HOME



picture info

OEIS
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the OEIS Foundation in 2009, and is its chairman. OEIS records information on integer sequences of interest to both professional and amateur mathematicians, and is widely cited. , it contains over 370,000 sequences, and is growing by approximately 30 entries per day. Each entry contains the leading terms of the sequence, keywords, mathematical motivations, literature links, and more, including the option to generate a graph or play a musical representation of the sequence. The database is searchable by keyword, by subsequence, or by any of 16 fields. There is also an advanced search function called SuperSeeker which runs a large number of different algorithms to identify sequences related to the input. History Neil Sloane started coll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

OEIS Banner
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the OEIS Foundation in 2009, and is its chairman. OEIS records information on integer sequences of interest to both professional and List of amateur mathematicians, amateur mathematicians, and is widely cited. , it contains over 370,000 sequences, and is growing by approximately 30 entries per day. Each entry contains the leading terms of the sequence, Keyword (computer programming), keywords, mathematical motivations, literature links, and more, including the option to generate a Graph of a function, graph or play a Computer music, musical representation of the sequence. The database is Search engine (computing), searchable by keyword, by subsequence, or by any of 16 fields. There is also an advanced search function called SuperSeeker whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Farey Sequence
In mathematics, the Farey sequence of order ''n'' is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, which have denominators less than or equal to ''n'', arranged in order of increasing size. With the restricted definition, each Farey sequence starts with the value 0, denoted by the fraction , and ends with the value 1, denoted by the fraction (although some authors omit these terms). A ''Farey sequence'' is sometimes called a Farey series (mathematics), ''series'', which is not strictly correct, because the terms are not summed. Examples The Farey sequences of orders 1 to 8 are : :''F''1 = :''F''2 = :''F''3 = :''F''4 = :''F''5 = :''F''6 = :''F''7 = :''F''8 = Farey sunburst Plotting the numerators versus the denominators of a Farey sequence gives a shape like the one to the right, shown for Reflecting this shape around the diagonal and main axes generates the ''Farey sunburst'', shown below. The Farey sunburst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of Integer Sequences
The ''Journal of Integer Sequences'' is a peer-reviewed open-access academic journal in mathematics, specializing in research papers about integer sequences. It was founded in 1998 by Neil Sloane. Sloane had previously published two books on integer sequences, and in 1996 he founded the On-Line Encyclopedia of Integer Sequences (OEIS). Needing an outlet for research papers concerning the sequences he was collecting in the OEIS, he founded the journal. Since 2002 the journal has been hosted by the David R. Cheriton School of Computer Science at the University of Waterloo, with Waterloo professor Jeffrey Shallit as its editor-in-chief. There are no page charges for authors, and all papers are free to all readers. The journal publishes approximately 50–75 papers annually.. In most years from 1999 to 2014, SCImago Journal Rank has ranked the ''Journal of Integer Sequences'' as a third-quartile journal in discrete mathematics and combinatorics. It is indexed by ''Mathematical Review ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer Sequence
In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified ''explicitly'' by giving a formula for its ''n''th term, or ''implicitly'' by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci number, Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description . The sequence 0, 3, 8, 15, ... is formed according to the formula ''n''2 − 1 for the ''n''th term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, , even though we do not have a formula for the ''n''th perfect number. Computable and definable sequences An integer sequence is computable function, computable if th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcendental Number
In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are and . The quality of a number being transcendental is called transcendence. Though only a few classes of transcendental numbers are known, partly because it can be extremely difficult to show that a given number is transcendental. Transcendental numbers are not rare: indeed, almost all real and complex numbers are transcendental, since the algebraic numbers form a countable set, while the set of real numbers and the set of complex numbers are both uncountable sets, and therefore larger than any countable set. All transcendental real numbers (also known as real transcendental numbers or transcendental irrational numbers) are irrational numbers, since all rational numbers are algebraic. The converse is not true: Not all irrational numbers are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AT&T Labs
AT&T Labs, Inc. (formerly AT&T Laboratories, Inc.) is the research & development division of AT&T, the telecommunications company. It employs some 1,800 people in various locations, including: Bedminster, New Jersey; Middletown Township, New Jersey, Middletown, New Jersey; Manhattan, New York; Warrenville, Illinois; Austin, Texas; Dallas, Texas; Atlanta, Georgia; San Francisco, California; San Ramon, California; and Redmond, Washington. The main research division, made up of around 450 people, is based across the Bedminster, Middletown, San Francisco, and Manhattan locations. AT&T Labs traces its history from Bell Labs, AT&T Bell Labs. Much research is in areas traditionally associated with networks and systems, ranging from the physics of optical transmission to foundational topics in computing and communications. Other research areas address the technical challenges of large operational networks and the resulting large data sets. Achievements Researchers at AT&T Labs wrot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neil Sloane
__NOTOC__ Neil James Alexander Sloane FLSW (born October 10, 1939) is a British-American mathematician. His major contributions are in the fields of combinatorics, error-correcting codes, and sphere packing. Sloane is best known for being the creator and maintainer of the On-Line Encyclopedia of Integer Sequences (OEIS). Biography Sloane was born in Beaumaris, Anglesey, Wales, in 1939, moving to Cowes, Isle of Wight, England in 1946. The family emigrated to Australia, arriving at the start of 1949. Sloane then moved from Melbourne to the United States in 1961. He studied at Cornell University under Nick DeClaris, Frank Rosenblatt, Frederick Jelinek and Wolfgang Heinrich Johannes Fuchs, receiving his Ph.D. in 1967. His doctoral dissertation was titled ''Lengths of Cycle Times in Random Neural Networks''. Sloane joined Bell Labs in 1968 and retired from its successor AT&T Labs in 2012. He became an AT&T Fellow in 1998. He is also a Fellow of the Learned Society of Wales, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simon Plouffe
Simon Plouffe (born June 11, 1956) is a Canadian mathematician who discovered the Bailey–Borwein–Plouffe formula (BBP algorithm) which permits the computation of the ''n''th binary number, binary digit of pi, π, in 1995. His other 2022 formula allows extracting the ''n''th digit of in decimal. He was born in Saint-Jovite, Quebec. He co-authored ''The Encyclopedia of Integer Sequences'', made into the website On-Line Encyclopedia of Integer Sequences dedicated to integer sequences later in 1995. In 1975, Plouffe broke the world record for memorizing digits of π by reciting 4096 digits, a record which stood until 1977. See also *Fabrice Bellard, who discovered in 1997 a faster formula to compute pi. *PiHex Notes External links * * Plouffe website(in French) * * N. J. A. Sloane and S. Plouffe,
', Academic Press, San Diego, 1995, 587 pp. . 1956 births Living people Canadian mathematicians People from Laurentides {{Canada-academic-bio-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Irrational Number
In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being '' incommensurable'', meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself. Among irrational numbers are the ratio of a circle's circumference to its diameter, Euler's number ''e'', the golden ratio ''φ'', and the square root of two. In fact, all square roots of natural numbers, other than of perfect squares, are irrational. Like all real numbers, irrational numbers can be expressed in positional notation, notably as a decimal number. In the case of irrational numbers, the decimal expansion does not terminate, nor end ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fraction
A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A ''common'', ''vulgar'', or ''simple'' fraction (examples: and ) consists of an integer numerator, displayed above a line (or before a slash like ), and a division by zero, non-zero integer denominator, displayed below (or after) that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction , the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates of a cake. Fractions can be used to represent ratios and division (mathematics), division. Thus the fraction can be used to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Charles Greathouse
Charles is a masculine given name predominantly found in English and French speaking countries. It is from the French form ''Charles'' of the Proto-Germanic name (in runic alphabet) or ''*karilaz'' (in Latin alphabet), whose meaning was "free man". The Old English descendant of this word was '' Ċearl'' or ''Ċeorl'', as the name of King Cearl of Mercia, that disappeared after the Norman conquest of England. The name was notably borne by Charlemagne (Charles the Great), and was at the time Latinized as ''Karolus'' (as in ''Vita Karoli Magni''), later also as '' Carolus''. Etymology The name's etymology is a Common Germanic noun ''*karilaz'' meaning "free man", which survives in English as churl (James (wikt:Appendix:Proto-Indo-European/ǵerh₂-">ĝer-, where the ĝ is a palatal consonant, meaning "to rub; to be old; grain." An old man has been worn away and is now grey with age. In some Slavic languages, the name ''Drago (given name), Drago'' (and variants: ''Dragom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]