniformization theorem In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generali ...
** Myers theorem ** Gromov's compactness theorem


Riemannian submanifolds

* Gauss–Codazzi equations * Darboux frame *
Hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
*
Induced metric Induce may refer to: * Induced consumption * Induced innovation * Induced character * Induced coma * Induced menopause * Induced metric * Induced path * Induced topology * Induce (musician), American musician * Labor induction, stimulation of chil ...
*
Nash embedding theorem The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedding, embedded into some Euclidean space. Isometry, Isometric means preserving the length of ever ...
* minimal surface ** Helicoid ** Catenoid ** Costa's minimal surface * Hsiang–Lawson's conjecture


Curvature of Riemannian manifolds

* Theorema Egregium * Gauss–Bonnet theorem ** Chern–Gauss–Bonnet theorem ** Chern–Weil homomorphism * Gauss map * Second fundamental form * Curvature form *
Riemann curvature tensor Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to mathematical analysis, analysis, number theory, and differential geometry. In the field of real analysis, he is mos ...
* Geodesic curvature *
Scalar curvature In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
*
Sectional curvature In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a po ...
*
Ricci curvature In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure ...
, Ricci flat * Ricci decomposition ** Schouten tensor ** Weyl curvature * Ricci flow * Einstein manifold * Holonomy


Theorems in Riemannian geometry

* Gauss–Bonnet theorem * Hopf–Rinow theorem * Cartan–Hadamard theorem * Myers theorem * Rauch comparison theorem * Morse index theorem * Synge theorem * Weinstein theorem *
Toponogov theorem In the mathematical field of Riemannian geometry, Toponogov's theorem (named after Victor Andreevich Toponogov) is a triangle comparison theorem. It is one of a family of comparison theorems that quantify the assertion that a pair of geodesics em ...
* Sphere theorem *
Hodge theory In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every coho ...
*
Uniformization theorem In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generali ...
* Yamabe problem


Isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...

* Killing vector field * Myers-Steenrod theorem


Laplace–Beltrami operator In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named aft ...

*
Hodge star operator In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a Dimension (vector space), finite-dimensional orientation (vector space), oriented vector space endowed with a Degenerate bilinear form, nonde ...
* Weitzenböck identity * Laplacian operators in differential geometry


Formulas and other tools

* List of coordinate charts * List of formulas in Riemannian geometry *
Christoffel symbols In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surface (topology), surfaces or other manifolds endowed with a metri ...


Related structures

*
Intrinsic metric In the mathematical study of metric spaces, one can consider the arclength of paths in the space. If two points are at a given distance from each other, it is natural to expect that one should be able to get from the first point to the second a ...
*
Pseudo-Riemannian manifold In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
* Sub-Riemannian manifold * Finsler geometry *
General relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
* G2 manifold *
Information geometry Information geometry is an interdisciplinary field that applies the techniques of differential geometry to study probability theory and statistics. It studies statistical manifolds, which are Riemannian manifolds whose points correspond to proba ...
**
Fisher information metric In information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, ''i.e.'', a smooth manifold whose points are probability distributions. It can be used to calculate the ...


Lie groups


Connections

{{main article, Connection (mathematics) *
covariant derivative In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to: Statistics * Covariance matrix, a matrix of covariances between a number of variables * Covariance or cross-covariance between ...
**
exterior covariant derivative In mathematics, specifically in topology, the interior of a subset of a topological space is the union of all subsets of that are open in . A point that is in the interior of is an interior point of . The interior of is the complement of ...
*
Levi-Civita connection In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the ( pseudo-) Riemannian ...
*
parallel transport In differential geometry, parallel transport (or parallel translation) is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on ...
**
Development (differential geometry) Development or developing may refer to: Arts *Development (music), the process by which thematic material is reshaped * Photographic development *Filmmaking, development phase, including finance and budgeting * Development hell, when a proje ...
* connection form * Cartan connection ** affine connection ** conformal connection ** projective connection ** method of moving frames ** Cartan's equivalence method ** Vierbein, tetrad ** Cartan connection applications ** Einstein–Cartan theory *
connection (vector bundle) In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The ...
* connection (principal bundle) * Ehresmann connection *
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
** curvature form ** holonomy, local holonomy ** Chern–Weil homomorphism ** Curvature vector ** Curvature form ** Curvature tensor ** Cocurvature *
torsion (differential geometry) In differential geometry, the torsion tensor is a tensor that is associated to any affine connection. The torsion tensor is a bilinear map of two input vectors X,Y, that produces an output vector T(X,Y) representing the displacement within a ta ...


Complex manifolds

*
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
*
Complex projective space In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
* Kähler manifold * Dolbeault operator * CR manifold * Stein manifold * Almost complex structure * Hermitian manifold * Newlander–Nirenberg theorem * Generalized complex manifold * Calabi–Yau manifold * Hyperkähler manifold *
K3 surface In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with а trivial canonical bundle and irregularity of a surface, irregularity zero. An (algebraic) K3 surface over any field (mathematics), field ...
* hypercomplex manifold * Quaternion-Kähler manifold


Symplectic geometry Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the ...

* Symplectic topology * Symplectic space *
Symplectic manifold In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sy ...
*
Symplectic structure Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the ...
*
Symplectomorphism In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the ...
*
Contact structure In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution ...
* Contact geometry * Hamiltonian system * Sasakian manifold * Poisson manifold


Conformal geometry In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two di ...

*
Möbius transformation In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex number, complex variable ; here the coefficients , , , are complex numbers satisfying . Geometrically ...
*
Conformal map In mathematics, a conformal map is a function (mathematics), function that locally preserves angles, but not necessarily lengths. More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-prese ...
* conformal connection * tractor bundle * Weyl curvature * Weyl–Schouten theorem * ambient construction * Willmore energy * Willmore flow


Index theory

* Atiyah–Singer index theorem *
de Rham cohomology In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapte ...
*
Dolbeault cohomology In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let ''M'' be a complex manifold. Then the Dolbeault cohom ...
* elliptic complex *
Hodge theory In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every coho ...
* pseudodifferential operator


Homogeneous spaces In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the Group action (mathematics), action of a Group (mathematics), group. Homogeneous spaces occur in th ...

*
Klein geometry In mathematics, a Klein geometry is a type of geometry motivated by Felix Klein in his influential Erlangen program. More specifically, it is a homogeneous space ''X'' together with a transitive action on ''X'' by a Lie group ''G'', which acts as ...
, Erlangen programme *
symmetric space In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geome ...
* space form * Maurer–Cartan form *Examples **
hyperbolic space In mathematics, hyperbolic space of dimension ''n'' is the unique simply connected, ''n''-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symme ...
** Gauss–Bolyai–Lobachevsky space **
Grassmannian In mathematics, the Grassmannian \mathbf_k(V) (named in honour of Hermann Grassmann) is a differentiable manifold that parameterizes the set of all k-dimension (vector space), dimensional linear subspaces of an n-dimensional vector space V over a ...
**
Complex projective space In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
**
Real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properti ...
**
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
** Stiefel manifold **
Upper half-plane In mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is the set of points with instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example ...
**
Sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...


Systolic geometry In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and ...

* Loewner's torus inequality * Pu's inequality * Gromov's inequality for complex projective space * Wirtinger inequality (2-forms) * Gromov's systolic inequality for essential manifolds * Essential manifold *
Filling radius In Riemannian geometry, the filling radius of a Riemannian manifold ''X'' is a metric invariant of ''X''. It was originally introduced in 1983 by Mikhail Gromov (mathematician), Mikhail Gromov, who used it to prove his Gromov's systolic inequality ...
* Filling area conjecture * Bolza surface * First Hurwitz triplet *
Hermite constant In mathematics, the Hermite constant, named after Charles Hermite, determines how long a shortest element of a lattice in Euclidean space can be. The constant ''γn'' for integers ''n'' > 0 is defined as follows. For a lattice ''L'' in Euclidea ...
* Systoles of surfaces * Systolic freedom * Systolic category


Other

*
Envelope (mathematics) In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of ...
* Bäcklund transform
Differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
*
Differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
Differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...