HOME

TheInfoList



OR:

An integer is the number zero (), a positive
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
(, , , etc.) or a negative integer with a minus sign (
−1 In mathematics, −1 (also known as negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less ...
, −2, −3, etc.). The
negative number In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is inequality (mathematics), less than 0 (number), zero. Negative numbers are often used to represent the magnitude of a loss ...
s are the
additive inverse In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
s of the corresponding positive numbers. In the
language of mathematics The language of mathematics or mathematical language is an extension of the natural language (for example English) that is used in mathematics and in science for expressing results (scientific laws, theorems, proofs, logical deductions, etc) wi ...
, the set of integers is often denoted by the
boldface In typography, emphasis is the strengthening of words in a text with a font in a different style from the rest of the text, to highlight them. It is the equivalent of prosody stress in speech. Methods and use The most common methods in W ...
or
blackboard bold Blackboard bold is a typeface style that is often used for certain symbols in mathematical texts, in which certain lines of the symbol (usually vertical or near-vertical lines) are doubled. The symbols usually denote number sets. One way of p ...
\mathbb. The set of natural numbers \mathbb is a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of \mathbb, which in turn is a subset of the set of all
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s \mathbb, itself a subset of the
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s \mathbb. Like the natural numbers, \mathbb is
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
and the smallest
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
containing the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general
algebraic integer In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficien ...
s. In fact, (rational) integers are algebraic integers that are also
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s.


History

The word integer comes from the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power ...
''integer'' meaning "whole" or (literally) "untouched", from ''in'' ("not") plus ''tangere'' ("to touch"). "
Entire Entire may refer to: * Entire function, a function that is holomorphic on the whole complex plane * Entire (animal) Neutering, from the Latin ''neuter'' ('of neither sex'), is the removal of an animal's reproductive organ, either all of it or a ...
" derives from the same origin via the
French French (french: français(e), link=no) may refer to: * Something of, from, or related to France ** French language, which originated in France, and its various dialects and accents ** French people, a nation and ethnic group identified with France ...
word ''
entier In mathematics and computer science, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least in ...
'', which means both ''entire'' and ''integer''. Historically the term was used for a
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers ...
that was a multiple of 1, or to the whole part of a
mixed number A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
. Only positive integers were considered, making the term synonymous with the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s. The definition of integer expanded over time to include
negative number In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is inequality (mathematics), less than 0 (number), zero. Negative numbers are often used to represent the magnitude of a loss ...
s as their usefulness was recognized. For example
Leonhard Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
in his 1765 ''
Elements of Algebra ''Elements of Algebra'' is an elementary mathematics textbook written by mathematician Leonhard Euler around 1765 in German. It was first published in Russian as "''Universal Arithmetic''" (''Универсальная арифметика''), tw ...
'' defined integers to include both positive and negative numbers. However, European mathematicians, for the most part, resisted the concept of negative numbers until the middle of the 19th century. The use of the letter Z to denote the set of integers comes from the
German German(s) may refer to: * Germany (of or related to) **Germania (historical use) * Germans, citizens of Germany, people of German ancestry, or native speakers of the German language ** For citizens of Germany, see also German nationality law **Ger ...
word ''
Zahlen An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
'' ("number") and has been attributed to David Hilbert. The earliest known use of the notation in a textbook occurs in Algébre written by the collective Nicolas Bourbaki, dating to 1947. The notation was not adopted immediately, for example another textbook used the letter J and a 1960 paper used Z to denote the non-negative integers. But by 1961, Z was generally used by modern algebra texts to denote the positive and negative integers. The symbol \mathbb is often annotated to denote various sets, with varying usage amongst different authors: \mathbb^+,\mathbb_+ or \mathbb^ for the positive integers, \mathbb^ or \mathbb^ for non-negative integers, and \mathbb^ for non-zero integers. Some authors use \mathbb^ for non-zero integers, while others use it for non-negative integers, or for (the
group of units In algebra, a unit of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the element is unique for th ...
of \mathbb). Additionally, \mathbb_ is used to denote either the set of integers modulo (i.e., the set of congruence classes of integers), or the set of -adic integers.Keith Pledger and Dave Wilkins, "Edexcel AS and A Level Modular Mathematics: Core Mathematics 1" Pearson 2008 The whole numbers were synonymous with the integers up until the early 1950s. In the late 1950s, as part of the
New Math New Mathematics or New Math was a dramatic but temporary change in the mathematics education, way mathematics was taught in American grade schools, and to a lesser extent in European countries and elsewhere, during the 1950s1970s. Curriculum top ...
movement, American elementary school teachers began teaching that "whole numbers" referred to the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s, excluding negative numbers, while "integer" included the negative numbers. "Whole number" remains ambiguous to the present day.


Algebraic properties

Like the
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
, \mathbb is
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
under the
operations Operation or Operations may refer to: Arts, entertainment and media * ''Operation'' (game), a battery-operated board game that challenges dexterity * Operation (music), a term used in musical set theory * ''Operations'' (magazine), Multi-Man ...
of addition and
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being ad ...
, that is, the sum and product of any two integers is an integer. However, with the inclusion of the negative natural numbers (and importantly, ), \mathbb, unlike the natural numbers, is also closed under
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
. The integers form a
unital ring In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying prop ...
which is the most basic one, in the following sense: for any unital ring, there is a unique
ring homomorphism In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is: :addition prese ...
from the integers into this ring. This
universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently ...
, namely to be an
initial object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element) ...
in the
category of rings In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings ...
, characterizes the ring \mathbb. \mathbb is not closed under
division Division or divider may refer to: Mathematics *Division (mathematics), the inverse of multiplication *Division algorithm, a method for computing the result of mathematical division Military * Division (military), a formation typically consisting ...
, since the quotient of two integers (e.g., 1 divided by 2) need not be an integer. Although the natural numbers are closed under
exponentiation Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to re ...
, the integers are not (since the result can be a fraction when the exponent is negative). The following table lists some of the basic properties of addition and multiplication for any integers , and : The first five properties listed above for addition say that \mathbb, under addition, is an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is com ...
. It is also a
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bi ...
, since every non-zero integer can be written as a finite sum or . In fact, \mathbb under addition is the ''only'' infinite cyclic group—in the sense that any infinite cyclic group is isomorphic to \mathbb. The first four properties listed above for multiplication say that \mathbb under multiplication is a
commutative monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids a ...
. However, not every integer has a multiplicative inverse (as is the case of the number 2), which means that \mathbb under multiplication is not a group. All the rules from the above property table (except for the last), when taken together, say that \mathbb together with addition and multiplication is a commutative ring with
unity Unity may refer to: Buildings * Unity Building, Oregon, Illinois, US; a historic building * Unity Building (Chicago), Illinois, US; a skyscraper * Unity Buildings, Liverpool, UK; two buildings in England * Unity Chapel, Wyoming, Wisconsin, US; a ...
. It is the prototype of all objects of such
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set ...
. Only those
equalities In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality b ...
of expressions are true in \mathbb
for all In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any" or "for all". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other ...
values of variables, which are true in any unital commutative ring. Certain non-zero integers map to
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usu ...
in certain rings. The lack of
zero divisor In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero ...
s in the integers (last property in the table) means that the commutative ring \mathbb is an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
. The lack of multiplicative inverses, which is equivalent to the fact that \mathbb is not closed under division, means that \mathbb is ''not'' a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
. The smallest field containing the integers as a
subring In mathematics, a subring of ''R'' is a subset of a ring that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and which shares the same multiplicative identity as ''R''. For those ...
is the field of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s. The process of constructing the rationals from the integers can be mimicked to form the
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
of any integral domain. And back, starting from an
algebraic number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a ...
(an extension of rational numbers), its
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often d ...
can be extracted, which includes \mathbb as its
subring In mathematics, a subring of ''R'' is a subset of a ring that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and which shares the same multiplicative identity as ''R''. For those ...
. Although ordinary division is not defined on \mathbb, the division "with remainder" is defined on them. It is called
Euclidean division In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than ...
, and possesses the following important property: given two integers and with , there exist unique integers and such that and , where denotes the absolute value of . The integer is called the ''quotient'' and is called the ''
remainder In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient (integer division). In algeb ...
'' of the division of by . The
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an ...
for computing
greatest common divisor In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers ''x'', ''y'', the greatest common divisor of ''x'' and ''y'' i ...
s works by a sequence of Euclidean divisions. The above says that \mathbb is a
Euclidean domain In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. ...
. This implies that \mathbb is a
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are princip ...
, and any positive integer can be written as the products of
primes A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
in an
essentially unique In mathematics, the term essentially unique is used to describe a weaker form of uniqueness, where an object satisfying a property is "unique" only in the sense that all objects satisfying the property are equivalent to each other. The notion of es ...
way. This is the
fundamental theorem of arithmetic In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the o ...
.


Order-theoretic properties

\mathbb is a
totally ordered set In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexiv ...
without upper or lower bound. The ordering of \mathbb is given by: An integer is ''positive'' if it is greater than
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usu ...
, and ''negative'' if it is less than zero. Zero is defined as neither negative nor positive. The ordering of integers is compatible with the algebraic operations in the following way: # if and , then # if and , then . Thus it follows that \mathbb together with the above ordering is an
ordered ring In abstract algebra, an ordered ring is a (usually commutative) ring ''R'' with a total order ≤ such that for all ''a'', ''b'', and ''c'' in ''R'': * if ''a'' ≤ ''b'' then ''a'' + ''c'' ≤ ''b'' + ''c''. * if 0 ≤ ''a'' and 0 ≤ ''b'' the ...
. The integers are the only nontrivial
totally ordered In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexiv ...
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is com ...
whose positive elements are
well-ordered In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-o ...
. This is equivalent to the statement that any
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite leng ...
valuation ring In abstract algebra, a valuation ring is an integral domain ''D'' such that for every element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''. Given a field ''F'', if ''D'' is a subring of ''F'' such ...
is either a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
—or a
discrete valuation ring In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain ''R'' which satisfies any one of the following equivalent conditions: # ''R' ...
.


Construction


Traditional development

In elementary school teaching, integers are often intuitively defined as the union of the (positive) natural numbers,
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usu ...
, and the negations of the natural numbers. This can be formalized as follows. First construct the set of natural numbers according to the
Peano axioms In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly ...
, call this P. Then construct a set P^- which is
disjoint Disjoint may refer to: *Disjoint sets, sets with no common elements *Mutual exclusivity, the impossibility of a pair of propositions both being true See also *Disjoint union *Disjoint-set data structure {{disambig


References


Sources

* ) * * *


External links

*
The Positive Integers – divisor tables and numeral representation tools

On-Line Encyclopedia of Integer Sequences
cf
OEIS The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to th ...
* {{Authority control Elementary mathematics Abelian group theory Ring theory Elementary number theory Algebraic number theory Sets of real numbers