Integer Relation Algorithm
   HOME

TheInfoList



OR:

An integer is the
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
zero ( 0), a positive
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
(1, 2, 3, ...), or the negation of a positive natural number ( −1, −2, −3, ...). The negations or
additive inverse In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
s of the positive natural numbers are referred to as negative integers. The
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of all integers is often denoted by the
boldface In typography, emphasis is the strengthening of words in a text with a font in a different style from the rest of the text, to highlight them. It is the equivalent of prosody stress in speech. Methods and use The most common methods in We ...
or
blackboard bold Blackboard bold is a style of writing Emphasis (typography), bold symbols on a blackboard by doubling certain strokes, commonly used in mathematical lectures, and the derived style of typeface used in printed mathematical texts. The style is most ...
The set of natural numbers \mathbb is a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of \mathbb, which in turn is a subset of the set of all
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s \mathbb, itself a subset of the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s \mathbb. Like the set of natural numbers, the set of integers \mathbb is
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and are not. The integers form the smallest group and the smallest ring containing the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s. In
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
, the integers are sometimes qualified as rational integers to distinguish them from the more general
algebraic integer In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s. In fact, (rational) integers are algebraic integers that are also
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s.


History

The word integer comes from the
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
''integer'' meaning "whole" or (literally) "untouched", from ''in'' ("not") plus ''tangere'' ("to touch"). " Entire" derives from the same origin via the French word '' entier'', which means both ''entire'' and ''integer''. Historically the term was used for a
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
that was a multiple of 1, or to the whole part of a
mixed number A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, thre ...
. Only positive integers were considered, making the term synonymous with the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s. The definition of integer expanded over time to include
negative number In mathematics, a negative number is the opposite (mathematics), opposite of a positive real number. Equivalently, a negative number is a real number that is inequality (mathematics), less than 0, zero. Negative numbers are often used to represe ...
s as their usefulness was recognized. For example
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
in his 1765 ''
Elements of Algebra ''Elements of Algebra'' is an elementary mathematics textbook written by mathematician Leonhard Euler around 1765 in German. It was first published in Russian as "''Universal Arithmetic''" (''Универсальная арифметика''), ...
'' defined integers to include both positive and negative numbers. The phrase ''the set of the integers'' was not used before the end of the 19th century, when
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
introduced the concept of
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set ...
s and
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
. The use of the letter Z to denote the set of integers comes from the German word '' Zahlen'' ("numbers") and has been attributed to
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
. The earliest known use of the notation in a textbook occurs in Algèbre written by the collective
Nicolas Bourbaki Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure (Paris), École normale supérieure (ENS). Founded in 1934–1935, the Bourbaki group originally intende ...
, dating to 1947. The notation was not adopted immediately. For example, another textbook used the letter J, and a 1960 paper used Z to denote the non-negative integers. But by 1961, Z was generally used by modern algebra texts to denote the positive and negative integers. The symbol \mathbb is often annotated to denote various sets, with varying usage amongst different authors: \mathbb^+, \mathbb_+, or \mathbb^ for the positive integers, \mathbb^ or \mathbb^ for non-negative integers, and \mathbb^ for non-zero integers. Some authors use \mathbb^ for non-zero integers, while others use it for non-negative integers, or for (the
group of units In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the ele ...
of \mathbb). Additionally, \mathbb_ is used to denote either the set of integers modulo (i.e., the set of congruence classes of integers), or the set of -adic integers.Keith Pledger and Dave Wilkins, "Edexcel AS and A Level Modular Mathematics: Core Mathematics 1" Pearson 2008 The ''whole numbers'' were synonymous with the integers up until the early 1950s. In the late 1950s, as part of the New Math movement, American elementary school teachers began teaching that ''whole numbers'' referred to the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s, excluding negative numbers, while ''integer'' included the negative numbers. The ''whole numbers'' remain ambiguous to the present day.


Algebraic properties

Like the
natural numbers In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
, \mathbb is closed under the operations of addition and
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, that is, the sum and product of any two integers is an integer. However, with the inclusion of the negative natural numbers (and importantly, ), \mathbb, unlike the natural numbers, is also closed under
subtraction Subtraction (which is signified by the minus sign, –) is one of the four Arithmetic#Arithmetic operations, arithmetic operations along with addition, multiplication and Division (mathematics), division. Subtraction is an operation that repre ...
. The integers form a ring which is the most basic one, in the following sense: for any ring, there is a unique
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
from the integers into this ring. This
universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fro ...
, namely to be an
initial object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element) ...
in the
category of rings In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings i ...
, characterizes the ring \mathbb. This unique homomorphism is
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
if and only if the characteristic of the ring is zero. It follows that every ring of characteristic zero contains a subring isomorphic to , which is its smallest subring. \mathbb is not closed under division, since the quotient of two integers (e.g., 1 divided by 2) need not be an integer. Although the natural numbers are closed under
exponentiation In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication ...
, the integers are not (since the result can be a fraction when the exponent is negative). The following table lists some of the basic properties of addition and multiplication for any integers , , and : The first five properties listed above for addition say that \mathbb, under addition, is an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
. It is also a
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
, since every non-zero integer can be written as a finite sum or . In fact, \mathbb under addition is the ''only'' infinite cyclic group—in the sense that any infinite cyclic group is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to \mathbb. The first four properties listed above for multiplication say that \mathbb under multiplication is a
commutative monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
. However, not every integer has a multiplicative inverse (as is the case of the number 2), which means that \mathbb under multiplication is not a group. All the rules from the above property table (except for the last), when taken together, say that \mathbb together with addition and multiplication is a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
with unity. It is the prototype of all objects of such
algebraic structure In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
. Only those equalities of expressions are true in \mathbb
for all In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", "for every", or "given an arbitrary element". It expresses that a predicate can be satisfied by e ...
values of variables, which are true in any unital commutative ring. Certain non-zero integers map to
zero 0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
in certain rings. The lack of
zero divisor In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right ze ...
s in the integers (last property in the table) means that the commutative ring \mathbb is an
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
. The lack of multiplicative inverses, which is equivalent to the fact that \mathbb is not closed under division, means that \mathbb is ''not'' a field. The smallest field containing the integers as a
subring In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
is the field of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s. The process of constructing the rationals from the integers can be mimicked to form the
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
of any integral domain. And back, starting from an
algebraic number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a ...
(an extension of rational numbers), its
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often de ...
can be extracted, which includes \mathbb as its
subring In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
. Although ordinary division is not defined on \mathbb, the division "with remainder" is defined on them. It is called
Euclidean division In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than ...
, and possesses the following important property: given two integers and with , there exist unique integers and such that and , where denotes the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
of . The integer is called the ''quotient'' and is called the ''
remainder In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient ( integer division). In a ...
'' of the division of by . The
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is a ...
for computing
greatest common divisor In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers , , the greatest co ...
s works by a sequence of Euclidean divisions. The above says that \mathbb is a
Euclidean domain In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of Euclidean division of integers. Th ...
. This implies that \mathbb is a
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain (that is, a non-zero commutative ring without nonzero zero divisors) in which every ideal is principal (that is, is formed by the multiples of a single element). Some author ...
, and any positive integer can be written as the products of primes in an
essentially unique In mathematics, the term essentially unique is used to describe a weaker form of uniqueness, where an object satisfying a property is "unique" only in the sense that all objects satisfying the property are equivalent to each other. The notion of ess ...
way. This is the
fundamental theorem of arithmetic In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 is prime or can be represented uniquely as a product of prime numbers, ...
.


Order-theoretic properties

\mathbb is a
totally ordered set In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( ref ...
without upper or lower bound. The ordering of \mathbb is given by: . An integer is ''positive'' if it is greater than
zero 0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
, and ''negative'' if it is less than zero. Zero is defined as neither negative nor positive. The ordering of integers is compatible with the algebraic operations in the following way: # If and , then # If and , then Thus it follows that \mathbb together with the above ordering is an
ordered ring In abstract algebra, an ordered ring is a (usually commutative) ring ''R'' with a total order ≤ such that for all ''a'', ''b'', and ''c'' in ''R'': * if ''a'' ≤ ''b'' then ''a'' + ''c'' ≤ ''b'' + ''c''. * if 0 ≤ ''a'' and 0 ≤ ''b'' th ...
. The integers are the only nontrivial
totally ordered In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( r ...
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
whose positive elements are well-ordered. This is equivalent to the statement that any
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite leng ...
valuation ring In abstract algebra, a valuation ring is an integral domain ''D'' such that for every non-zero element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''. Given a field ''F'', if ''D'' is a subring of ' ...
is either a field—or a discrete valuation ring.


Construction


Traditional development

In elementary school teaching, integers are often intuitively defined as the union of the (positive) natural numbers,
zero 0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
, and the negations of the natural numbers. This can be formalized as follows. First construct the set of natural numbers according to the
Peano axioms In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
, call this P. Then construct a set P^- which is disjoint from P and in one-to-one correspondence with P via a function \psi. For example, take P^- to be the
ordered pair In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unord ...
s (1,n) with the mapping \psi = n \mapsto (1,n). Finally let 0 be some object not in P or P^-, for example the ordered pair (0,0). Then the integers are defined to be the union P \cup P^- \cup \. The traditional arithmetic operations can then be defined on the integers in a
piecewise In mathematics, a piecewise function (also called a piecewise-defined function, a hybrid function, or a function defined by cases) is a function whose domain is partitioned into several intervals ("subdomains") on which the function may be ...
fashion, for each of positive numbers, negative numbers, and zero. For example
negation In logic, negation, also called the logical not or logical complement, is an operation (mathematics), operation that takes a Proposition (mathematics), proposition P to another proposition "not P", written \neg P, \mathord P, P^\prime or \over ...
is defined as follows: -x = \begin \psi(x), & \text x \in P \\ \psi^(x), & \text x \in P^- \\ 0, & \text x = 0 \end The traditional style of definition leads to many different cases (each arithmetic operation needs to be defined on each combination of types of integer) and makes it tedious to prove that integers obey the various laws of arithmetic.


Equivalence classes of ordered pairs

In modern set-theoretic mathematics, a more abstract construction allowing one to define arithmetical operations without any case distinction is often used instead. The integers can thus be formally constructed as the
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es of
ordered pair In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unord ...
s of
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s . The intuition is that stands for the result of subtracting from . To confirm our expectation that and denote the same number, we define an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
on these pairs with the following rule: :(a,b)\sim(c,d) precisely when :a+d=b+c . Addition and multiplication of integers can be defined in terms of the equivalent operations on the natural numbers; by using to denote the equivalence class having as a member, one has: : a,b) c,d)=
a+c,b+d) A, or a, is the first letter and the first vowel letter of the Latin alphabet, used in the modern English alphabet, and others worldwide. Its name in English is '' a'' (pronounced ), plural ''aes''. It is similar in shape to the Ancient ...
/math>. : a,b)cdot c,d)= ac+bd,ad+bc)/math>. The negation (or additive inverse) of an integer is obtained by reversing the order of the pair: :- a,b)= b,a)/math>. Hence subtraction can be defined as the addition of the additive inverse: : a,b) c,d)=
a+d,b+c) A, or a, is the first letter and the first vowel letter of the Latin alphabet, used in the modern English alphabet, and others worldwide. Its name in English is '' a'' (pronounced ), plural ''aes''. It is similar in shape to the Ancient ...
/math>. The standard ordering on the integers is given by: : a,b) c,d)/math>
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
a+d. It is easily verified that these definitions are independent of the choice of representatives of the equivalence classes. Every equivalence class has a unique member that is of the form or (or both at once). The natural number is identified with the class (i.e., the natural numbers are embedded into the integers by map sending to ), and the class is denoted (this covers all remaining classes, and gives the class a second time since −0 = 0. Thus, is denoted by :\begina-b,&\mboxa\ge b\\-(b-a),&\mboxa If the natural numbers are identified with the corresponding integers (using the embedding mentioned above), this convention creates no ambiguity. This notation recovers the familiar representation of the integers as . Some examples are: :\begin0&= 0,0)= 1,1)=\cdots& &= k,k)\1&= 1,0)= 2,1)=\cdots&&= k+1,k)\-1&= 0,1)= 1,2)=\cdots&&= k,k+1)\2&= 2,0)= 3,1)=\cdots&&= k+2,k)\-2&= 0,2)= 1,3)=\cdots&&= k,k+2)end


Other approaches

In theoretical computer science, other approaches for the construction of integers are used by automated theorem provers and term rewrite engines. Integers are represented as algebraic terms built using a few basic operations (e.g., zero, succ, pred) and using
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s, which are assumed to be already constructed (using the Peano approach). There exist at least ten such constructions of signed integers. These constructions differ in several ways: the number of basic operations used for the construction, the number (usually, between 0 and 2), and the types of arguments accepted by these operations; the presence or absence of natural numbers as arguments of some of these operations, and the fact that these operations are free constructors or not, i.e., that the same integer can be represented using only one or many algebraic terms. The technique for the construction of integers presented in the previous section corresponds to the particular case where there is a single basic operation pair(x,y) that takes as arguments two natural numbers x and y, and returns an integer (equal to x-y). This operation is not free since the integer 0 can be written pair(0,0), or pair(1,1), or pair(2,2), etc.. This technique of construction is used by the
proof assistant In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human–machine collaboration. This involves some sort of interactive proof edi ...
Isabelle; however, many other tools use alternative construction techniques, notable those based upon free constructors, which are simpler and can be implemented more efficiently in computers.


Computer science

An integer is often a primitive
data type In computer science and computer programming, a data type (or simply type) is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these ...
in
computer language A computer language is a formal language used to communicate with a computer. Types of computer languages include: * Software construction#Construction languages, Construction language – all forms of communication by which a human can Comput ...
s. However, integer data types can only represent a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of all integers, since practical computers are of finite capacity. Also, in the common
two's complement Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, and more generally, fixed point binary values. Two's complement uses the binary digit with the ''greatest'' value as the ''s ...
representation, the inherent definition of
sign A sign is an object, quality, event, or entity whose presence or occurrence indicates the probable presence or occurrence of something else. A natural sign bears a causal relation to its object—for instance, thunder is a sign of storm, or me ...
distinguishes between "negative" and "non-negative" rather than "negative, positive, and 0". (It is, however, certainly possible for a computer to determine whether an integer value is truly positive.) Fixed length integer approximation data types (or subsets) are denoted ''int'' or Integer in several programming languages (such as Algol68, C,
Java Java is one of the Greater Sunda Islands in Indonesia. It is bordered by the Indian Ocean to the south and the Java Sea (a part of Pacific Ocean) to the north. With a population of 156.9 million people (including Madura) in mid 2024, proje ...
,
Delphi Delphi (; ), in legend previously called Pytho (Πυθώ), was an ancient sacred precinct and the seat of Pythia, the major oracle who was consulted about important decisions throughout the ancient Classical antiquity, classical world. The A ...
, etc.). Variable-length representations of integers, such as
bignum In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose numerical digit, digits of p ...
s, can store any integer that fits in the computer's memory. Other integer data types are implemented with a fixed size, usually a number of bits which is a power of 2 (4, 8, 16, etc.) or a memorable number of decimal digits (e.g., 9 or 10).


Cardinality

The set of integers is
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
, meaning it is possible to pair each integer with a unique natural number. An example of such a pairing is : More technically, the
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
of \mathbb is said to equal (
aleph-null In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used ...
). The pairing between elements of \mathbb and \mathbb is called a
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
.


See also

* Canonical factorization of a positive integer * Complex integer * Hyperinteger *
Integer complexity In number theory, the complexity of an integer is the smallest number of ones that can be used to represent it using ones and any number of additions, multiplications, and parentheses. It is always within a constant factor of the logarithm of the ...
*
Integer lattice In mathematics, the -dimensional integer lattice (or cubic lattice), denoted , is the lattice (group), lattice in the Euclidean space whose lattice points are tuple, -tuples of integers. The two-dimensional integer lattice is also called the s ...
* Integer part *
Integer sequence In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified ''explicitly'' by giving a formula for its ''n''th term, or ''implicitly'' by giving a relationship between its terms. For ...
* Integer-valued function *
Mathematical symbols A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a mathemat ...
*
Parity (mathematics) In mathematics, parity is the Property (mathematics), property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 6 ...
* Profinite integer


Footnotes


References


Sources

* ) * * *


External links

*
The Positive Integers – divisor tables and numeral representation tools

On-Line Encyclopedia of Integer Sequences
cf OEIS * {{Authority control Elementary mathematics Abelian group theory Ring theory Elementary number theory Algebraic number theory Sets of real numbers