Background
Autoacceleration of the overall rate of a free-radical polymerization system has been noted in many bulk polymerization systems. The polymerization ofCauses
Norrish and Smith, Trommsdorff, and later, Schultz and Harborth, concluded that autoacceleration must be caused by a totally different polymerization mechanism. They rationalized through experiment that a decrease in the termination rate was the basis of the phenomenon. This decrease in termination rate, ''kt'', is caused by the raised viscosity of the polymerization region when the concentration of previously formed polymer molecules increases. Before autoacceleration, chain termination by combination of two free-radical chains is a very rapid reaction that occurs at very high frequency (about one in 104 collisions). However, when the growing polymer molecules – with active free-radical ends – are surrounded in the highly viscous mixture consisting of a growing concentration of "dead" polymer, the rate of termination becomes limited by diffusion.Flory, P. J. Principles of Polymer Chemistry. Ithaca: Cornell UP, 1953. 124–129. The Brownian motion of the larger molecules in the polymer "soup" is restricted, therefore limiting the frequency of their effective (termination) collisions.Results
With termination collisions restricted, the concentration of active polymerizing chains and simultaneously the consumption of monomer rises rapidly. Assuming abundant unreacted monomer, viscosity changes affect the macromolecules but do not prove high enough to prevent smaller molecules – such as the monomer – from moving relatively freely. Therefore, the propagation reaction of the free-radical polymerization process is relatively insensitive to changes in viscosity. This also implies that at the onset of autoacceleration the overall rate of reaction increases relative to the rate of unautoaccelerated reaction given by the overall rate of reaction equation for free-radical polymerization: : Approximately, as the termination decreases by a factor of 4, the overall rate of reaction will double. The decrease of termination reactions also allows radical chains to add monomer for longer time periods, raising the mass-average molecular mass dramatically. However, the number-average molecular mass only increases slightly, leading to broadening of the molecular mass distribution (high dispersity, very polydispersed product).References
Bibliography
* Dvornic, Petar R., and Jacovic S. Milhailo. "The Viscosity Effect on Autoacceleration of the Rate of Free Radical Polymerization". Wiley InterScience. 6 December 2007. Polymer chemistry Reaction mechanisms