
In
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
and
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, a lattice in the
real coordinate space
In mathematics, the real coordinate space or real coordinate ''n''-space, of dimension , denoted or , is the set of all ordered -tuples of real numbers, that is the set of all sequences of real numbers, also known as '' coordinate vectors''.
...
is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point. Closure under addition and subtraction means that a lattice must be a
subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.
Formally, given a group (mathematics), group under a binary operation  ...
of the additive group of the points in the space, and the requirements of minimum and maximum distance can be summarized by saying that a lattice is a
Delone set
In the mathematical theory of metric spaces, -nets, -packings, -coverings, uniformly discrete sets, relatively dense sets, and Delone sets (named after Boris Delone) are several closely related definitions of well-spaced sets of points, and ...
. More abstractly, a lattice can be described as a
free abelian group
In mathematics, a free abelian group is an abelian group with a Free module, basis. Being an abelian group means that it is a Set (mathematics), set with an addition operation (mathematics), operation that is associative, commutative, and inverti ...
of dimension
which
spans the
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
. For any
basis of
, the subgroup of all
linear combination
In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
s with
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
coefficients of the basis vectors forms a lattice, and every lattice can be formed from a basis in this way. A lattice may be viewed as a
regular tiling
Euclidean Plane (mathematics), plane Tessellation, tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Johannes Kepler, Kepler in his (Latin language, Latin: ''The Har ...
of a space by a
primitive cell
In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessaril ...
.
Lattices have many significant applications in pure mathematics, particularly in connection to
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
s,
number theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
and
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
. They also arise in applied mathematics in connection with
coding theory
Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and computer data storage, data sto ...
, in
percolation theory
In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected ...
to study connectivity arising from small-scale interactions,
cryptography
Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), ...
because of conjectured computational hardness of several
lattice problems, and are used in various ways in the physical sciences. For instance, in
materials science
Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries.
The intellectual origins of materials sci ...
and
solid-state physics
Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state phy ...
, a lattice is a synonym for the framework of a
crystalline structure
In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that repeat ...
, a 3-dimensional array of regularly spaced points coinciding in special cases with the
atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
or
molecule
A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
positions in a
crystal
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
. More generally,
lattice models
Lattice may refer to:
Arts and design
* Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material
* Lattice (music), an organized grid model of pitch ratios
* Lattice (pastry), an ...
are studied in
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, often by the techniques of
computational physics
Computational physics is the study and implementation of numerical analysis to solve problems in physics. Historically, computational physics was the first application of modern computers in science, and is now a subset of computational science ...
.
Symmetry considerations and examples
A lattice is the
symmetry group
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
of discrete
translational symmetry
In physics and mathematics, continuous translational symmetry is the invariance of a system of equations under any translation (without rotation). Discrete translational symmetry is invariant under discrete translation.
Analogously, an operato ...
in ''n'' directions. A pattern with this lattice of translational symmetry cannot have more, but may have less symmetry than the lattice itself. As a group (dropping its geometric structure) a lattice is a
finitely-generated free abelian group
In mathematics, a free abelian group is an abelian group with a Free module, basis. Being an abelian group means that it is a Set (mathematics), set with an addition operation (mathematics), operation that is associative, commutative, and inverti ...
, and thus isomorphic to
.
A lattice in the sense of a 3-
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
al array of regularly spaced points coinciding with e.g. the
atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
or
molecule
A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
positions in a
crystal
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
, or more generally, the orbit of a
group action
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S.
Many sets of transformations form a group under ...
under translational symmetry, is a translation of the translation lattice: a coset, which need not contain the origin, and therefore need not be a lattice in the previous sense.
A simple example of a lattice in
is the subgroup
. More complicated examples include the
E8 lattice, which is a lattice in
, and the
Leech lattice
In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space which is one of the best models for the kissing number problem. It was discovered by . It may also have been discovered (but not published) by Er ...
in
. The
period lattice in
is central to the study of
elliptic functions
In the mathematical field of complex analysis, elliptic functions are special kinds of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Those integrals are ...
, developed in nineteenth century mathematics; it generalizes to higher dimensions in the theory of
abelian functions. Lattices called
root lattices are important in the theory of
simple Lie algebra
In algebra, a simple Lie algebra is a Lie algebra that is non-abelian and contains no nonzero proper ideals. The classification of real simple Lie algebras is one of the major achievements of Wilhelm Killing and Élie Cartan.
A direct sum of ...
s; for example, the E8 lattice is related to a Lie algebra that goes by the same name.
Dividing space according to a lattice
A lattice
in
thus has the form
:
where
is a basis for
. Different bases can generate the same lattice, but the
absolute value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
of the
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of the
Gram matrix of the vectors
is uniquely determined by
and denoted by d(
). If one thinks of a lattice as dividing the whole of
into equal
polyhedra
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary su ...
(copies of an ''n''-dimensional
parallelepiped
In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term ''rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square.
Three equiva ...
, known as the ''
fundamental region'' of the lattice), then d(
) is equal to the ''n''-dimensional
volume
Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
of this polyhedron. This is why d(
) is sometimes called the covolume of the lattice. If this equals 1, the lattice is called
unimodular.
Lattice points in convex sets
Minkowski's theorem relates the number d(
) and the volume of a symmetric
convex set
In geometry, a set of points is convex if it contains every line segment between two points in the set.
For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is n ...
''S'' to the number of lattice points contained in ''S''. The number of lattice points contained in a
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
all of whose vertices are elements of the lattice is described by the polytope's
Ehrhart polynomial. Formulas for some of the coefficients of this polynomial involve d(
) as well.
Computational lattice problems
Computational lattice problems have many applications in computer science. For example, the
Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) has been used in the
cryptanalysis
Cryptanalysis (from the Greek ''kryptós'', "hidden", and ''analýein'', "to analyze") refers to the process of analyzing information systems in order to understand hidden aspects of the systems. Cryptanalysis is used to breach cryptographic se ...
of many
public-key encryption schemes, and many
lattice-based cryptographic schemes are known to be secure under the assumption that certain lattice problems are
computationally difficult.
Lattices in two dimensions: detailed discussion

There are five 2D lattice types as given by the
crystallographic restriction theorem
The crystallographic restriction theorem in its basic form was based on the observation that the rotational symmetries of a crystal are usually limited to 2-fold, 3-fold, 4-fold, and 6-fold. However, quasicrystals can occur with other diffraction ...
. Below, the
wallpaper group
A wallpaper group (or plane symmetry group or plane crystallographic group) is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetry, symmetries in the pattern. Such patterns occur frequently in architecture a ...
of the lattice is given in
IUCr notation,
Orbifold notation
In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Horton Conway, John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curv ...
, and
Coxeter notation
In geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, ...
, along with a wallpaper diagram showing the symmetry domains. Note that a pattern with this lattice of translational symmetry cannot have more, but may have less symmetry than the lattice itself. A
full list of subgroups is available. For example, below the hexagonal/triangular lattice is given twice, with full 6-fold and a half 3-fold reflectional symmetry. If the symmetry group of a pattern contains an ''n''-fold rotation then the lattice has ''n''-fold symmetry for even ''n'' and 2''n''-fold for odd ''n''.
For the classification of a given lattice, start with one point and take a nearest second point. For the third point, not on the same line, consider its distances to both points. Among the points for which the smaller of these two distances is least, choose a point for which the larger of the two is least. (Not
logically equivalent
In logic and mathematics, statements p and q are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of p and q is sometimes expressed as p \equiv q, p :: q, \textsfpq, or p \iff q, depending on ...
but in the case of lattices giving the same result is just "Choose a point for which the larger of the two is least".)
The five cases correspond to the
triangle
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
being equilateral, right isosceles, right, isosceles, and scalene. In a rhombic lattice, the shortest distance may either be a diagonal or a side of the rhombus, i.e., the line segment connecting the first two points may or may not be one of the equal sides of the isosceles triangle. This depends on the smaller angle of the rhombus being less than 60° or between 60° and 90°.
The general case is known as a
period lattice. If the vectors p and q generate the lattice, instead of p and q we can also take p and p-q, etc. In general in 2D, we can take ''a'' p + ''b'' q and ''c'' p + ''d'' q for integers ''a'',''b'', ''c'' and ''d'' such that ''ad-bc'' is 1 or -1. This ensures that p and q themselves are integer linear combinations of the other two vectors. Each pair p, q defines a parallelogram, all with the same area, the magnitude of the
cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and ...
. One parallelogram fully defines the whole object. Without further symmetry, this parallelogram is a
fundamental parallelogram.

The vectors p and q can be represented by
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. Up to size and orientation, a pair can be represented by their quotient. Expressed geometrically: if two lattice points are 0 and 1, we consider the position of a third lattice point. Equivalence in the sense of generating the same lattice is represented by the
modular group
In mathematics, the modular group is the projective special linear group \operatorname(2,\mathbb Z) of 2\times 2 matrices with integer coefficients and determinant 1, such that the matrices A and -A are identified. The modular group acts on ...
:
represents choosing a different third point in the same grid,
represents choosing a different side of the triangle as reference side 0–1, which in general implies changing the scaling of the lattice, and rotating it. Each "curved triangle" in the image contains for each 2D lattice shape one complex number, the grey area is a canonical representation, corresponding to the classification above, with 0 and 1 two lattice points that are closest to each other; duplication is avoided by including only half of the boundary. The rhombic lattices are represented by the points on its boundary, with the hexagonal lattice as vertex, and ''i'' for the square lattice. The rectangular lattices are at the imaginary axis, and the remaining area represents the parallelogrammatic lattices, with the mirror image of a parallelogram represented by the mirror image in the imaginary axis.
Lattices in three dimensions
The 14 lattice types in 3D are called Bravais lattices. They are characterized by their
space group
In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of the pattern that ...
. 3D patterns with translational symmetry of a particular type cannot have more, but may have less, symmetry than the lattice itself.
Lattices in complex space
A lattice in
is a discrete subgroup of
which spans
as a real vector space. As the dimension of
as a real vector space is equal to
, a lattice in
will be a free abelian group of rank
.
For example, the
Gaussian integer
In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf ...
s
form a lattice in
, as
is a basis of
over
.
In Lie groups
More generally, a lattice Γ in a
Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
''G'' is a
discrete subgroup, such that the
quotient
In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
''G''/Γ is of finite measure, for the measure on it inherited from
Haar measure
In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.
This Measure (mathematics), measure was introduced by Alfr� ...
on ''G'' (left-invariant, or right-invariant—the definition is independent of that choice). That will certainly be the case when ''G''/Γ is
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact, a type of agreement used by U.S. states
* Blood compact, an ancient ritual of the Philippines
* Compact government, a t ...
, but that sufficient condition is not necessary, as is shown by the case of the
modular group
In mathematics, the modular group is the projective special linear group \operatorname(2,\mathbb Z) of 2\times 2 matrices with integer coefficients and determinant 1, such that the matrices A and -A are identified. The modular group acts on ...
in
''SL''2(R), which is a lattice but where the quotient isn't compact (it has ''cusps''). There are general results stating the existence of lattices in Lie groups.
A lattice is said to be uniform or cocompact if ''G''/Γ is compact; otherwise the lattice is called non-uniform.
Lattices in general vector spaces
While we normally consider
lattices in
this concept can be generalized to any finite-dimensional
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over any
field. This can be done as follows:
Let ''K'' be a
field, let ''V'' be an ''n''-dimensional ''K''-
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
, let
be a ''K''-
basis for ''V'' and let ''R'' be a
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
contained within ''K''. Then the ''R'' lattice
in ''V'' generated by ''B'' is given by:
:
In general, different bases ''B'' will generate different lattices. However, if the
transition matrix ''T'' between the bases is in
- the
general linear group
In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
of ''R'' (in simple terms this means that all the entries of ''T'' are in ''R'' and all the entries of
are in ''R'' - which is equivalent to saying that the
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of ''T'' is in
- the
unit group
In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that
vu = uv = 1,
where is the multiplicative identity; the el ...
of elements in ''R'' with multiplicative inverses) then the lattices generated by these bases will be
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
since ''T'' induces an isomorphism between the two lattices.
Important cases of such lattices occur in number theory with ''K'' a
''p''-adic field and ''R'' the
''p''-adic integers.
For a vector space which is also an
inner product space
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
, the
dual lattice
In the theory of lattices, the dual lattice is a construction analogous to that of a dual vector space. In certain respects, the geometry of the dual lattice of a lattice L is the reciprocal of the geometry of L , a perspective which underl ...
can be concretely described by the set
:
or equivalently as
:
Related notions
* A primitive element of a lattice is an element that is not a positive integer multiple of another element in the lattice.
See also
*
Crystal system
In crystallography, a crystal system is a set of point groups (a group of geometric symmetries with at least one fixed point). A lattice system is a set of Bravais lattices (an infinite array of discrete points). Space groups (symmetry groups ...
*
Hermite constant
In mathematics, the Hermite constant, named after Charles Hermite, determines how long a shortest element of a lattice in Euclidean space can be.
The constant ''γn'' for integers ''n'' > 0 is defined as follows. For a lattice ''L'' in Euclidea ...
*
Lattice-based cryptography
Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions support important standards of post-quant ...
*
Lattice graph
*
Lattice (module)
*
Lattice (order)
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper boun ...
*
Mahler's compactness theorem
*
Reciprocal lattice
Reciprocal lattice is a concept associated with solids with translational symmetry which plays a major role in many areas such as X-ray and electron diffraction as well as the energies of electrons in a solid. It emerges from the Fourier tran ...
*
Unimodular lattice
In geometry and mathematical group theory, a unimodular lattice is an integral Lattice (group), lattice of Lattice (group)#Dividing space according to a lattice, determinant 1 or −1. For a lattice in ''n''-dimensional Euclidea ...
Notes
References
*
External links
Catalogue of Lattices (by Nebe and Sloane)
{{DEFAULTSORT:Lattice (Group)
Discrete groups
Lie groups
Analytic geometry